Spaces:
Sleeping
Sleeping
| from transformers import RobertaTokenizer, RobertaModel | |
| from transformers import BertModel, BertTokenizer | |
| from torch import nn | |
| #============= | |
| # RO-BERTA MODEL | |
| #============= | |
| RO_BERTA_MODEL_PATH = "./Models/roberta_model.pth" | |
| roberta_tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
| class RoBertaForMultiLabel(nn.Module): | |
| def __init__(self, pretrained_model='roberta-base', num_labels=5): | |
| super().__init__() | |
| self.bert = RobertaModel.from_pretrained(pretrained_model) | |
| self.dropout = nn.Dropout(0.3) | |
| self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels) | |
| def forward(self, input_ids, attention_mask): | |
| pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).pooler_output | |
| return self.classifier(self.dropout(pooled_output)) | |
| #================ | |
| # BERT MODEL | |
| #================ | |
| BERT_MODEL_PATH = "./Models/BERT_MODEL.pth" | |
| bert_tokenizer=BertTokenizer.from_pretrained('bert-base-uncased') | |
| class BertForMultiLabel(nn.Module): | |
| def __init__(self, pretrained_model='bert-base-uncased', num_labels=5): | |
| super().__init__() | |
| self.bert = BertModel.from_pretrained(pretrained_model) | |
| self.dropout = nn.Dropout(0.3) | |
| self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels) | |
| def forward(self, input_ids, attention_mask): | |
| pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask).pooler_output | |
| return self.classifier(self.dropout(pooled_output)) | |