Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 28,891 Bytes
f555806 5d9965c f555806 f1ba847 cdc26bb 4ff2db9 f1ba847 f555806 5d9965c f555806 5d9965c f555806 8b1baa1 dc3376a 5d9965c 4ff2db9 dc3376a 4ff2db9 5d9965c dc3376a 5d9965c dc3376a f555806 b4456a3 f555806 a4a8094 f555806 a4a8094 0ac7f78 a4a8094 f555806 b4456a3 f555806 fcb9ec2 7aa82a8 fcb9ec2 f555806 f1ba847 f555806 f1ba847 f555806 fcb9ec2 f555806 4ff2db9 dc3376a 4ff2db9 f555806 5d9965c f555806 4ee5618 f555806 4ee5618 f555806 231dcea f555806 c076cea 4ee5618 c076cea 231dcea c076cea f555806 c076cea f555806 4ee5618 f555806 5d9965c 8b1baa1 c2d3ff1 8b1baa1 29ed2dd 8b1baa1 5d9965c f555806 29ed2dd e2a89a3 f555806 29ed2dd f555806 8b1baa1 29ed2dd 8b1baa1 f555806 29ed2dd f555806 4ee5618 f555806 4ee5618 f555806 c12ee07 f555806 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
'use client';
import { useEffect, useState } from 'react';
import { Button } from '@headlessui/react';
import { SelectInput, TextInput, Checkbox } from '@/components/formInputs';
import Card from '@/components/Card';
import { apiClient } from '@/utils/api';
import { JobConfig } from '@/types';
type DatasetUploadArtifact = {
localPath: string;
repoPath: string;
};
type DatasetManifest = {
datasets: any[];
samples: any[];
};
type DatasetUploadPlan = {
artifacts: DatasetUploadArtifact[];
manifest: DatasetManifest;
};
const ensurePosixPath = (value: string) => value.replace(/\\/g, '/').replace(/^\/+/, '');
const INSTRUCTION_ARCHES = new Set([
'flux_kontext',
'hidream_e1',
'qwen_image_edit',
'qwen_image_edit_plus',
]);
const buildDatasetUploadPlan = (jobConfig: JobConfig): DatasetUploadPlan => {
const datasetEntries = jobConfig?.config?.process?.[0]?.datasets ?? [];
const sampleEntries = jobConfig?.config?.process?.[0]?.sample?.samples ?? [];
const artifactMap = new Map<string, DatasetUploadArtifact>();
const manifestDatasets: any[] = [];
const manifestSamples: any[] = [];
const recordArtifact = (localPath: string | null | undefined, repoPath: string) => {
if (!localPath) {
return;
}
const trimmedLocalPath = localPath.trim();
if (trimmedLocalPath === '') {
return;
}
const normalizedRepoPath = ensurePosixPath(repoPath);
if (!artifactMap.has(normalizedRepoPath)) {
artifactMap.set(normalizedRepoPath, {
localPath: trimmedLocalPath,
repoPath: normalizedRepoPath,
});
}
};
const pathFieldMappings: Record<string, string> = {
control_path: 'control',
inpaint_path: 'inpaint',
mask_path: 'mask',
unconditional_path: 'unconditional',
clip_image_path: 'clip_images',
};
datasetEntries.forEach((dataset, index) => {
const datasetPrefix = `datasets/dataset_${index}`;
const manifestEntry: Record<string, any> = {};
const folderPath = (dataset as any).folder_path as string | null | undefined;
if (folderPath && folderPath.trim() !== '') {
const repoPath = `${datasetPrefix}/images`;
recordArtifact(folderPath, repoPath);
manifestEntry.folder_path = ensurePosixPath(repoPath);
}
Object.entries(pathFieldMappings).forEach(([field, suffix]) => {
const rawValue = (dataset as any)[field];
if (rawValue === null || rawValue === undefined) {
return;
}
const values = Array.isArray(rawValue) ? rawValue : [rawValue];
const normalizedValues = values
.map(value => (typeof value === 'string' ? value.trim() : value))
.filter(value => typeof value === 'string' && value !== '') as string[];
if (normalizedValues.length === 0) {
return;
}
if (normalizedValues.length === 1) {
const repoPath = `${datasetPrefix}/${suffix}`;
recordArtifact(normalizedValues[0], repoPath);
manifestEntry[field] = ensurePosixPath(repoPath);
} else {
const repoLocations = normalizedValues.map((value, idx) => {
const repoPath = `${datasetPrefix}/${suffix}_${idx}`;
recordArtifact(value, repoPath);
return ensurePosixPath(repoPath);
});
manifestEntry[field] = repoLocations;
}
});
manifestDatasets.push(manifestEntry);
});
sampleEntries.forEach((sample, index) => {
const ctrlImg = (sample as any)?.ctrl_img as string | undefined;
if (!ctrlImg || ctrlImg.trim() === '') {
return;
}
const trimmedCtrlImg = ctrlImg.trim();
const extensionMatch = trimmedCtrlImg.match(/\.([a-zA-Z0-9]+)$/);
const extension = extensionMatch ? extensionMatch[0].toLowerCase() : '.png';
const repoPath = ensurePosixPath(`samples/ctrl/sample_${index}${extension}`);
recordArtifact(trimmedCtrlImg, repoPath);
manifestSamples.push({ index, ctrl_img: repoPath });
});
return {
artifacts: Array.from(artifactMap.values()),
manifest: {
datasets: manifestDatasets,
samples: manifestSamples,
},
};
};
import useSettings from '@/hooks/useSettings';
import { upsertJob } from '@/utils/storage/jobStorage';
import { useAuth } from '@/contexts/AuthContext';
interface HFJobsWorkflowProps {
jobConfig: JobConfig;
onComplete: (jobId: string, localJobId?: string) => void;
hackathonEligible?: boolean;
}
type Step = 'validate' | 'upload' | 'submit' | 'complete';
export default function HFJobsWorkflow({ jobConfig, onComplete, hackathonEligible = false }: HFJobsWorkflowProps) {
const { settings } = useSettings();
const { token: authToken } = useAuth();
const [defaultNamespace, setDefaultNamespace] = useState('');
const [currentStep, setCurrentStep] = useState<Step>('validate');
const [loading, setLoading] = useState(false);
const [error, setError] = useState<string | null>(null);
// Form state
const [datasetSource, setDatasetSource] = useState<'upload' | 'existing'>('upload');
const [datasetName, setDatasetName] = useState(`${jobConfig.config.name}-dataset`);
const [existingDatasetId, setExistingDatasetId] = useState('');
const [hardware, setHardware] = useState(settings.HF_JOBS_DEFAULT_HARDWARE || 'a100-large');
const [namespace, setNamespace] = useState(settings.HF_JOBS_NAMESPACE || '');
const [autoUpload, setAutoUpload] = useState(true);
const [participateHackathon, setParticipateHackathon] = useState(true);
const [participationTouched, setParticipationTouched] = useState(false);
const requiresControlImages = (() => {
try {
const arch = jobConfig?.config?.process?.[0]?.model?.arch;
return typeof arch === 'string' && INSTRUCTION_ARCHES.has(arch.toLowerCase());
} catch (error) {
return false;
}
})();
const samplingDisabled = (() => {
try {
return Boolean(jobConfig?.config?.process?.[0]?.train?.disable_sampling);
} catch (error) {
return false;
}
})();
const hasControlDataset = (() => {
try {
const datasets = jobConfig?.config?.process?.[0]?.datasets ?? [];
return datasets.some((dataset: any) => {
const controlPath = dataset?.control_path;
if (Array.isArray(controlPath)) {
return controlPath.some(path => typeof path === 'string' && path.trim() !== '');
}
return typeof controlPath === 'string' && controlPath.trim() !== '';
});
} catch (error) {
return false;
}
})();
useEffect(() => {
if (!hackathonEligible) {
if (participateHackathon) {
setParticipateHackathon(false);
}
if (participationTouched) {
setParticipationTouched(false);
}
} else if (!participateHackathon && !participationTouched) {
setParticipateHackathon(true);
}
}, [hackathonEligible, participateHackathon, participationTouched]);
// Progress state
const [validationResult, setValidationResult] = useState<any>(null);
const [uploadResult, setUploadResult] = useState<any>(null);
const [jobResult, setJobResult] = useState<any>(null);
const validateToken = async () => {
setLoading(true);
setError(null);
const effectiveToken = authToken || settings.HF_TOKEN;
try {
if (!effectiveToken) {
throw new Error('A valid Hugging Face token is required to continue.');
}
// Validate token first
const response = await apiClient.post('/api/hf-hub', {
action: 'whoami',
token: effectiveToken,
});
if (response.data.user) {
setValidationResult(response.data.user);
const resolvedName = response.data.user.name || '';
setDefaultNamespace(resolvedName);
if (!namespace) {
setNamespace(resolvedName);
}
// After token is validated, check capacity if participating in hackathon
if (hackathonEligible && participateHackathon) {
console.log('Checking HF Jobs capacity for hackathon namespace...');
const capacityResponse = await apiClient.post('/api/hf-jobs', {
action: 'checkCapacity',
token: effectiveToken,
});
console.log('Capacity check response:', capacityResponse.data);
console.log('Running jobs:', capacityResponse.data.runningJobs);
console.log('At capacity:', capacityResponse.data.atCapacity);
if (capacityResponse.data.atCapacity) {
throw new Error('Whoa, our GPUs are going brr 🔥, we are at capacity right now. Try again soon, hitting the Get Started button again');
}
}
setCurrentStep('upload');
}
} catch (err: any) {
setError(err.response?.data?.error || err.message || 'Failed to validate token');
} finally {
setLoading(false);
}
};
const uploadDataset = async () => {
setLoading(true);
setError(null);
const effectiveToken = authToken || settings.HF_TOKEN;
try {
if (!effectiveToken) {
throw new Error('A valid Hugging Face token is required to continue.');
}
const resolvedNamespace = namespace || defaultNamespace;
if (!resolvedNamespace) {
throw new Error('Unable to determine a namespace. Validate your HF token or set a namespace in Settings.');
}
if (requiresControlImages) {
if (!hasControlDataset) {
throw new Error('Instruction models require a control dataset. Please select or upload a control dataset before continuing.');
}
if (!samplingDisabled) {
const samples = jobConfig?.config?.process?.[0]?.sample?.samples ?? [];
const missingCtrl = samples.filter((sample: any) => !sample?.ctrl_img || !String(sample.ctrl_img).trim());
if (missingCtrl.length > 0) {
throw new Error('Instruction models require a control image for every sample prompt. Please add control images before continuing.');
}
}
}
if (datasetSource === 'existing') {
// Use existing dataset - just validate it exists
if (!existingDatasetId) {
throw new Error('Please enter a dataset ID');
}
// Validate dataset exists
const validateResponse = await apiClient.post('/api/hf-hub', {
action: 'validateDataset',
token: effectiveToken,
datasetId: existingDatasetId,
});
if (validateResponse.data.exists) {
setUploadResult({
repoId: existingDatasetId,
url: `https://huggingface.co/datasets/${existingDatasetId}`,
existing: true,
});
setCurrentStep('submit');
} else {
throw new Error(`Dataset ${existingDatasetId} not found or not accessible`);
}
} else {
if (!resolvedNamespace) {
throw new Error('Unable to determine a namespace. Validate your HF token or set a namespace in Settings.');
}
// Upload new dataset
// First, create the dataset repository
const createResponse = await apiClient.post('/api/hf-hub', {
action: 'createDataset',
token: effectiveToken,
namespace: resolvedNamespace,
datasetName,
});
if (!createResponse.data.success) {
throw new Error('Failed to create dataset repository');
}
const uploadPlan = buildDatasetUploadPlan(jobConfig);
if (!uploadPlan.artifacts || uploadPlan.artifacts.length === 0) {
throw new Error('Dataset path could not be resolved. Please ensure the dataset folders exist on the host.');
}
const uploadResponse = await apiClient.post('/api/hf-hub', {
action: 'uploadDataset',
token: effectiveToken,
namespace: resolvedNamespace,
datasetName,
artifacts: uploadPlan.artifacts,
manifest: uploadPlan.manifest,
});
if (uploadResponse.data.success) {
setUploadResult({
repoId: uploadResponse.data.repoId,
url: `https://huggingface.co/datasets/${uploadResponse.data.repoId}`,
existing: false,
});
setCurrentStep('submit');
}
}
} catch (err: any) {
setError(err.response?.data?.error || err.message || 'Failed to process dataset');
} finally {
setLoading(false);
}
};
const submitJob = async () => {
setLoading(true);
setError(null);
const effectiveToken = authToken || settings.HF_TOKEN;
try {
const resolvedNamespace = namespace || defaultNamespace;
if (!resolvedNamespace) {
throw new Error('Unable to determine a namespace. Validate your HF token or set a namespace in Settings.');
}
if (!effectiveToken) {
throw new Error('A valid Hugging Face token is required to continue.');
}
if (requiresControlImages) {
if (!hasControlDataset) {
setError('Instruction models require a control dataset. Please select one before submitting.');
setLoading(false);
return;
}
if (!samplingDisabled) {
const samples = jobConfig?.config?.process?.[0]?.sample?.samples ?? [];
const missingCtrl = samples.filter((sample: any) => !sample?.ctrl_img || !String(sample.ctrl_img).trim());
if (missingCtrl.length > 0) {
setError('Instruction models require a control image for every sample prompt. Please add control images before submitting.');
setLoading(false);
return;
}
}
}
const datasetRepo =
uploadResult?.repoId ||
(datasetSource === 'existing'
? existingDatasetId
: `${resolvedNamespace}/${datasetName}`);
const response = await apiClient.post('/api/hf-jobs', {
action: 'submitJob',
token: effectiveToken,
hardware,
namespace: resolvedNamespace,
jobConfig,
datasetRepo,
participateHackathon: hackathonEligible && participateHackathon,
});
if (response.data.success) {
const hfJobId = response.data.jobId;
const jobNamespace = response.data.jobNamespace || resolvedNamespace;
// Save job to local database for tracking
let localJobId = undefined;
try {
const savedJob = await upsertJob({
name: `${jobConfig.config.name}-hf-cloud`,
gpu_ids: hardware,
job_config: {
...jobConfig,
hf_job_id: hfJobId,
hf_job_url:
hfJobId !== 'unknown'
? `https://huggingface.co/jobs/${jobNamespace}/${hfJobId}`
: null,
dataset_repo: datasetRepo,
hardware,
is_hf_job: true,
training_backend: 'hf-jobs',
hf_job_submitted: true,
hf_job_namespace: jobNamespace,
},
info: response.data.message || 'HF Job submitted',
status: 'submitted',
});
localJobId = savedJob.id;
console.log('Saved HF Job to local storage:', savedJob);
} catch (localSaveError: any) {
console.warn('Failed to save HF Job locally:', localSaveError);
// Attempt to create a fallback entry with a unique name if the conflict is due to duplicates
if (localSaveError?.code === 'P2002') {
const fallbackName = `${jobConfig.config.name}-${hfJobId?.slice(-6) || Date.now()}`.replace(/[^a-zA-Z0-9-_]/g, '_');
try {
const savedJob = await upsertJob({
name: `${fallbackName}-hf-cloud`,
gpu_ids: hardware,
job_config: {
...jobConfig,
hf_job_id: hfJobId,
hf_job_url:
hfJobId !== 'unknown'
? `https://huggingface.co/jobs/${jobNamespace}/${hfJobId}`
: null,
dataset_repo: datasetRepo,
hardware,
is_hf_job: true,
training_backend: 'hf-jobs',
hf_job_submitted: true,
hf_job_namespace: jobNamespace,
},
info: response.data.message || 'HF Job submitted',
status: 'submitted',
});
localJobId = savedJob.id;
console.log('Saved HF Job with fallback name:', savedJob);
} catch (fallbackError) {
console.warn('Fallback save for HF Job failed:', fallbackError);
}
}
}
setJobResult({
jobId: hfJobId,
message: response.data.message,
localJobId: localJobId,
jobNamespace,
});
setCurrentStep('complete');
onComplete(hfJobId, localJobId);
}
} catch (err: any) {
setError(err.response?.data?.error || 'Failed to submit job');
} finally {
setLoading(false);
}
};
const renderStepContent = () => {
switch (currentStep) {
case 'validate':
return (
<Card title="Validate HF Token">
<div className="space-y-4">
{hackathonEligible && (
<div className="space-y-3">
<Checkbox
label="Participate in LoRA Frenzi"
checked={participateHackathon}
onChange={value => {
setParticipationTouched(true);
setParticipateHackathon(value);
}}
/>
{participateHackathon && (
<ul className="text-xs text-gray-400 space-y-1 pl-4 list-disc">
<li>Maximum 5,000 training steps per run</li>
<li>Jobs longer than 6 hours will time out</li>
<li>Train only one LoRA simultaneously</li>
<li>Do not train on likenesses without consent or NSFW content</li>
</ul>
)}
</div>
)}
<p className="text-sm text-gray-400">
{hackathonEligible && participateHackathon
? "To continue, accept the rules above and we'll validate your Hugging Face token."
: "Click below to validate your Hugging Face token and start training. Train LoRAs at $0.042/minute if you are a PRO user."}
</p>
{validationResult && (
<div className="p-3 bg-green-900/20 border border-green-700 rounded">
<p className="text-green-400">
✓ Token valid! Logged in as: <strong>{validationResult.name}</strong>
</p>
</div>
)}
<Button
onClick={validateToken}
disabled={
loading ||
!(authToken || settings.HF_TOKEN)
}
className="w-full px-4 py-2 bg-blue-600 hover:bg-blue-700 text-white rounded disabled:opacity-50"
>
{loading ? 'Validating...' : (hackathonEligible && participateHackathon ? 'I accept the rules, get started' : 'Get started')}
</Button>
</div>
</Card>
);
case 'upload':
return (
<Card title="Dataset Configuration">
<div className="space-y-4">
<p className="text-sm text-gray-400">
Choose whether to upload a new dataset or use an existing one from HF Hub.
</p>
<SelectInput
label="Dataset Source"
value={datasetSource}
onChange={(value) => setDatasetSource(value as 'upload' | 'existing')}
options={[
{ value: 'upload', label: 'Upload New Dataset' },
{ value: 'existing', label: 'Use Existing HF Dataset' }
]}
/>
{datasetSource === 'upload' ? (
<>
<TextInput
label="Dataset Name"
value={datasetName}
onChange={setDatasetName}
placeholder="my-training-dataset"
required
/>
<TextInput
label="Namespace"
value={namespace}
onChange={setNamespace}
placeholder="your-username or org-name"
required
/>
</>
) : (
<>
<TextInput
label="Existing Dataset ID"
value={existingDatasetId}
onChange={setExistingDatasetId}
placeholder="e.g. multimodalart/flux-tarot-v1 or username/dataset-name"
required
/>
<p className="text-xs text-gray-500">
Enter the full dataset ID (namespace/name) from HuggingFace Hub
</p>
</>
)}
{uploadResult && (
<div className="p-3 bg-green-900/20 border border-green-700 rounded">
<p className="text-green-400">
✓ Dataset {uploadResult.existing ? 'validated' : 'uploaded'} successfully!
</p>
<p className="text-sm text-gray-400 mt-1">
{uploadResult.existing ? 'Using dataset:' : 'View at:'} <a href={uploadResult.url} target="_blank" rel="noopener noreferrer" className="text-blue-400 underline">{uploadResult.repoId}</a>
</p>
</div>
)}
<Button
onClick={uploadDataset}
disabled={loading || (datasetSource === 'upload' ? (!datasetName || !namespace) : !existingDatasetId)}
className="w-full px-4 py-2 bg-blue-600 hover:bg-blue-700 text-white rounded disabled:opacity-50"
>
{loading ? (datasetSource === 'upload' ? 'Uploading...' : 'Validating...') : (datasetSource === 'upload' ? 'Upload Dataset' : 'Validate Dataset')}
</Button>
</div>
</Card>
);
case 'submit':
return (
<Card title="Submit Training Job">
<div className="space-y-4">
<p className="text-sm text-gray-400">
Configure and submit your training job to HF Jobs.
</p>
<SelectInput
label="Hardware"
value={hardware}
onChange={setHardware}
options={[
{ value: 'cpu-basic', label: 'CPU Basic' },
{ value: 'cpu-upgrade', label: 'CPU Upgrade' },
{ value: 't4-small', label: 'T4 Small' },
{ value: 't4-medium', label: 'T4 Medium' },
{ value: 'l4x1', label: 'L4x1' },
{ value: 'l4x4', label: 'L4x4' },
{ value: 'a10g-small', label: 'A10G Small' },
{ value: 'a10g-large', label: 'A10G Large' },
{ value: 'a10g-largex2', label: 'A10G Large x2' },
{ value: 'a10g-largex4', label: 'A10G Large x4' },
{ value: 'a100-large', label: 'A100 Large' },
{ value: 'v5e-1x1', label: 'TPU v5e-1x1' },
{ value: 'v5e-2x2', label: 'TPU v5e-2x2' },
{ value: 'v5e-2x4', label: 'TPU v5e-2x4' },
]}
/>
<Checkbox
label="Auto-upload trained model to HF Hub"
checked={autoUpload}
onChange={setAutoUpload}
/>
{jobResult && (
<div className="p-3 bg-green-900/20 border border-green-700 rounded">
<p className="text-green-400">
✓ Job submitted successfully!
</p>
<p className="text-sm text-gray-400 mt-1">
Job ID: <code className="bg-gray-800 px-2 py-1 rounded text-xs">{jobResult.jobId}</code>
</p>
</div>
)}
<Button
onClick={submitJob}
disabled={loading || !hardware}
className="w-full px-4 py-2 bg-green-600 hover:bg-green-700 text-white rounded disabled:opacity-50"
>
{loading ? 'Submitting...' : 'Submit Training Job'}
</Button>
</div>
</Card>
);
case 'complete':
return (
<Card title="Job Submitted Successfully">
<div className="space-y-4">
<div className="p-4 bg-green-900/20 border border-green-700 rounded">
<h3 className="text-lg font-semibold text-green-400 mb-2">🎉 Training job submitted!</h3>
<p className="text-sm text-gray-300 mb-2">
Your training job has been submitted to Hugging Face Jobs and is now running in the cloud.
</p>
<div className="space-y-2">
<p className="text-sm">
<strong>Job ID:</strong> <code className="bg-gray-800 px-2 py-1 rounded text-xs">{jobResult?.jobId}</code>
</p>
{jobResult?.jobId && jobResult.jobId !== 'unknown' && (
<p className="text-sm">
<strong>Monitor Job:</strong>{' '}
<a
href={`https://huggingface.co/jobs/${jobResult.jobNamespace || namespace}/${jobResult.jobId}`}
target="_blank"
rel="noopener noreferrer"
className="text-blue-400 underline"
>
View on HF Jobs →
</a>
</p>
)}
<p className="text-sm">
<strong>Dataset:</strong>{' '}
<a
href={uploadResult?.url}
target="_blank"
rel="noopener noreferrer"
className="text-blue-400 underline"
>
{uploadResult?.repoId}
</a>
</p>
<p className="text-sm">
<strong>Hardware:</strong> {hardware}
</p>
</div>
</div>
<div className="text-sm text-gray-400 space-y-2">
<p><strong>Next steps:</strong></p>
<ul className="list-disc list-inside space-y-1 ml-4">
<li>Monitor your job progress using: <code className="bg-gray-800 px-2 py-1 rounded text-xs">hf jobs logs {jobResult?.jobId}</code></li>
<li>The trained model will be uploaded to: <code className="bg-gray-800 px-2 py-1 rounded text-xs">{namespace}/{jobConfig.config.name}-lora</code></li>
<li>You'll receive notifications when training completes</li>
</ul>
</div>
</div>
</Card>
);
default:
return null;
}
};
return (
<div className="space-y-6">
<h2 id="hf-start-training" className="text-lg font-semibold text-gray-100">Start training</h2>
{/* Progress indicator */}
<div className="flex items-center justify-between mb-6">
{(['validate', 'upload', 'submit', 'complete'] as Step[]).map((step, index) => (
<div key={step} className="flex items-center">
<div className={`w-8 h-8 rounded-full flex items-center justify-center text-sm font-semibold ${
currentStep === step
? 'bg-blue-600 text-white'
: index < (['validate', 'upload', 'submit', 'complete'] as Step[]).indexOf(currentStep)
? 'bg-green-600 text-white'
: 'bg-gray-600 text-gray-300'
}`}>
{index + 1}
</div>
{index < 3 && (
<div className={`w-16 h-1 mx-2 ${
index < (['validate', 'upload', 'submit', 'complete'] as Step[]).indexOf(currentStep)
? 'bg-green-600'
: 'bg-gray-600'
}`} />
)}
</div>
))}
</div>
{/* Error display */}
{error && (
<div className="p-4 bg-red-900/20 border border-red-700 rounded">
<p className="text-red-400">{error}</p>
</div>
)}
{/* Current step content */}
{renderStepContent()}
</div>
);
}
|