Spaces:
Runtime error
Runtime error
Commit
·
2b557d7
1
Parent(s):
ac0f9ba
Score : 45
Browse files- app.py +4 -6
- src/final_assignment_template/__pycache__/agent.cpython-311.pyc +0 -0
- src/final_assignment_template/__pycache__/models.cpython-311.pyc +0 -0
- src/final_assignment_template/__pycache__/tools.cpython-311.pyc +0 -0
- src/final_assignment_template/agent.py +80 -33
- src/final_assignment_template/models.py +18 -1
- src/final_assignment_template/tools.py +182 -36
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import inspect
|
|
| 5 |
import pandas as pd
|
| 6 |
from typing import Any
|
| 7 |
|
| 8 |
-
from src.final_assignment_template.agent import
|
| 9 |
# (Keep Constants as is)
|
| 10 |
# --- Constants ---
|
| 11 |
|
|
@@ -35,9 +35,9 @@ class BasicAgent:
|
|
| 35 |
if task_id and file_name:
|
| 36 |
print('With task_id')
|
| 37 |
print(task_id)
|
| 38 |
-
fixed_answer =
|
| 39 |
else:
|
| 40 |
-
fixed_answer =
|
| 41 |
print(f'---------------------fixed_answer----------------\n{fixed_answer}')
|
| 42 |
|
| 43 |
return fixed_answer
|
|
@@ -97,11 +97,9 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 97 |
answers_payload = []
|
| 98 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 99 |
|
| 100 |
-
for item in questions_data:
|
| 101 |
task_id = item.get("task_id")
|
| 102 |
question_text = item.get("question")
|
| 103 |
-
file_name = item.get("file_name")
|
| 104 |
-
file_data = None
|
| 105 |
# or file_name != ''
|
| 106 |
if not task_id or question_text is None:
|
| 107 |
print(f"Skipping item with missing task_id or question: {item}")
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
from typing import Any
|
| 7 |
|
| 8 |
+
from src.final_assignment_template.agent import Task_agent
|
| 9 |
# (Keep Constants as is)
|
| 10 |
# --- Constants ---
|
| 11 |
|
|
|
|
| 35 |
if task_id and file_name:
|
| 36 |
print('With task_id')
|
| 37 |
print(task_id)
|
| 38 |
+
fixed_answer = Task_agent.run(f"""<Task>{question_text}</Task>\n<TaskID>{task_id}</TaskID>""")
|
| 39 |
else:
|
| 40 |
+
fixed_answer = Task_agent.run(f'<Task>{question_text}</Task>')
|
| 41 |
print(f'---------------------fixed_answer----------------\n{fixed_answer}')
|
| 42 |
|
| 43 |
return fixed_answer
|
|
|
|
| 97 |
answers_payload = []
|
| 98 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 99 |
|
| 100 |
+
for item in questions_data[0:20]:
|
| 101 |
task_id = item.get("task_id")
|
| 102 |
question_text = item.get("question")
|
|
|
|
|
|
|
| 103 |
# or file_name != ''
|
| 104 |
if not task_id or question_text is None:
|
| 105 |
print(f"Skipping item with missing task_id or question: {item}")
|
src/final_assignment_template/__pycache__/agent.cpython-311.pyc
CHANGED
|
Binary files a/src/final_assignment_template/__pycache__/agent.cpython-311.pyc and b/src/final_assignment_template/__pycache__/agent.cpython-311.pyc differ
|
|
|
src/final_assignment_template/__pycache__/models.cpython-311.pyc
CHANGED
|
Binary files a/src/final_assignment_template/__pycache__/models.cpython-311.pyc and b/src/final_assignment_template/__pycache__/models.cpython-311.pyc differ
|
|
|
src/final_assignment_template/__pycache__/tools.cpython-311.pyc
CHANGED
|
Binary files a/src/final_assignment_template/__pycache__/tools.cpython-311.pyc and b/src/final_assignment_template/__pycache__/tools.cpython-311.pyc differ
|
|
|
src/final_assignment_template/agent.py
CHANGED
|
@@ -1,55 +1,102 @@
|
|
| 1 |
-
from smolagents import
|
| 2 |
-
from litellm import completion
|
| 3 |
|
| 4 |
-
from langchain.agents import load_tools
|
| 5 |
-
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 6 |
|
| 7 |
-
import os
|
| 8 |
from src.final_assignment_template.models import openrouter_qwenCoder_model, modelLiteLLm
|
| 9 |
-
from src.final_assignment_template.tools import travily_tool,
|
| 10 |
# (Keep Constants as is)
|
| 11 |
# --- Constants ---
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
tools=[
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
travily_tool,
|
|
|
|
|
|
|
| 24 |
VisitWebpageTool(),
|
|
|
|
|
|
|
| 25 |
],
|
| 26 |
-
name="web_agent",
|
| 27 |
-
description="""Browses the web to find information""",
|
| 28 |
-
verbosity_level=1,
|
| 29 |
-
max_steps=5,
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
manager_agent = CodeAgent(
|
| 33 |
-
name="Task_Agent",
|
| 34 |
-
description="""You will be provided a task and you need to verify before giving final answer
|
| 35 |
-
You can perform tasks which are text and image based, skip all other
|
| 36 |
-
""",
|
| 37 |
-
model=modelLiteLLm,
|
| 38 |
-
tools=[PythonInterpreterTool(),Video_understanding_tool,image_understanding_tool,get_task_file],
|
| 39 |
-
managed_agents=[web_agent],
|
| 40 |
additional_authorized_imports=[
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
'math', 'statistics', 're', 'unicodedata', 'random',
|
| 46 |
-
'datetime', 'queue', 'time', 'collections', 'stat', 'itertools',
|
| 47 |
-
'PIL','requests'
|
| 48 |
],
|
| 49 |
-
|
|
|
|
| 50 |
verbosity_level=1,
|
|
|
|
| 51 |
# final_answer_checks=[check_reasoning_and_plot],
|
| 52 |
-
max_steps=5,
|
| 53 |
)
|
| 54 |
|
| 55 |
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import CodeAgent,ToolCallingAgent, PythonInterpreterTool , VisitWebpageTool, DuckDuckGoSearchTool
|
|
|
|
| 2 |
|
|
|
|
|
|
|
| 3 |
|
|
|
|
| 4 |
from src.final_assignment_template.models import openrouter_qwenCoder_model, modelLiteLLm
|
| 5 |
+
from src.final_assignment_template.tools import travily_tool, bm25_query, BM25Tool,extract_filter_textual_info_from_textual_context, summarize_before_final_answer, Video_link_understanding_tool, image_understanding_tool, get_task_file
|
| 6 |
# (Keep Constants as is)
|
| 7 |
# --- Constants ---
|
| 8 |
|
| 9 |
|
| 10 |
+
# retrived_context_qa_agent = ToolCallingAgent(
|
| 11 |
+
# name="retrived_context_qa_agent",
|
| 12 |
+
# description="""
|
| 13 |
+
# You are a simple QA agent for the retrived web contect.
|
| 14 |
+
# 1. Pass query and context and avaialbe tools.
|
| 15 |
+
# 2. If you can answer directly, respond in plain text.
|
| 16 |
+
# 3. Otherwise, return an explicit action JSON, e.g.
|
| 17 |
+
# {"action": "use_tool", "tool_name": "...", "input": "..."}.
|
| 18 |
+
# """,
|
| 19 |
+
# model=modelLiteLLm,
|
| 20 |
+
# tools=[], # no extra tools by default
|
| 21 |
+
# add_base_tools=False, # don’t add PythonInterpreterTool, etc.
|
| 22 |
+
# verbosity_level=1,
|
| 23 |
+
# planning_interval=1,
|
| 24 |
+
# )
|
| 25 |
|
| 26 |
|
| 27 |
|
| 28 |
+
# web_agent = CodeAgent(
|
| 29 |
+
# model=openrouter_qwenCoder_model,
|
| 30 |
+
# tools=[
|
| 31 |
+
# # GoogleSearchTool(provider="serper"),
|
| 32 |
+
# # DuckDuckGoSearchTool(max_results=10),
|
| 33 |
+
# travily_tool,
|
| 34 |
+
# VisitWebpageTool(),
|
| 35 |
+
# ],
|
| 36 |
+
# name="web_agent",
|
| 37 |
+
# description="""Browses the web to find information""",
|
| 38 |
+
# verbosity_level=1,
|
| 39 |
+
# planning_interval=1,
|
| 40 |
+
# max_steps=8,
|
| 41 |
+
# )
|
| 42 |
|
| 43 |
+
# code_agent = CodeAgent(
|
| 44 |
+
# model=openrouter_qwenCoder_model,
|
| 45 |
+
# tools=[
|
| 46 |
+
# # GoogleSearchTool(provider="serper"),
|
| 47 |
+
# # DuckDuckGoSearchTool(max_results=10),
|
| 48 |
+
# PythonInterpreterTool(additional_authorized_imports=[
|
| 49 |
+
# "json",
|
| 50 |
+
# "markdown",
|
| 51 |
+
# 'numpy',
|
| 52 |
+
# 'pandas'
|
| 53 |
+
# 'math', 'statistics', 're', 'unicodedata', 'random',
|
| 54 |
+
# 'datetime', 'queue', 'time', 'collections', 'stat', 'itertools',
|
| 55 |
+
# ])
|
| 56 |
+
# ],
|
| 57 |
+
# name="code_agent",
|
| 58 |
+
# description="""You can execute python code using this agent""",
|
| 59 |
+
# verbosity_level=1,
|
| 60 |
+
# max_steps=3,
|
| 61 |
+
# )
|
| 62 |
+
|
| 63 |
+
# - When using the Video_Link_Understanding_Tool and Image_Understanding_Tool, consider their responses and generate an answer based on the textual understanding they provide.
|
| 64 |
+
# - Video_Link_Understanding_Tool: This tool can only return textual understanding.
|
| 65 |
+
# - Image_Understanding_Tool: This tool can only return textual understanding.
|
| 66 |
+
Task_agent = CodeAgent(
|
| 67 |
+
name="task_Agent",
|
| 68 |
+
description="""
|
| 69 |
+
- You are the Task Agent.
|
| 70 |
+
- Provide the correct answer
|
| 71 |
+
- Must call 'summarize_before_final_answer' at the end
|
| 72 |
+
""",
|
| 73 |
+
model=modelLiteLLm,
|
| 74 |
+
add_base_tools=True,
|
| 75 |
tools=[
|
| 76 |
+
PythonInterpreterTool(),
|
| 77 |
+
Video_link_understanding_tool,
|
| 78 |
+
image_understanding_tool,
|
| 79 |
+
get_task_file,
|
| 80 |
travily_tool,
|
| 81 |
+
# DuckDuckGoSearchTool(),
|
| 82 |
+
# bm25_query,
|
| 83 |
VisitWebpageTool(),
|
| 84 |
+
extract_filter_textual_info_from_textual_context,
|
| 85 |
+
# summarize_before_final_answer,
|
| 86 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
additional_authorized_imports=[
|
| 88 |
+
'numpy',
|
| 89 |
+
'pandas'
|
| 90 |
+
'math',
|
| 91 |
+
'datetime',
|
|
|
|
|
|
|
|
|
|
| 92 |
],
|
| 93 |
+
# managed_agents=[web_agent],
|
| 94 |
+
planning_interval=1,
|
| 95 |
verbosity_level=1,
|
| 96 |
+
max_steps=7,
|
| 97 |
# final_answer_checks=[check_reasoning_and_plot],
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
|
| 101 |
+
|
| 102 |
+
|
src/final_assignment_template/models.py
CHANGED
|
@@ -2,14 +2,24 @@ from smolagents import LiteLLMModel
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
openrouter_qwenCoder_model = LiteLLMModel(
|
| 6 |
model_id="openrouter/qwen/qwen-2.5-coder-32b-instruct:free",
|
| 7 |
api_base="https://openrouter.ai/api/v1",
|
| 8 |
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 9 |
)
|
| 10 |
|
|
|
|
|
|
|
| 11 |
modelLiteLLm = LiteLLMModel(
|
| 12 |
-
model_id="openrouter/
|
| 13 |
api_base="https://openrouter.ai/api/v1",
|
| 14 |
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 15 |
)
|
|
@@ -27,3 +37,10 @@ imageLiteLLm = LiteLLMModel(
|
|
| 27 |
api_base="https://openrouter.ai/api/v1",
|
| 28 |
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
|
| 4 |
|
| 5 |
+
planner_model = LiteLLMModel(
|
| 6 |
+
# model_id="openrouter/openai/o4-mini-high",
|
| 7 |
+
model_id="openrouter/deepseek/deepseek-r1:free",
|
| 8 |
+
api_base="https://openrouter.ai/api/v1",
|
| 9 |
+
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
openrouter_qwenCoder_model = LiteLLMModel(
|
| 14 |
model_id="openrouter/qwen/qwen-2.5-coder-32b-instruct:free",
|
| 15 |
api_base="https://openrouter.ai/api/v1",
|
| 16 |
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# nvidia/llama-3.3-nemotron-super-49b-v1:free
|
| 20 |
+
# microsoft/mai-ds-r1:free
|
| 21 |
modelLiteLLm = LiteLLMModel(
|
| 22 |
+
model_id="openrouter/microsoft/mai-ds-r1:free",
|
| 23 |
api_base="https://openrouter.ai/api/v1",
|
| 24 |
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 25 |
)
|
|
|
|
| 37 |
api_base="https://openrouter.ai/api/v1",
|
| 38 |
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 39 |
)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
summarizeModle = LiteLLMModel(
|
| 43 |
+
model_id="openrouter/meta-llama/llama-4-maverick:free",
|
| 44 |
+
api_base="https://openrouter.ai/api/v1",
|
| 45 |
+
api_key=os.getenv("OPENROUTER_API_KEY")
|
| 46 |
+
)
|
src/final_assignment_template/tools.py
CHANGED
|
@@ -10,11 +10,13 @@ from io import BytesIO
|
|
| 10 |
import base64
|
| 11 |
|
| 12 |
|
| 13 |
-
from
|
|
|
|
|
|
|
| 14 |
|
| 15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 16 |
|
| 17 |
-
travily_tool = Tool.from_langchain(TavilySearchResults(max_results=
|
| 18 |
|
| 19 |
from smolagents import Tool
|
| 20 |
|
|
@@ -40,18 +42,123 @@ from smolagents import Tool
|
|
| 40 |
# model_downloads_tool = HFModelDownloadsTool()
|
| 41 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
@tool
|
| 44 |
-
def
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
Args:
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
|
| 57 |
|
|
@@ -74,28 +181,31 @@ def get_task_file(task_id:str)->requests.models.Response:
|
|
| 74 |
return response
|
| 75 |
|
| 76 |
@tool
|
| 77 |
-
def image_understanding_tool(query:str,response:requests.models.Response)->str:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
Args:
|
| 84 |
-
query:
|
| 85 |
-
response
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
"role": "user",
|
| 100 |
"content": [
|
| 101 |
{"type": "text", "text": query},
|
|
@@ -103,13 +213,49 @@ def image_understanding_tool(query:str,response:requests.models.Response)->str:
|
|
| 103 |
"type": "image_url",
|
| 104 |
"image_url": {
|
| 105 |
"url": img_b64,
|
| 106 |
-
"format": "image/png"
|
| 107 |
}
|
| 108 |
}
|
| 109 |
]
|
| 110 |
-
}
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
import base64
|
| 11 |
|
| 12 |
|
| 13 |
+
from langchain_core.documents import Document
|
| 14 |
+
from langchain_community.retrievers import BM25Retriever
|
| 15 |
+
from src.final_assignment_template.models import videoLiteLLm,modelLiteLLm, summarizeModle, imageLiteLLm
|
| 16 |
|
| 17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 18 |
|
| 19 |
+
travily_tool = Tool.from_langchain(TavilySearchResults(max_results=20))
|
| 20 |
|
| 21 |
from smolagents import Tool
|
| 22 |
|
|
|
|
| 42 |
# model_downloads_tool = HFModelDownloadsTool()
|
| 43 |
|
| 44 |
|
| 45 |
+
from langchain_core.documents import Document
|
| 46 |
+
from langchain_community.retrievers import BM25Retriever
|
| 47 |
+
|
| 48 |
+
@tool
|
| 49 |
+
def bm25_query(texts: list[str], query: str, top_k: int = 3) -> list[str]:
|
| 50 |
+
"""
|
| 51 |
+
Creates a BM25 retriever from a list of texts (e.g., web pages, articles),
|
| 52 |
+
queries it, and returns the top relevant results.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
texts (list[str]): List of text contents (e.g., web page texts, articles, notes).
|
| 56 |
+
query (str): The search query string.
|
| 57 |
+
top_k (int): Number of top results to return (default is 3).
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
list[str]: List of top-k relevant page contents.
|
| 61 |
+
"""
|
| 62 |
+
documents = [Document(page_content=text) for text in texts]
|
| 63 |
+
retriever = BM25Retriever.from_documents(documents)
|
| 64 |
+
results = retriever.get_relevant_documents(query)
|
| 65 |
+
print(results)
|
| 66 |
+
return [doc.page_content for doc in results[:top_k]]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class BM25Tool(Tool):
|
| 71 |
+
name = "bm25"
|
| 72 |
+
description = (
|
| 73 |
+
"Retrieves relevant information from a provided list of text strings "
|
| 74 |
+
"based on a query using BM25."
|
| 75 |
+
)
|
| 76 |
+
inputs = {
|
| 77 |
+
"query": {
|
| 78 |
+
"type": "string",
|
| 79 |
+
"description": "The text query to search for relevant strings."
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
output_type = "string"
|
| 83 |
+
|
| 84 |
+
def __init__(self, texts: list[str]):
|
| 85 |
+
"""
|
| 86 |
+
Args:
|
| 87 |
+
texts (list[str]): A list of text strings to index (e.g., guest bios, docs, notes).
|
| 88 |
+
"""
|
| 89 |
+
documents = [Document(page_content=text) for text in texts]
|
| 90 |
+
self.retriever = BM25Retriever.from_documents(documents)
|
| 91 |
+
|
| 92 |
+
def forward(self, query: str) -> str:
|
| 93 |
+
"""
|
| 94 |
+
Retrieves the top-3 most relevant strings matching the query.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
query (str): Text query.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
str: Concatenated top-3 matching strings or a not-found message.
|
| 101 |
+
"""
|
| 102 |
+
results = self.retriever.get_relevant_documents(query)
|
| 103 |
+
if not results:
|
| 104 |
+
return "No relevant information found."
|
| 105 |
+
top_texts = [doc.page_content for doc in results[:3]]
|
| 106 |
+
return "\n\n".join(top_texts)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
@tool
|
| 111 |
+
def summarize_before_final_answer(
|
| 112 |
+
context: str,
|
| 113 |
+
question: str,
|
| 114 |
+
) -> str:
|
| 115 |
+
"""
|
| 116 |
+
Given a whole context(all logs) and question sends it to the LLM, and returns the paragraph overview for the answer.
|
| 117 |
|
| 118 |
Args:
|
| 119 |
+
context (str): The full context or background information.
|
| 120 |
+
question (str): The user's specific question about that context.
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
str: Summarization of whole process for generating final answer.
|
| 124 |
+
"""
|
| 125 |
+
# build a single user prompt
|
| 126 |
+
prompt = (
|
| 127 |
+
context.strip()
|
| 128 |
+
+ "\n\n"
|
| 129 |
+
+ "Question: "
|
| 130 |
+
+ question.strip()
|
| 131 |
+
+ "\n\n"
|
| 132 |
+
+ "Give the summarize of all steps for generating final answer in next step:"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# call the model
|
| 137 |
+
response = summarizeModle(
|
| 138 |
+
messages=[{"role": "user", "content": prompt}],
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# the .content attribute holds the generated text
|
| 142 |
+
return response.content.strip()
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@tool
|
| 147 |
+
def Video_link_understanding_tool(query: str) -> str:
|
| 148 |
+
"""
|
| 149 |
+
A tool that processes a video link (e.g., YouTube) and returns a textual understanding of its content using an LLM.
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
query: A video URL along with an optional query for context or specific focus.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
A text-based summary or understanding of the video content.
|
| 156 |
+
"""
|
| 157 |
+
print("Processing video:", query)
|
| 158 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": query}]}]
|
| 159 |
+
resp = videoLiteLLm(messages)
|
| 160 |
+
return resp.content or 'No data'
|
| 161 |
+
|
| 162 |
|
| 163 |
|
| 164 |
|
|
|
|
| 181 |
return response
|
| 182 |
|
| 183 |
@tool
|
| 184 |
+
def image_understanding_tool(query: str, response: requests.models.Response) -> str:
|
| 185 |
+
"""
|
| 186 |
+
A tool for analyzing and understanding the content of an image based on a given query.
|
| 187 |
+
|
| 188 |
+
This tool processes the image provided in the response (from get_task_file), encodes it into base64,
|
| 189 |
+
and queries a lightweight image LLM to generate insights or answers about the image.
|
| 190 |
|
| 191 |
Args:
|
| 192 |
+
query: The query or instruction related to the image content.
|
| 193 |
+
response: The HTTP response object containing the image data.
|
| 194 |
+
|
| 195 |
+
Returns:
|
| 196 |
+
A text-based understanding or interpretation of the image.
|
| 197 |
+
"""
|
| 198 |
+
print("Processing image...")
|
| 199 |
+
|
| 200 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 201 |
+
|
| 202 |
+
buffered = BytesIO()
|
| 203 |
+
image.save(buffered, format="PNG")
|
| 204 |
+
img_bytes = buffered.getvalue()
|
| 205 |
+
img_b64 = base64.b64encode(img_bytes).decode('utf-8')
|
| 206 |
+
|
| 207 |
+
# print(img_b64)
|
| 208 |
+
messages = [{
|
| 209 |
"role": "user",
|
| 210 |
"content": [
|
| 211 |
{"type": "text", "text": query},
|
|
|
|
| 213 |
"type": "image_url",
|
| 214 |
"image_url": {
|
| 215 |
"url": img_b64,
|
| 216 |
+
"format": "image/png"
|
| 217 |
}
|
| 218 |
}
|
| 219 |
]
|
| 220 |
+
}]
|
| 221 |
+
|
| 222 |
+
resp = imageLiteLLm(messages)
|
| 223 |
+
print(resp.content)
|
| 224 |
+
return resp.content or 'No data'
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
@tool
|
| 231 |
+
def extract_filter_textual_info_from_textual_context(
|
| 232 |
+
context: str,
|
| 233 |
+
question: str,
|
| 234 |
+
) -> str:
|
| 235 |
+
"""
|
| 236 |
+
Tool to pull out targeted details from a large body of text.
|
| 237 |
+
|
| 238 |
+
Combines the context and an questoin into a single prompt,
|
| 239 |
+
queries the llm, and returns the resulting extract.
|
| 240 |
+
|
| 241 |
+
Args:
|
| 242 |
+
context (str): The full background text (e.g., long document, webpage, notes).
|
| 243 |
+
question (str): What you want to extract (e.g., “list all dates mentioned”).
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
str: The extracted information, trimmed of whitespace.
|
| 247 |
+
"""
|
| 248 |
+
# Build the extraction prompt
|
| 249 |
+
prompt = (
|
| 250 |
+
"Context:\n" + context.strip() +
|
| 251 |
+
"\n\nQuestion: " + question.strip() +
|
| 252 |
+
"\n\nExtracted Information:"
|
| 253 |
+
)
|
| 254 |
|
| 255 |
|
| 256 |
+
# Call the model to perform extraction
|
| 257 |
+
response = modelLiteLLm(
|
| 258 |
+
messages=[{"role": "user", "content": prompt}],
|
| 259 |
+
)
|
| 260 |
+
print(response)
|
| 261 |
+
return response.content
|