Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 38,944 Bytes
f555806 7615b9a f555806 5d9965c f555806 b4456a3 f555806 231dcea f555806 4ee5618 5d9965c 4ee5618 5d9965c f555806 4ee5618 f555806 4ee5618 f555806 c3dc017 f555806 768fc4b f555806 c12ee07 f555806 5675b78 f1ba847 b170468 f1ba847 b170468 f1ba847 b170468 f1ba847 b170468 5675b78 f555806 5675b78 f555806 5675b78 b170468 e218de2 b170468 5675b78 e218de2 b170468 e218de2 b170468 e218de2 f555806 5675b78 e218de2 f555806 e218de2 f555806 5675b78 f555806 5675b78 f555806 5675b78 f555806 e218de2 5675b78 e218de2 f555806 e218de2 5675b78 e218de2 5675b78 f555806 e218de2 f555806 f1ba847 38655f8 f1ba847 f555806 f1ba847 f555806 f1ba847 f555806 4400ddc f555806 4400ddc f555806 4400ddc f555806 4400ddc f555806 4400ddc f555806 4400ddc f555806 4400ddc f555806 4400ddc f555806 d60ba5c 4ff2db9 6305843 4ff2db9 d60ba5c 4ff2db9 d60ba5c 4ff2db9 d60ba5c 4ff2db9 d60ba5c 6305843 d60ba5c 4ff2db9 d60ba5c 4ff2db9 f555806 4ff2db9 f555806 4ff2db9 f555806 4ff2db9 f555806 4ff2db9 f555806 5d9965c f555806 4400ddc f555806 4400ddc 8def6a2 4400ddc 5c34458 4400ddc c076cea 4400ddc f555806 c12ee07 f555806 c12ee07 f555806 4400ddc f555806 4400ddc f555806 5d9965c f555806 5d9965c 4ff2db9 5d9965c f555806 5d9965c f555806 5d9965c f555806 231dcea f555806 231dcea b4456a3 f555806 5675b78 b4456a3 e306cd2 7615b9a e306cd2 b4456a3 e306cd2 b4456a3 e306cd2 b4456a3 e306cd2 b4456a3 e306cd2 7615b9a e306cd2 b4456a3 e306cd2 b4456a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
import { NextRequest, NextResponse } from 'next/server';
import { spawn } from 'child_process';
import { writeFile, readFile, unlink } from 'fs/promises';
import path from 'path';
import { tmpdir } from 'os';
export async function POST(request: NextRequest) {
try {
const body = await request.json();
const { action, token, hardware, namespace, jobConfig, datasetRepo, participateHackathon } = body;
switch (action) {
case 'checkCapacity':
try {
if (!token) {
return NextResponse.json({ error: 'Token required' }, { status: 400 });
}
const capacityStatus = await checkHFJobsCapacity(token);
return NextResponse.json(capacityStatus);
} catch (error: any) {
console.error('Capacity check error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
case 'checkStatus':
try {
if (!token || !jobConfig?.hf_job_id) {
return NextResponse.json({ error: 'Token and job ID required' }, { status: 400 });
}
const jobNamespaceOverride = jobConfig?.hf_job_namespace;
const jobStatus = await checkHFJobStatus(token, jobConfig.hf_job_id, jobNamespaceOverride);
return NextResponse.json({ status: jobStatus });
} catch (error: any) {
console.error('Job status check error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
case 'generateScript':
try {
const uvScript = generateUVScript({
jobConfig,
datasetRepo,
namespace,
token: token || 'YOUR_HF_TOKEN',
});
return NextResponse.json({
script: uvScript,
filename: `train_${jobConfig.config.name.replace(/[^a-zA-Z0-9]/g, '_')}.py`
});
} catch (error: any) {
return NextResponse.json({ error: error.message }, { status: 500 });
}
case 'submitJob':
try {
if (!token || !hardware) {
return NextResponse.json({ error: 'Token and hardware required' }, { status: 400 });
}
// Generate UV script
const uvScript = generateUVScript({
jobConfig,
datasetRepo,
namespace,
token,
});
// Write script to temporary file
const scriptPath = path.join(tmpdir(), `train_${Date.now()}.py`);
await writeFile(scriptPath, uvScript);
// Submit HF job using uv run
const namespaceOverride = participateHackathon ? 'lora-training-frenzi' : undefined;
const jobId = await submitHFJobUV(
token,
hardware,
scriptPath,
namespaceOverride
);
const jobNamespace = namespaceOverride ?? namespace;
return NextResponse.json({
success: true,
jobId,
jobNamespace,
message: `Job submitted successfully with ID: ${jobId}`
});
} catch (error: any) {
console.error('Job submission error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
default:
return NextResponse.json({ error: 'Invalid action' }, { status: 400 });
}
} catch (error: any) {
console.error('HF Jobs API error:', error);
return NextResponse.json({ error: error.message }, { status: 500 });
}
}
function generateUVScript({ jobConfig, datasetRepo, namespace, token }: {
jobConfig: any;
datasetRepo: string;
namespace: string;
token: string;
}) {
const config = jobConfig.config;
const process = config.process[0];
return `# /// script
# dependencies = [
# "torch>=2.0.0",
# "torchvision",
# "torchaudio",
# "torchao==0.10.0",
# "safetensors",
# "diffusers @ git+https://github.com/huggingface/diffusers",
# "transformers==4.52.4",
# "lycoris-lora==1.8.3",
# "flatten_json",
# "pyyaml",
# "oyaml",
# "tensorboard",
# "kornia",
# "invisible-watermark",
# "einops",
# "accelerate",
# "toml",
# "albumentations==1.4.15",
# "albucore==0.0.16",
# "pydantic",
# "omegaconf",
# "k-diffusion",
# "open_clip_torch",
# "timm",
# "prodigyopt",
# "controlnet_aux==0.0.10",
# "python-dotenv",
# "bitsandbytes",
# "hf_transfer",
# "lpips",
# "pytorch_fid",
# "optimum-quanto==0.2.4",
# "sentencepiece",
# "huggingface_hub",
# "peft",
# "python-slugify",
# "opencv-python-headless",
# "pytorch-wavelets==1.3.0",
# "matplotlib==3.10.1",
# "setuptools==69.5.1",
# "datasets==4.0.0",
# "pyarrow==20.0.0",
# "pillow",
# "ftfy",
# ]
# ///
import os
import sys
import subprocess
import argparse
import re
import oyaml as yaml
from datasets import load_dataset
from huggingface_hub import HfApi, create_repo, upload_folder, snapshot_download
import tempfile
import shutil
import glob
from PIL import Image
def setup_ai_toolkit():
"""Clone and setup ai-toolkit repository"""
repo_dir = "ai-toolkit"
if not os.path.exists(repo_dir):
print("Cloning ai-toolkit repository...")
subprocess.run(
["git", "clone", "https://github.com/ostris/ai-toolkit.git", repo_dir],
check=True
)
sys.path.insert(0, os.path.abspath(repo_dir))
return repo_dir
def find_local_dataset_source(dataset_repo: str):
if not dataset_repo:
return None
repo_stripped = dataset_repo.strip()
candidates = []
if os.path.isabs(repo_stripped):
candidates.append(repo_stripped)
else:
candidates.append(repo_stripped)
candidates.append(os.path.abspath(repo_stripped))
normalized = normalize_repo_id(repo_stripped)
if normalized:
candidates.append(os.path.join("/datasets", normalized))
if repo_stripped.startswith("/datasets/") and repo_stripped not in candidates:
candidates.append(repo_stripped)
seen = set()
for candidate in candidates:
if not candidate or candidate in seen:
continue
seen.add(candidate)
if os.path.exists(candidate):
return candidate
return None
def normalize_repo_id(dataset_repo: str) -> str:
repo_id = dataset_repo.strip()
if repo_id.startswith("/datasets/"):
repo_id = repo_id[len("/datasets/"):]
elif repo_id.startswith("datasets/"):
repo_id = repo_id[len("datasets/"):]
return repo_id.strip("/")
def copy_dataset_files(source_dir: str, local_path: str):
print(f"Collecting data files from {source_dir}")
image_exts = {'.jpg', '.jpeg', '.png', '.webp', '.bmp'}
video_exts = {'.mp4', '.avi', '.mov', '.webm', '.mkv', '.wmv', '.m4v', '.flv'}
copied_images = 0
copied_videos = 0
copied_captions = 0
for root, _, files in os.walk(source_dir):
for file_name in files:
ext = os.path.splitext(file_name)[1].lower()
src_path = os.path.join(root, file_name)
rel_path = os.path.relpath(src_path, source_dir)
dest_path = os.path.join(local_path, rel_path)
dest_dir = os.path.dirname(dest_path)
if dest_dir and not os.path.exists(dest_dir):
os.makedirs(dest_dir, exist_ok=True)
if ext in image_exts:
try:
shutil.copy2(src_path, dest_path)
copied_images += 1
except Exception as img_error:
print(f"Error copying image {src_path}: {img_error}")
elif ext in video_exts:
try:
shutil.copy2(src_path, dest_path)
copied_videos += 1
except Exception as vid_error:
print(f"Error copying video {src_path}: {vid_error}")
elif ext == '.txt':
try:
shutil.copy2(src_path, dest_path)
copied_captions += 1
except Exception as txt_error:
print(f"Error copying text file {src_path}: {txt_error}")
else:
try:
shutil.copy2(src_path, dest_path)
except Exception as other_error:
print(f"Error copying file {src_path}: {other_error}")
total_media = copied_images + copied_videos
print(
f"Prepared {copied_images} images, {copied_videos} videos, and {copied_captions} captions in {local_path}"
)
return total_media, copied_captions
def download_dataset(dataset_repo: str, local_path: str):
"""Download dataset from HF Hub as files"""
print(f"Downloading dataset from {dataset_repo}...")
os.makedirs(local_path, exist_ok=True)
local_source = find_local_dataset_source(dataset_repo)
if local_source:
print(f"Found local dataset at {local_source}")
media_copied, _ = copy_dataset_files(local_source, local_path)
if media_copied > 0:
return
print("Local dataset did not contain media files, falling back to remote download")
repo_id = normalize_repo_id(dataset_repo)
if repo_id:
try:
print(f"Attempting snapshot download for dataset {repo_id}")
temp_repo_path = snapshot_download(repo_id=repo_id, repo_type="dataset")
print(f"Downloaded repo to: {temp_repo_path}")
print(f"Contents: {os.listdir(temp_repo_path)}")
media_copied, _ = copy_dataset_files(temp_repo_path, local_path)
if media_copied > 0:
return
print("Snapshot download did not contain media files, attempting structured dataset load")
except Exception as snapshot_error:
print(f"Snapshot download failed: {snapshot_error}")
if not repo_id:
raise ValueError("Dataset repository ID is required when no local dataset is available")
try:
dataset = load_dataset(repo_id, split="train")
images_saved = 0
captions_saved = 0
for i, item in enumerate(dataset):
if "image" in item and item["image"] is not None:
image_path = os.path.join(local_path, f"image_{i:06d}.jpg")
image = item["image"]
if image.mode == 'RGBA':
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image, mask=image.split()[-1])
image = background
elif image.mode not in ['RGB', 'L']:
image = image.convert('RGB')
image.save(image_path, 'JPEG')
images_saved += 1
if "text" in item and item["text"] is not None:
caption_path = os.path.join(local_path, f"image_{i:06d}.txt")
with open(caption_path, "w", encoding="utf-8") as f:
f.write(item["text"])
captions_saved += 1
if images_saved == 0:
raise ValueError(f"Structured dataset load completed but produced 0 images for {repo_id}")
print(f"Downloaded {images_saved} items to {local_path}")
except Exception as e:
print(f"Failed to load as structured dataset: {e}")
raise
def create_config(dataset_path: str, output_path: str):
"""Create training configuration"""
import json
# Load config from JSON string and fix boolean/null values for Python
config_str = """${JSON.stringify(jobConfig, null, 2)}"""
config_str = config_str.replace('true', 'True').replace('false', 'False').replace('null', 'None')
config = eval(config_str)
def resolve_manifest_value(value):
if value is None:
return None
if isinstance(value, list):
resolved_list = [resolve_manifest_value(v) for v in value]
return [v for v in resolved_list if v is not None]
if not isinstance(value, str) or value.strip() == "":
return None
normalized = value.replace("\\\\", "/")
parts = [part for part in normalized.split("/") if part not in ("", ".")]
return os.path.normpath(os.path.join(dataset_path, *parts))
manifest_path = os.path.join(dataset_path, "manifest.json")
manifest_data = None
if os.path.isfile(manifest_path):
try:
with open(manifest_path, "r", encoding="utf-8") as manifest_file:
manifest_data = json.load(manifest_file)
except Exception as manifest_error:
print(f"Failed to load dataset manifest: {manifest_error}")
manifest_data = None
process_config = config["config"]["process"][0]
datasets_config = process_config.get("datasets", [])
if manifest_data and isinstance(manifest_data, dict) and "datasets" in manifest_data:
manifest_datasets = manifest_data.get("datasets", [])
for idx, dataset_cfg in enumerate(datasets_config):
manifest_entry = manifest_datasets[idx] if idx < len(manifest_datasets) else {}
if isinstance(manifest_entry, dict):
for key, value in manifest_entry.items():
resolved_value = resolve_manifest_value(value)
if resolved_value is not None and resolved_value != []:
dataset_cfg[key] = resolved_value
if key == "folder_path":
dataset_cfg["dataset_path"] = resolved_value
if "folder_path" not in dataset_cfg or not dataset_cfg["folder_path"]:
dataset_cfg["folder_path"] = dataset_path
dataset_cfg["dataset_path"] = dataset_path
else:
for dataset_cfg in datasets_config:
dataset_cfg["folder_path"] = dataset_path
dataset_cfg["dataset_path"] = dataset_path
samples_config = process_config.get("sample", {}).get("samples", [])
if manifest_data and isinstance(manifest_data, dict):
manifest_samples = manifest_data.get("samples", [])
for sample_entry in manifest_samples:
if not isinstance(sample_entry, dict):
continue
index = sample_entry.get("index")
ctrl_img_rel = sample_entry.get("ctrl_img")
if (
isinstance(index, int)
and 0 <= index < len(samples_config)
and ctrl_img_rel is not None
):
resolved_ctrl_img = resolve_manifest_value(ctrl_img_rel)
if resolved_ctrl_img:
samples_config[index]["ctrl_img"] = resolved_ctrl_img
# Update training folder for cloud environment
process_config["training_folder"] = output_path
# Remove sqlite_db_path as it's not needed for cloud training
if "sqlite_db_path" in process_config:
del process_config["sqlite_db_path"]
# Also change trainer type from ui_trainer to standard trainer to avoid UI dependencies
if process_config["type"] == "ui_trainer":
process_config["type"] = "sd_trainer"
return config
def upload_results(output_path: str, model_name: str, namespace: str, token: str, config: dict):
"""Upload trained model to HF Hub with README generation and proper file organization"""
import tempfile
import shutil
import glob
from datetime import datetime
from huggingface_hub import create_repo, upload_file, HfApi
from collections import deque
try:
repo_id = f"{namespace}/{model_name}"
# Create repository
create_repo(repo_id=repo_id, token=token, exist_ok=True)
print(f"Uploading model to {repo_id}...")
# Create temporary directory for organized upload
with tempfile.TemporaryDirectory() as temp_upload_dir:
api = HfApi()
# 1. Find and upload model files to root directory
safetensors_files = glob.glob(os.path.join(output_path, "**", "*.safetensors"), recursive=True)
json_files = glob.glob(os.path.join(output_path, "**", "*.json"), recursive=True)
txt_files = glob.glob(os.path.join(output_path, "**", "*.txt"), recursive=True)
uploaded_files = []
# Upload .safetensors files to root
for file_path in safetensors_files:
filename = os.path.basename(file_path)
print(f"Uploading {filename} to repository root...")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=filename,
repo_id=repo_id,
token=token
)
uploaded_files.append(filename)
# Upload relevant JSON config files to root (skip metadata.json and other internal files)
config_files_uploaded = []
for file_path in json_files:
filename = os.path.basename(file_path)
# Only upload important config files, skip internal metadata
if any(keyword in filename.lower() for keyword in ['config', 'adapter', 'lora', 'model']):
print(f"Uploading {filename} to repository root...")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=filename,
repo_id=repo_id,
token=token
)
uploaded_files.append(filename)
config_files_uploaded.append(filename)
def prepare_sample_metadata(samples_directory: str, sample_conf: dict):
if not samples_directory or not os.path.isdir(samples_directory):
return [], []
allowed_ext = {'.jpg', '.jpeg', '.png', '.webp'}
image_records = []
for root, _, files in os.walk(samples_directory):
for filename in files:
ext = os.path.splitext(filename)[1].lower()
if ext not in allowed_ext:
continue
abs_path = os.path.join(root, filename)
try:
mtime = os.path.getmtime(abs_path)
except Exception:
mtime = 0
image_records.append((abs_path, mtime))
if not image_records:
return [], []
image_records.sort(key=lambda item: (-item[1], item[0]))
image_queue = deque(image_records)
samples_list = sample_conf.get("samples", []) if sample_conf else []
if not samples_list:
legacy = sample_conf.get("prompts", []) if sample_conf else []
samples_list = [{"prompt": prompt} for prompt in legacy if prompt]
curated_samples = []
for sample in samples_list:
prompt = None
if isinstance(sample, dict):
prompt = sample.get("prompt")
elif isinstance(sample, str):
prompt = sample
if not prompt:
continue
if not image_queue:
break
image_path, _ = image_queue.popleft()
repo_rel_path = f"images/{os.path.basename(image_path)}"
curated_samples.append({
"prompt": prompt,
"local_path": image_path,
"repo_path": repo_rel_path,
})
all_files = [record[0] for record in image_records]
return curated_samples, all_files
samples_dir = os.path.join(output_path, "samples")
sample_config = config.get("config", {}).get("process", [{}])[0].get("sample", {})
curated_samples, sample_files = prepare_sample_metadata(samples_dir, sample_config)
samples_uploaded = []
if sample_files:
print("Uploading sample images...")
for file_path in sample_files:
if not os.path.isfile(file_path):
continue
filename = os.path.basename(file_path)
repo_path = f"images/{filename}"
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=repo_path,
repo_id=repo_id,
token=token
)
samples_uploaded.append(repo_path)
# 3. Generate and upload README.md
readme_content = generate_model_card_readme(
repo_id=repo_id,
config=config,
model_name=model_name,
curated_samples=curated_samples,
uploaded_files=uploaded_files
)
# Create README.md file and upload to root
readme_path = os.path.join(temp_upload_dir, "README.md")
with open(readme_path, "w", encoding="utf-8") as f:
f.write(readme_content)
print("Uploading README.md to repository root...")
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=repo_id,
token=token
)
print(f"Model uploaded successfully to https://huggingface.co/{repo_id}")
print(f"Files uploaded: {len(uploaded_files)} model files, {len(samples_uploaded)} samples, README.md")
except Exception as e:
print(f"Failed to upload model: {e}")
raise e
def generate_model_card_readme(repo_id: str, config: dict, model_name: str, curated_samples: list = None, uploaded_files: list = None) -> str:
"""Generate README.md content for the model card based on AI Toolkit's implementation"""
import yaml
import os
try:
# Extract configuration details
process_config = config.get("config", {}).get("process", [{}])[0]
model_config = process_config.get("model", {})
train_config = process_config.get("train", {})
sample_config = process_config.get("sample", {})
# Gather model info
base_model = model_config.get("name_or_path", "unknown")
trigger_word = process_config.get("trigger_word")
arch = model_config.get("arch", "")
# Determine license based on base model
if "FLUX.1-schnell" in base_model:
license_info = {"license": "apache-2.0"}
elif "FLUX.1-dev" in base_model:
license_info = {
"license": "other",
"license_name": "flux-1-dev-non-commercial-license",
"license_link": "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md"
}
else:
license_info = {"license": "creativeml-openrail-m"}
# Generate tags based on model architecture group
tags = []
lower_arch = (arch or "").lower()
lower_model_name = (model_config.get("name_or_path", "") or "").lower()
base_model_lower = (base_model or "").lower()
# Define model groups based on the frontend options.ts structure
# Group: 'image' -> text-to-image
# Group: 'instruction' -> image-to-image
# Group: 'video' -> check for i2v in arch name for image-to-video vs text-to-video
image_arches = {
'flux', 'flex1', 'flex2', 'chroma', 'lumina2',
'qwen_image', 'hidream', 'sdxl', 'sd15', 'omnigen2'
}
instruction_arches = {
'flux_kontext', 'qwen_image_edit', 'qwen_image_edit_plus', 'hidream_e1'
}
video_arches = {
'wan21:1b', 'wan21_i2v:14b480p', 'wan21_i2v:14b', 'wan21:14b',
'wan22_14b:t2v', 'wan22_14b_i2v', 'wan22_5b'
}
# Determine the task type based on architecture group
if lower_arch in instruction_arches:
tags.append("image-to-image")
elif lower_arch in video_arches:
# Video models: check if i2v is in the architecture name
is_i2v = 'i2v' in lower_arch
tags.append("image-to-video" if is_i2v else "text-to-video")
elif lower_arch in image_arches:
tags.append("text-to-image")
else:
# Fallback to text-to-image for unknown architectures
tags.append("text-to-image")
if "xl" in lower_arch:
tags.append("stable-diffusion-xl")
if "flux" in lower_arch:
tags.append("flux")
if "lumina" in lower_arch:
tags.append("lumina2")
if "sd3" in lower_arch or "v3" in lower_arch:
tags.append("sd3")
# Add LoRA-specific tags
tags.extend(["lora", "diffusers", "template:sd-lora", "ai-toolkit"])
# Generate widgets and gallery section from sample images
curated_samples = curated_samples or []
widgets = []
prompt_bullets = []
for sample in curated_samples:
prompt_text = str(sample.get("prompt", "")).strip()
repo_path = sample.get("repo_path")
if not prompt_text or not repo_path:
continue
widgets.append({
"text": prompt_text,
"output": {"url": repo_path}
})
prompt_bullets.append(f"- {prompt_text}")
gallery_section = ""
if prompt_bullets:
gallery_section = "<Gallery />\\n\\n" + "### Prompts\\n\\n" + "\\n".join(prompt_bullets) + "\\n\\n"
# Determine torch dtype based on model
dtype = "torch.bfloat16"
try:
arch_lower = arch.lower()
except AttributeError:
arch_lower = ""
if "sd15" in arch_lower or "sdxl" in arch_lower:
dtype = "torch.float16"
# Find the main safetensors file for usage example
main_safetensors = f"{model_name}.safetensors"
if uploaded_files:
safetensors_files = [f for f in uploaded_files if f.endswith('.safetensors')]
if safetensors_files:
preferred_name = f"{model_name}.safetensors"
exact_match = next(
(
f
for f in safetensors_files
if os.path.basename(f) == preferred_name or f == preferred_name
),
None,
)
if exact_match:
main_safetensors = exact_match
else:
def extract_step(filename: str) -> int:
match = re.search(r"_(\d+)\.safetensors$", os.path.basename(filename))
return int(match.group(1)) if match else -1
safetensors_files.sort(
key=lambda f: (extract_step(f), f),
reverse=True,
)
main_safetensors = safetensors_files[0]
# Construct YAML frontmatter
frontmatter = {
"tags": tags,
"base_model": base_model,
**license_info
}
if widgets:
frontmatter["widget"] = widgets
inference_params = {}
sample_width = sample_config.get("width") if isinstance(sample_config, dict) else None
sample_height = sample_config.get("height") if isinstance(sample_config, dict) else None
if sample_width:
inference_params["width"] = sample_width
if sample_height:
inference_params["height"] = sample_height
if inference_params:
frontmatter["inference"] = {"parameters": inference_params}
if trigger_word:
frontmatter["instance_prompt"] = trigger_word
# Get first prompt for usage example
usage_prompt = trigger_word or "a beautiful landscape"
if widgets:
usage_prompt = widgets[0]["text"]
elif trigger_word:
usage_prompt = trigger_word
# Construct README content
trigger_section = f"You should use \`{trigger_word}\` to trigger the image generation." if trigger_word else "No trigger words defined."
# Build YAML frontmatter string
frontmatter_yaml = yaml.dump(frontmatter, default_flow_style=False, allow_unicode=True, sort_keys=False).strip()
readme_content = f"""---
{frontmatter_yaml}
---
# {model_name}
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
{gallery_section}
## Trigger words
{trigger_section}
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
Weights for this model are available in Safetensors format.
[Download]({repo_id}/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
\`\`\`py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('{base_model}', torch_dtype={dtype}).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='{main_safetensors}')
image = pipeline('{usage_prompt}').images[0]
image.save("my_image.png")
\`\`\`
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
"""
return readme_content
except Exception as e:
print(f"Error generating README: {e}")
# Fallback simple README
return f"""# {model_name}
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
## Download model
Weights for this model are available in Safetensors format.
[Download]({repo_id}/tree/main) them in the Files & versions tab.
"""
def main():
# Setup environment - token comes from HF Jobs secrets
if "HF_TOKEN" not in os.environ:
raise ValueError("HF_TOKEN environment variable not set")
# Install system dependencies for headless operation
print("Installing system dependencies...")
try:
subprocess.run(["apt-get", "update"], check=True, capture_output=True)
subprocess.run([
"apt-get", "install", "-y",
"libgl1-mesa-glx",
"libglib2.0-0",
"libsm6",
"libxext6",
"libxrender-dev",
"libgomp1",
"ffmpeg"
], check=True, capture_output=True)
print("System dependencies installed successfully")
except subprocess.CalledProcessError as e:
print(f"Failed to install system dependencies: {e}")
print("Continuing without system dependencies...")
# Setup ai-toolkit
toolkit_dir = setup_ai_toolkit()
# Create temporary directories
with tempfile.TemporaryDirectory() as temp_dir:
dataset_path = os.path.join(temp_dir, "dataset")
output_path = os.path.join(temp_dir, "output")
# Download dataset
download_dataset("${datasetRepo}", dataset_path)
# Create config
config = create_config(dataset_path, output_path)
config_path = os.path.join(temp_dir, "config.yaml")
with open(config_path, "w") as f:
yaml.dump(config, f, default_flow_style=False)
# Run training
print("Starting training...")
os.chdir(toolkit_dir)
subprocess.run([
sys.executable, "run.py",
config_path
], check=True)
print("Training completed!")
# Upload results
model_name = f"${jobConfig.config.name}-lora"
upload_results(output_path, model_name, "${namespace}", os.environ["HF_TOKEN"], config)
if __name__ == "__main__":
main()
`;
}
async function submitHFJobUV(token: string, hardware: string, scriptPath: string, namespaceOverride?: string): Promise<string> {
return new Promise((resolve, reject) => {
// Ensure token is available
if (!token) {
reject(new Error('HF_TOKEN is required'));
return;
}
console.log('Setting up environment with HF_TOKEN for job submission');
const namespaceArgs = namespaceOverride ? ` --namespace ${namespaceOverride}` : '';
console.log(`Command: hf jobs uv run --flavor ${hardware} --timeout 5h --secrets HF_TOKEN --detach${namespaceArgs} ${scriptPath}`);
// Use hf jobs uv run command with timeout and detach to get job ID
const args = [
'jobs', 'uv', 'run',
'--flavor', hardware,
'--timeout', '5h',
'--secrets', 'HF_TOKEN',
'--detach'
];
if (namespaceOverride) {
args.push('--namespace', namespaceOverride);
}
args.push(scriptPath);
const childProcess = spawn('hf', args, {
env: {
...process.env,
HF_TOKEN: token
}
});
let output = '';
let error = '';
childProcess.stdout.on('data', (data) => {
const text = data.toString();
output += text;
console.log('HF Jobs stdout:', text);
});
childProcess.stderr.on('data', (data) => {
const text = data.toString();
error += text;
console.log('HF Jobs stderr:', text);
});
childProcess.on('close', (code) => {
console.log('HF Jobs process closed with code:', code);
console.log('Full output:', output);
console.log('Full error:', error);
if (code === 0) {
// With --detach flag, the output should be just the job ID
const fullText = (output + ' ' + error).trim();
// Updated patterns to handle variable-length hex job IDs (16-24+ characters)
const jobIdPatterns = [
/Job started with ID:\s*([a-f0-9]{16,})/i, // "Job started with ID: 68b26b73767540db9fc726ac"
/job\s+([a-f0-9]{16,})/i, // "job 68b26b73767540db9fc726ac"
/Job ID:\s*([a-f0-9]{16,})/i, // "Job ID: 68b26b73767540db9fc726ac"
/created\s+job\s+([a-f0-9]{16,})/i, // "created job 68b26b73767540db9fc726ac"
/submitted.*?job\s+([a-f0-9]{16,})/i, // "submitted ... job 68b26b73767540db9fc726ac"
/https:\/\/huggingface\.co\/jobs\/[^\/]+\/([a-f0-9]{16,})/i, // URL pattern
/([a-f0-9]{20,})/i, // Fallback: any 20+ char hex string
];
let jobId = 'unknown';
for (const pattern of jobIdPatterns) {
const match = fullText.match(pattern);
if (match && match[1] && match[1] !== 'started') {
jobId = match[1];
console.log(`Extracted job ID using pattern: ${pattern.toString()} -> ${jobId}`);
break;
}
}
resolve(jobId);
} else {
reject(new Error(error || output || 'Failed to submit job'));
}
});
childProcess.on('error', (err) => {
console.error('HF Jobs process error:', err);
reject(new Error(`Process error: ${err.message}`));
});
});
}
async function checkHFJobStatus(token: string, jobId: string, jobNamespace?: string): Promise<any> {
return new Promise((resolve, reject) => {
console.log(`Checking HF Job status for: ${jobId}`);
const args = ['jobs', 'inspect'];
if (jobNamespace) {
console.log(`Using namespace override for status check: ${jobNamespace}`);
args.push('--namespace', jobNamespace);
}
args.push(jobId);
const childProcess = spawn('hf', args, {
env: {
...process.env,
HF_TOKEN: token
}
});
let output = '';
let error = '';
childProcess.stdout.on('data', (data) => {
const text = data.toString();
output += text;
});
childProcess.stderr.on('data', (data) => {
const text = data.toString();
error += text;
});
childProcess.on('close', (code) => {
if (code === 0) {
try {
// Parse the JSON output from hf jobs inspect
const jobInfo = JSON.parse(output);
if (Array.isArray(jobInfo) && jobInfo.length > 0) {
const job = jobInfo[0];
resolve({
id: job.id,
status: job.status?.stage || 'UNKNOWN',
message: job.status?.message,
created_at: job.created_at,
flavor: job.flavor,
url: job.url,
});
} else {
reject(new Error('Invalid job info response'));
}
} catch (parseError: any) {
console.error('Failed to parse job status:', parseError, output);
reject(new Error('Failed to parse job status'));
}
} else {
reject(new Error(error || output || 'Failed to check job status'));
}
});
childProcess.on('error', (err) => {
console.error('HF Jobs inspect process error:', err);
reject(new Error(`Process error: ${err.message}`));
});
});
}
async function checkHFJobsCapacity(token: string): Promise<any> {
try {
console.log('Checking HF Jobs capacity for namespace: lora-training-frenzi via API');
// Use HuggingFace API directly instead of CLI to avoid TTY issues
const response = await fetch('https://huggingface.co/api/jobs/lora-training-frenzi', {
headers: {
'Authorization': `Bearer ${token}`,
},
});
if (!response.ok) {
throw new Error(`API request failed: ${response.status} ${response.statusText}`);
}
const jobs = await response.json();
console.log(`Fetched ${jobs.length} total jobs from API`);
// Count jobs with status RUNNING
let runningCount = 0;
for (const job of jobs) {
const status = job.status?.stage || job.status;
if (status === 'RUNNING') {
runningCount++;
}
}
const atCapacity = runningCount >= 32;
console.log(`\n=== FINAL COUNT ===`);
console.log(`Found ${runningCount} RUNNING jobs. At capacity: ${atCapacity}`);
console.log(`==================\n`);
return {
runningJobs: runningCount,
atCapacity,
capacityLimit: 32,
};
} catch (error: any) {
console.error('Failed to check capacity via API:', error);
throw new Error(`Failed to check capacity: ${error.message}`);
}
}
|