import pandas as pd from autogluon.tabular import TabularPredictor if __name__ == '__main__': train_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') subsample_size = 5000 if subsample_size is not None and subsample_size < len(train_data): train_data = train_data.sample(n=subsample_size, random_state=0) test_data = pd.read_csv('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') tabpfnmix_default = { "model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier", "model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor", "n_ensembles": 1, "max_epochs": 30, } hyperparameters = { "TABPFNV2":{}, } label = "class" predictor = TabularPredictor(label=label) predictor = predictor.fit( train_data=train_data, hyperparameters=hyperparameters, verbosity=3, ) predictor.leaderboard(test_data, display=True)