Spaces:
Runtime error
Runtime error
File size: 1,053 Bytes
f415673 1266714 f415673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# Load model
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
sentiment_model = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# Function for Gradio
def analyze_sentiment(text):
result = sentiment_model(text)[0]
return {
"Sentiment": result["label"],
"Confidence": f"{result['score']:.2f}"
}
# Example texts
examples = [
["I absolutely love this new phone, the camera is stunning!"],
["I hate the way this app keeps crashing."],
["It’s fine, nothing special but not terrible either."],
]
# Gradio UI
demo = gr.Interface(
fn=analyze_sentiment,
inputs=gr.Textbox(lines=3, placeholder="Type a sentence here..."),
outputs="label",
examples=examples,
title="Sentiment Analyzer",
description=""
)
if __name__ == "__main__":
demo.launch() |