Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,40 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import torch
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
# model init
|
| 6 |
-
model = BertForMultiLabel()
|
| 7 |
-
# Load fine-tuned weights
|
| 8 |
-
state_dict = torch.load(BERT_MODEL_PATH, map_location="cpu")
|
| 9 |
-
model.load_state_dict(state_dict)
|
| 10 |
-
model.eval()
|
| 11 |
-
|
| 12 |
-
# -------------------------------
|
| 13 |
-
# Streamlit App
|
| 14 |
-
# -------------------------------
|
| 15 |
-
st.title("Emotion Classification with fine‑tuned BERT")
|
| 16 |
-
|
| 17 |
-
# Input text box
|
| 18 |
-
text = st.text_area("Enter text to analyze five different emotions:")
|
| 19 |
-
|
| 20 |
-
if st.button("Predict"):
|
| 21 |
-
if text.strip():
|
| 22 |
-
# Tokenize input
|
| 23 |
-
inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 24 |
-
|
| 25 |
-
with torch.no_grad():
|
| 26 |
-
# logits = model(**inputs) for Ro berta
|
| 27 |
-
logits = model(input_ids=inputs["input_ids"],
|
| 28 |
-
attention_mask=inputs["attention_mask"])
|
| 29 |
-
|
| 30 |
-
probs = torch.sigmoid(logits).cpu().numpy().tolist()[0]
|
| 31 |
-
|
| 32 |
-
emotions = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 33 |
-
result = dict(zip(emotions, probs))
|
| 34 |
-
|
| 35 |
-
# Display results
|
| 36 |
-
st.subheader("Predicted Emotion Probabilities")
|
| 37 |
-
for emotion, prob in result.items():
|
| 38 |
-
st.write(f"{emotion} : {prob:.4f}")
|
| 39 |
-
else:
|
| 40 |
-
st.warning("Please enter some text before predicting.")
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from All_Model import BertForMultiLabel ,bert_tokenizer
|
| 4 |
+
|
| 5 |
+
# model init
|
| 6 |
+
model = BertForMultiLabel()
|
| 7 |
+
# Load fine-tuned weights
|
| 8 |
+
state_dict = torch.load(BERT_MODEL_PATH, map_location="cpu")
|
| 9 |
+
model.load_state_dict(state_dict)
|
| 10 |
+
model.eval()
|
| 11 |
+
|
| 12 |
+
# -------------------------------
|
| 13 |
+
# Streamlit App
|
| 14 |
+
# -------------------------------
|
| 15 |
+
st.title("Emotion Classification with fine‑tuned BERT")
|
| 16 |
+
|
| 17 |
+
# Input text box
|
| 18 |
+
text = st.text_area("Enter text to analyze five different emotions:")
|
| 19 |
+
|
| 20 |
+
if st.button("Predict"):
|
| 21 |
+
if text.strip():
|
| 22 |
+
# Tokenize input
|
| 23 |
+
inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 24 |
+
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
# logits = model(**inputs) for Ro berta
|
| 27 |
+
logits = model(input_ids=inputs["input_ids"],
|
| 28 |
+
attention_mask=inputs["attention_mask"])
|
| 29 |
+
|
| 30 |
+
probs = torch.sigmoid(logits).cpu().numpy().tolist()[0]
|
| 31 |
+
|
| 32 |
+
emotions = ["anger", "fear", "joy", "sadness", "surprise"]
|
| 33 |
+
result = dict(zip(emotions, probs))
|
| 34 |
+
|
| 35 |
+
# Display results
|
| 36 |
+
st.subheader("Predicted Emotion Probabilities")
|
| 37 |
+
for emotion, prob in result.items():
|
| 38 |
+
st.write(f"{emotion} : {prob:.4f}")
|
| 39 |
+
else:
|
| 40 |
+
st.warning("Please enter some text before predicting.")
|