Spaces:
Paused
Paused
WIP
Browse files- app.py +128 -19
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -1,19 +1,30 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import pipeline
|
| 5 |
import subprocess
|
| 6 |
-
from loguru import logger
|
| 7 |
import datetime
|
| 8 |
import tempfile
|
| 9 |
-
import
|
| 10 |
-
import
|
| 11 |
-
from pathlib import Path
|
| 12 |
|
| 13 |
MODEL_NAME = "muhtasham/whisper-tg"
|
| 14 |
|
| 15 |
def format_time(seconds):
|
| 16 |
-
"""Convert seconds to SRT time format (HH:MM:SS,mmm)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
td = datetime.timedelta(seconds=float(seconds))
|
| 18 |
hours = td.seconds // 3600
|
| 19 |
minutes = (td.seconds % 3600) // 60
|
|
@@ -22,7 +33,35 @@ def format_time(seconds):
|
|
| 22 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
| 23 |
|
| 24 |
def generate_srt(chunks):
|
| 25 |
-
"""Generate SRT format subtitles from chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
srt_content = []
|
| 27 |
for i, chunk in enumerate(chunks, 1):
|
| 28 |
start_time = format_time(chunk["timestamp"][0])
|
|
@@ -32,7 +71,20 @@ def generate_srt(chunks):
|
|
| 32 |
return "".join(srt_content)
|
| 33 |
|
| 34 |
def save_srt_to_file(srt_content):
|
| 35 |
-
"""Save SRT content to a temporary file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
if not srt_content:
|
| 37 |
return None
|
| 38 |
|
|
@@ -54,33 +106,81 @@ def check_ffmpeg():
|
|
| 54 |
# Initialize ffmpeg check
|
| 55 |
check_ffmpeg()
|
| 56 |
|
| 57 |
-
|
|
|
|
| 58 |
logger.info(f"Using device: {device}")
|
| 59 |
|
| 60 |
-
def create_pipeline(
|
| 61 |
-
"""Create a new pipeline with
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return pipeline(
|
| 63 |
task="automatic-speech-recognition",
|
| 64 |
model=MODEL_NAME,
|
| 65 |
-
chunk_length_s=chunk_length_s,
|
| 66 |
device=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
)
|
| 68 |
|
| 69 |
-
# Initialize
|
| 70 |
-
pipe = create_pipeline(
|
| 71 |
logger.info(f"Pipeline initialized: {pipe}")
|
| 72 |
|
| 73 |
-
@spaces.GPU
|
| 74 |
def transcribe(inputs, return_timestamps, generate_subs, batch_size, chunk_length_s):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if inputs is None:
|
| 76 |
logger.warning("No audio file submitted")
|
| 77 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 78 |
|
| 79 |
try:
|
| 80 |
logger.info(f"Processing audio file: {inputs}")
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
logger.debug(f"Pipeline result: {result}")
|
| 85 |
|
| 86 |
# Format response as JSON
|
|
@@ -121,8 +221,17 @@ def transcribe(inputs, return_timestamps, generate_subs, batch_size, chunk_lengt
|
|
| 121 |
srt_file = save_srt_to_file(srt_content)
|
| 122 |
logger.info("SRT subtitles generated successfully")
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
return formatted_result, srt_file, "" # Return empty string for correction textbox
|
| 125 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
logger.exception(f"Error during transcription: {str(e)}")
|
| 127 |
raise gr.Error(f"Failed to transcribe audio: {str(e)}")
|
| 128 |
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import subprocess
|
|
|
|
| 4 |
import datetime
|
| 5 |
import tempfile
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from loguru import logger
|
|
|
|
| 8 |
|
| 9 |
MODEL_NAME = "muhtasham/whisper-tg"
|
| 10 |
|
| 11 |
def format_time(seconds):
|
| 12 |
+
"""Convert seconds to SRT time format (HH:MM:SS,mmm).
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
seconds (float): Time in seconds to convert.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
str: Time formatted as HH:MM:SS,mmm where:
|
| 19 |
+
- HH: Hours (00-99)
|
| 20 |
+
- MM: Minutes (00-59)
|
| 21 |
+
- SS: Seconds (00-59)
|
| 22 |
+
- mmm: Milliseconds (000-999)
|
| 23 |
+
|
| 24 |
+
Example:
|
| 25 |
+
>>> format_time(3661.5)
|
| 26 |
+
'01:01:01,500'
|
| 27 |
+
"""
|
| 28 |
td = datetime.timedelta(seconds=float(seconds))
|
| 29 |
hours = td.seconds // 3600
|
| 30 |
minutes = (td.seconds % 3600) // 60
|
|
|
|
| 33 |
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
| 34 |
|
| 35 |
def generate_srt(chunks):
|
| 36 |
+
"""Generate SRT format subtitles from transcription chunks.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
chunks (list): List of dictionaries containing transcription chunks.
|
| 40 |
+
Each chunk must have:
|
| 41 |
+
- "timestamp": List of [start_time, end_time] in seconds
|
| 42 |
+
- "text": The transcribed text for that time segment
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
str: SRT formatted subtitles string with format:
|
| 46 |
+
```
|
| 47 |
+
1
|
| 48 |
+
HH:MM:SS,mmm --> HH:MM:SS,mmm
|
| 49 |
+
Text content
|
| 50 |
+
|
| 51 |
+
2
|
| 52 |
+
HH:MM:SS,mmm --> HH:MM:SS,mmm
|
| 53 |
+
Text content
|
| 54 |
+
...
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
Example:
|
| 58 |
+
>>> chunks = [
|
| 59 |
+
... {"timestamp": [0.0, 1.5], "text": "Hello"},
|
| 60 |
+
... {"timestamp": [1.5, 3.0], "text": "World"}
|
| 61 |
+
... ]
|
| 62 |
+
>>> generate_srt(chunks)
|
| 63 |
+
'1\\n00:00:00,000 --> 00:00:01,500\\nHello\\n\\n2\\n00:00:01,500 --> 00:00:03,000\\nWorld\\n\\n'
|
| 64 |
+
"""
|
| 65 |
srt_content = []
|
| 66 |
for i, chunk in enumerate(chunks, 1):
|
| 67 |
start_time = format_time(chunk["timestamp"][0])
|
|
|
|
| 71 |
return "".join(srt_content)
|
| 72 |
|
| 73 |
def save_srt_to_file(srt_content):
|
| 74 |
+
"""Save SRT content to a temporary file.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
srt_content (str): The SRT formatted subtitles content to save.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
str or None: Path to the temporary file if content was saved,
|
| 81 |
+
None if srt_content was empty.
|
| 82 |
+
|
| 83 |
+
Note:
|
| 84 |
+
The temporary file is created with delete=False to allow it to be
|
| 85 |
+
used after the function returns. The file should be deleted by the
|
| 86 |
+
caller when no longer needed.
|
| 87 |
+
"""
|
| 88 |
if not srt_content:
|
| 89 |
return None
|
| 90 |
|
|
|
|
| 106 |
# Initialize ffmpeg check
|
| 107 |
check_ffmpeg()
|
| 108 |
|
| 109 |
+
# Use T4 GPU if available, otherwise fallback to CPU
|
| 110 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 111 |
logger.info(f"Using device: {device}")
|
| 112 |
|
| 113 |
+
def create_pipeline():
|
| 114 |
+
"""Create a new pipeline with optimized settings for T4 GPU.
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
transformers.Pipeline: Configured speech recognition pipeline.
|
| 118 |
+
"""
|
| 119 |
return pipeline(
|
| 120 |
task="automatic-speech-recognition",
|
| 121 |
model=MODEL_NAME,
|
|
|
|
| 122 |
device=device,
|
| 123 |
+
torch_dtype=torch.float16, # Use float16 for better performance on T4
|
| 124 |
+
framework="pt", # Explicitly use PyTorch
|
| 125 |
+
return_timestamps=True, # Always return timestamps for better control
|
| 126 |
+
generate_kwargs={
|
| 127 |
+
"task": "transcribe", # Explicitly set transcription task
|
| 128 |
+
"language": "tg", # Default to Tajik
|
| 129 |
+
"condition_on_previous_text": True, # Use context from previous chunks
|
| 130 |
+
"compression_ratio_threshold": 1.2, # Filter out low-quality transcriptions
|
| 131 |
+
"temperature": 0.0, # Use greedy decoding for faster inference
|
| 132 |
+
"no_speech_threshold": 0.6, # Threshold for detecting speech
|
| 133 |
+
"logprob_threshold": -1.0, # Threshold for log probability
|
| 134 |
+
"best_of": 1, # Use single best path for faster inference
|
| 135 |
+
}
|
| 136 |
)
|
| 137 |
|
| 138 |
+
# Initialize pipeline once
|
| 139 |
+
pipe = create_pipeline()
|
| 140 |
logger.info(f"Pipeline initialized: {pipe}")
|
| 141 |
|
|
|
|
| 142 |
def transcribe(inputs, return_timestamps, generate_subs, batch_size, chunk_length_s):
|
| 143 |
+
"""Transcribe audio input using Whisper model.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
inputs (str): Path to audio file to transcribe.
|
| 147 |
+
return_timestamps (bool): Whether to include timestamps in output.
|
| 148 |
+
generate_subs (bool): Whether to generate SRT subtitles.
|
| 149 |
+
batch_size (int): Number of chunks to process in parallel.
|
| 150 |
+
chunk_length_s (int): Length of audio chunks in seconds.
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
tuple: (formatted_result, srt_file, correction_text)
|
| 154 |
+
- formatted_result (dict): Transcription results
|
| 155 |
+
- srt_file (str): Path to SRT file if generated, None otherwise
|
| 156 |
+
- correction_text (str): Empty string for corrections
|
| 157 |
+
|
| 158 |
+
Raises:
|
| 159 |
+
gr.Error: If no audio file is provided or transcription fails.
|
| 160 |
+
"""
|
| 161 |
if inputs is None:
|
| 162 |
logger.warning("No audio file submitted")
|
| 163 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 164 |
|
| 165 |
try:
|
| 166 |
logger.info(f"Processing audio file: {inputs}")
|
| 167 |
+
|
| 168 |
+
# Calculate optimal chunk and stride lengths based on input
|
| 169 |
+
stride_length_s = chunk_length_s / 6 # Default stride for better context
|
| 170 |
+
|
| 171 |
+
# Clear CUDA cache before processing
|
| 172 |
+
if torch.cuda.is_available():
|
| 173 |
+
torch.cuda.empty_cache()
|
| 174 |
+
logger.debug("Cleared CUDA cache before processing")
|
| 175 |
+
|
| 176 |
+
# Process audio with dynamic chunking
|
| 177 |
+
result = pipe(
|
| 178 |
+
inputs,
|
| 179 |
+
batch_size=batch_size,
|
| 180 |
+
chunk_length_s=chunk_length_s,
|
| 181 |
+
stride_length_s=stride_length_s,
|
| 182 |
+
return_timestamps=return_timestamps
|
| 183 |
+
)
|
| 184 |
logger.debug(f"Pipeline result: {result}")
|
| 185 |
|
| 186 |
# Format response as JSON
|
|
|
|
| 221 |
srt_file = save_srt_to_file(srt_content)
|
| 222 |
logger.info("SRT subtitles generated successfully")
|
| 223 |
|
| 224 |
+
# Clear CUDA cache after processing
|
| 225 |
+
if torch.cuda.is_available():
|
| 226 |
+
torch.cuda.empty_cache()
|
| 227 |
+
logger.debug("Cleared CUDA cache after processing")
|
| 228 |
+
|
| 229 |
return formatted_result, srt_file, "" # Return empty string for correction textbox
|
| 230 |
except Exception as e:
|
| 231 |
+
# Ensure CUDA cache is cleared even if there's an error
|
| 232 |
+
if torch.cuda.is_available():
|
| 233 |
+
torch.cuda.empty_cache()
|
| 234 |
+
logger.debug("Cleared CUDA cache after error")
|
| 235 |
logger.exception(f"Error during transcription: {str(e)}")
|
| 236 |
raise gr.Error(f"Failed to transcribe audio: {str(e)}")
|
| 237 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
transformers
|
| 2 |
-
loguru
|
|
|
|
| 1 |
transformers
|
| 2 |
+
loguru
|