Spaces:
Running
Running
File size: 27,641 Bytes
ea02521 596ce81 3aa2ce4 a118bb2 2a06b1f 6b11277 0bc7df2 273b01b 3aa2ce4 77b1187 9b92b0d 77b1187 9b92b0d 77b1187 9b92b0d cdac3fd e252244 77b1187 45da145 77b1187 9b92b0d 77b1187 f749bff 9b92b0d 77b1187 9b92b0d ebbfe5b 9b92b0d ebbfe5b 9b92b0d 58d8926 cdac3fd 77b1187 cdac3fd 77b1187 cdac3fd ebbfe5b cdac3fd ebbfe5b 77b1187 ebbfe5b 77b1187 cdac3fd 77b1187 cdac3fd ebbfe5b cdac3fd ebbfe5b 77b1187 ebbfe5b 77b1187 ebbfe5b 77b1187 ebbfe5b cdac3fd 77b1187 ebbfe5b 77b1187 9b92b0d cdac3fd 9b92b0d 58d8926 cdac3fd 77b1187 cdac3fd 77b1187 cdac3fd 77b1187 cdac3fd 77b1187 cdac3fd 77b1187 cdac3fd 77b1187 cdac3fd 77b1187 2a06b1f 273b01b 3aa2ce4 a118bb2 d908257 2a06b1f 5736887 940de5b 6a7b482 5736887 6a7b482 5736887 6a7b482 940de5b 6a7b482 9b92b0d ebbfe5b 273b01b 3aa2ce4 273b01b 6a7b482 ae7dd23 3aa2ce4 ae7dd23 3aa2ce4 ae7dd23 3aa2ce4 ae7dd23 3aa2ce4 ae7dd23 3aa2ce4 273b01b 3aa2ce4 8c4cc70 3aa2ce4 7f686f5 9b92b0d cdac3fd 7f686f5 9b92b0d 7f686f5 cdac3fd 7f686f5 cdac3fd 7f686f5 cdac3fd 7f686f5 9b92b0d 3aa2ce4 dce996d a118bb2 cdac3fd d908257 7f686f5 a1491f0 7f686f5 d7d81bb a118bb2 d908257 a118bb2 273b01b 0933a87 3aa2ce4 aa0696d 3aa2ce4 aa0696d d7d81bb ae7dd23 273b01b 0933a87 273b01b 3aa2ce4 596ce81 3aa2ce4 aa0696d 596ce81 2a06b1f 3aa2ce4 ae7dd23 3aa2ce4 aa0696d 3aa2ce4 6323c73 40d9732 2eee636 1d1bb6e ab5da9e d8c258c 9d7c660 b3e0e63 21b61fa 2eee636 596ce81 8c4cc70 d8c258c 45b95b2 d8c258c d908257 0bc7df2 2a06b1f aa0696d 3aa2ce4 aa0696d 2a06b1f 0bc7df2 3aa2ce4 d908257 a1491f0 cdac3fd a572c70 abca36d ebbfe5b 7f686f5 abca36d 7f686f5 f749bff 7f686f5 d908257 3aa2ce4 0bc7df2 b5b30fd 3aa2ce4 d57789d 835ddf1 d74e2ab 8c4cc70 21b61fa ca5ee29 c33c795 3aa2ce4 ac1a0c2 3aa2ce4 7f686f5 0922281 7f686f5 5229ef3 8c4cc70 0bc7df2 9b29685 3aa2ce4 ae7dd23 ca5ee29 3aa2ce4 0238b02 5229ef3 8c4cc70 9b29685 596ce81 5229ef3 8c4cc70 596ce81 3aa2ce4 23adf11 aa0696d 8c4cc70 596ce81 3aa2ce4 5229ef3 8c4cc70 3aa2ce4 aa0696d 8c4cc70 3aa2ce4 ca5ee29 9b92b0d ca5ee29 6a7b482 2263afc 470324c 2263afc 6a7b482 ca5ee29 2a06b1f 8c4cc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
import gradio as gr
from gradio_client import Client, handle_file
from google import genai
from google.genai import types
import os
from typing import Optional, List, Tuple, Union
from huggingface_hub import whoami
from PIL import Image
from io import BytesIO
import tempfile
import ffmpeg
import sqlite3
from datetime import datetime, date
from pathlib import Path
from threading import Lock
# --- Database Setup ---
DATA_DIR = Path("/data")
DATA_DIR.mkdir(exist_ok=True)
DB_PATH = DATA_DIR / "usage_limits.db"
DAILY_LIMIT_STANDARD = 75
DAILY_LIMIT_PRO = 50
EXEMPTED_USERS = ["multimodalart"]
db_lock = Lock()
def init_db():
"""Initialize the SQLite database."""
print(f"Initializing database at: {DB_PATH}")
try:
with sqlite3.connect(DB_PATH) as conn:
cursor = conn.cursor()
# Check if table exists and what columns it has
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='usage'")
table_exists = cursor.fetchone()
if table_exists:
# Check current schema
cursor.execute("PRAGMA table_info(usage)")
columns = [col[1] for col in cursor.fetchall()]
# Migrate if old schema (only has 'count' column)
if 'count' in columns and 'count_standard' not in columns:
print("Migrating database from old schema to new schema...")
# Rename old count to count_standard, add count_pro
cursor.execute("ALTER TABLE usage RENAME COLUMN count TO count_standard")
cursor.execute("ALTER TABLE usage ADD COLUMN count_pro INTEGER NOT NULL DEFAULT 0")
conn.commit()
print("Database migration completed successfully")
elif 'count_standard' not in columns:
# Table exists but doesn't have the right columns - recreate it
print("Recreating table with new schema...")
cursor.execute("DROP TABLE usage")
cursor.execute('''
CREATE TABLE usage (
username TEXT PRIMARY KEY,
date TEXT NOT NULL,
count_standard INTEGER NOT NULL DEFAULT 0,
count_pro INTEGER NOT NULL DEFAULT 0
)
''')
conn.commit()
print("Database recreated successfully")
else:
print("Database schema is already up to date")
else:
# Create new table with updated schema
cursor.execute('''
CREATE TABLE IF NOT EXISTS usage (
username TEXT PRIMARY KEY,
date TEXT NOT NULL,
count_standard INTEGER NOT NULL DEFAULT 0,
count_pro INTEGER NOT NULL DEFAULT 0
)
''')
conn.commit()
print("Database initialized successfully")
except Exception as e:
print(f"Error initializing database: {e}")
import traceback
traceback.print_exc()
def check_and_update_usage(username: str, use_pro_model: bool, credits_to_use: int = 1) -> bool:
"""
Check if user has reached daily limit and update usage.
Returns True if user can generate, False if limit reached.
credits_to_use: Number of credits to consume (1 for standard/1K, 2 for 2K, 4 for 4K)
"""
# Exempted users bypass all checks
if username in EXEMPTED_USERS:
print(f"User {username} is exempted from rate limits")
return True
limit = DAILY_LIMIT_PRO if use_pro_model else DAILY_LIMIT_STANDARD
count_column = "count_pro" if use_pro_model else "count_standard"
model_name = "PRO" if use_pro_model else "Standard"
with db_lock:
try:
with sqlite3.connect(DB_PATH) as conn:
today = str(date.today())
cursor = conn.cursor()
# Get user record
cursor.execute("SELECT date, count_standard, count_pro FROM usage WHERE username = ?", (username,))
result = cursor.fetchone()
if result is None:
# New user - create record
if use_pro_model:
cursor.execute("INSERT INTO usage (username, date, count_standard, count_pro) VALUES (?, ?, ?, ?)",
(username, today, 0, credits_to_use))
else:
cursor.execute("INSERT INTO usage (username, date, count_standard, count_pro) VALUES (?, ?, ?, ?)",
(username, today, credits_to_use, 0))
conn.commit()
print(f"New user {username}: {credits_to_use}/{limit} ({model_name})")
return True
user_date, user_count_standard, user_count_pro = result
user_count = user_count_pro if use_pro_model else user_count_standard
# Reset if new day
if user_date != today:
if use_pro_model:
cursor.execute("UPDATE usage SET date = ?, count_standard = ?, count_pro = ? WHERE username = ?",
(today, 0, credits_to_use, username))
else:
cursor.execute("UPDATE usage SET date = ?, count_standard = ?, count_pro = ? WHERE username = ?",
(today, credits_to_use, 0, username))
conn.commit()
print(f"User {username} reset for new day: {credits_to_use}/{limit} ({model_name})")
return True
# Check if user has enough credits remaining
if user_count + credits_to_use > limit:
print(f"User {username} insufficient credits: needs {credits_to_use}, has {limit - user_count}/{limit} remaining ({model_name})")
return False
# Increment count by credits used
new_count = user_count + credits_to_use
cursor.execute(f"UPDATE usage SET {count_column} = ? WHERE username = ?",
(new_count, username))
conn.commit()
print(f"User {username} usage: {new_count}/{limit} (used {credits_to_use} credits) ({model_name})")
return True
except Exception as e:
print(f"Error checking usage for {username}: {e}")
import traceback
traceback.print_exc()
# On error, allow the request (fail open)
return True
def get_remaining_generations(username: str, use_pro_model: bool) -> int:
"""Get the number of remaining generations for today."""
# Exempted users have unlimited generations
if username in EXEMPTED_USERS:
return 999999 # Return a large number to indicate unlimited
limit = DAILY_LIMIT_PRO if use_pro_model else DAILY_LIMIT_STANDARD
with db_lock:
try:
with sqlite3.connect(DB_PATH) as conn:
today = str(date.today())
cursor = conn.cursor()
cursor.execute("SELECT date, count_standard, count_pro FROM usage WHERE username = ?", (username,))
result = cursor.fetchone()
if result is None:
return limit
user_date, user_count_standard, user_count_pro = result
user_count = user_count_pro if use_pro_model else user_count_standard
# Reset if new day
if user_date != today:
return limit
return max(0, limit - user_count)
except Exception as e:
print(f"Error getting remaining generations for {username}: {e}")
return limit
# Initialize database on module load
init_db()
# --- Google Gemini API Configuration ---
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if not GOOGLE_API_KEY:
raise ValueError("GOOGLE_API_KEY environment variable not set.")
client = genai.Client(api_key=os.environ.get("GOOGLE_API_KEY"))
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image'
GEMINI_PRO_MODEL_NAME = 'gemini-3-pro-image-preview'
def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
if isinstance(token, gr.OAuthToken):
token_str = token.token
elif isinstance(token, str):
token_str = token
else:
return False
try:
user_info = whoami(token=token_str)
return (
user_info.get("isPro", False) or
any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
)
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
def get_username(token: Optional[Union[gr.OAuthToken, str]]) -> Optional[str]:
"""Get the username from the token."""
if not token:
return None
if isinstance(token, gr.OAuthToken):
token_str = token.token
elif isinstance(token, str):
token_str = token
else:
return None
try:
user_info = whoami(token=token_str)
username = user_info.get("name", None)
print(f"Username: {username}")
return username
except Exception as e:
print(f"Could not get username: {e}")
return None
def get_credit_cost(resolution: str) -> int:
"""Get the credit cost for a given resolution."""
if "4K" in resolution:
return 4
elif "2K" in resolution:
return 2
else: # 1K
return 1
def get_resolution_value(resolution: str) -> str:
"""Extract the resolution value from the dropdown selection."""
if "4K" in resolution:
return "4K"
elif "2K" in resolution:
return "2K"
else:
return "1K"
def _extract_image_data_from_response(response) -> Optional[bytes]:
"""Helper to extract image data from the model's response."""
if hasattr(response, 'candidates') and response.candidates:
for part in response.candidates[0].content.parts:
if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
return part.inline_data.data
return None
def _get_video_info(video_path: str) -> Tuple[float, Tuple[int, int]]:
"""Instantly gets the framerate and (width, height) of a video using ffprobe."""
probe = ffmpeg.probe(video_path)
video_stream = next((s for s in probe['streams'] if s['codec_type'] == 'video'), None)
if not video_stream:
raise ValueError("No video stream found in the file.")
framerate = eval(video_stream['avg_frame_rate'])
resolution = (int(video_stream['width']), int(video_stream['height']))
return framerate, resolution
def _resize_image(image_path: str, target_size: Tuple[int, int]) -> str:
"""Resizes an image to a target size and saves it to a new temp file."""
with Image.open(image_path) as img:
if img.size == target_size:
return image_path
resized_img = img.resize(target_size, Image.Resampling.LANCZOS)
suffix = os.path.splitext(image_path)[1] or ".png"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file:
resized_img.save(tmp_file.name)
return tmp_file.name
def _trim_first_frame_fast(video_path: str) -> str:
"""Removes exactly the first frame of a video without re-encoding."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output_file:
output_path = tmp_output_file.name
try:
framerate, _ = _get_video_info(video_path)
if framerate == 0: raise ValueError("Framerate cannot be zero.")
start_time = 1 / framerate
(
ffmpeg
.input(video_path, ss=start_time)
.output(output_path, c='copy', avoid_negative_ts='make_zero')
.run(overwrite_output=True, quiet=True)
)
return output_path
except Exception as e:
raise RuntimeError(f"FFmpeg trim error: {e}")
def _combine_videos_simple(video1_path: str, video2_path: str) -> str:
"""Combines two videos using the fast concat demuxer."""
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix=".txt") as tmp_list_file:
tmp_list_file.write(f"file '{os.path.abspath(video1_path)}'\n")
tmp_list_file.write(f"file '{os.path.abspath(video2_path)}'\n")
list_file_path = tmp_list_file.name
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output_file:
output_path = tmp_output_file.name
try:
(
ffmpeg
.input(list_file_path, format='concat', safe=0)
.output(output_path, c='copy')
.run(overwrite_output=True, quiet=True)
)
return output_path
except ffmpeg.Error as e:
raise RuntimeError(f"FFmpeg combine error: {e.stderr.decode()}")
finally:
if os.path.exists(list_file_path):
os.remove(list_file_path)
def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, token: str) -> str:
"""Generates a single video segment using the external service."""
video_client = Client("multimodalart/wan-2-2-first-last-frame", token=token)
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt, api_name="/generate_video"
)
return result[0]["video"]
def unified_image_generator(prompt: str, images: Optional[List[str]], previous_video_path: Optional[str], last_frame_path: Optional[str], aspect_ratio: str, model_selection: str, resolution: str, manual_token: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
if not (verify_pro_status(oauth_token) or verify_pro_status(manual_token)):
raise gr.Error("Access Denied.")
# Determine if using PRO model based on radio selection
use_pro_model = (model_selection == "Nano Banana PRO")
# Calculate credit cost based on resolution (only for PRO model)
credits_to_use = get_credit_cost(resolution) if use_pro_model else 1
# Check rate limit
username = get_username(oauth_token) or get_username(manual_token)
if not username:
raise gr.Error("Could not identify user.")
can_generate = check_and_update_usage(username, use_pro_model, credits_to_use)
if not can_generate:
# Check if user has quota on the other model
remaining_other = get_remaining_generations(username, not use_pro_model)
limit_current = DAILY_LIMIT_PRO if use_pro_model else DAILY_LIMIT_STANDARD
model_name = "Nano Banana PRO" if use_pro_model else "Nano Banana"
other_model_name = "Nano Banana" if use_pro_model else "Nano Banana PRO"
# Get remaining credits for current model
remaining_current = get_remaining_generations(username, use_pro_model)
if use_pro_model and remaining_current > 0 and remaining_current < credits_to_use:
gr.Info(f"You need {credits_to_use} credits for {get_resolution_value(resolution)} but only have {remaining_current} credits remaining. Try a lower resolution or use Nano Banana.")
if remaining_other > 0:
gr.Info(f"You've reached your daily limit for {model_name}. You still have {remaining_other} generations left with {other_model_name}!")
raise gr.Error(f"Insufficient credits. You need {credits_to_use} credits for this generation.")
try:
contents = [Image.open(image_path[0]) for image_path in images] if images else []
contents.append(prompt)
# Select model based on radio selection
model_name = GEMINI_PRO_MODEL_NAME if use_pro_model else GEMINI_MODEL_NAME
# Create config with aspect ratio and resolution (for PRO model)
if use_pro_model:
# PRO model: use both aspect_ratio and image_size
resolution_value = get_resolution_value(resolution)
if aspect_ratio == "Auto":
generate_content_config = types.GenerateContentConfig(
response_modalities=["IMAGE", "TEXT"],
image_config=types.ImageConfig(
image_size=resolution_value,
),
)
else:
generate_content_config = types.GenerateContentConfig(
response_modalities=["IMAGE", "TEXT"],
image_config=types.ImageConfig(
aspect_ratio=aspect_ratio,
image_size=resolution_value,
),
)
else:
# Standard model: only aspect_ratio
if aspect_ratio == "Auto":
generate_content_config = types.GenerateContentConfig(
response_modalities=["IMAGE", "TEXT"],
)
else:
generate_content_config = types.GenerateContentConfig(
response_modalities=["IMAGE", "TEXT"],
image_config=types.ImageConfig(
aspect_ratio=aspect_ratio,
),
)
print(f"Generating image for user {username} with prompt {prompt}")
response = client.models.generate_content(
model=model_name,
contents=contents,
config=generate_content_config
)
image_data = _extract_image_data_from_response(response)
if not image_data: raise gr.Error("No image data in response")
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
Image.open(BytesIO(image_data)).save(tmp.name)
output_path = tmp.name
can_create_video = bool(images and len(images) == 1)
can_extend_video = False
if can_create_video and previous_video_path and last_frame_path:
# The crucial check for continuity
if images[0][0] == last_frame_path:
can_extend_video = True
print(f"Image generated at {output_path}")
return (output_path, gr.update(visible=can_create_video), gr.update(visible=can_extend_video), gr.update(visible=False))
except Exception as e:
raise gr.Error(f"Image generation failed: {e}. Rephrase your prompt to make image generation explicit and try again")
def create_new_video(input_image_gallery: List[str], prompt_input: str, output_image: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
if not input_image_gallery or not output_image: raise gr.Error("Input/output images required.")
try:
new_segment_path = _generate_video_segment(input_image_gallery[0][0], output_image, prompt_input, oauth_token.token)
return new_segment_path, new_segment_path, output_image
except Exception as e:
raise gr.Error(f"Video creation failed: {e}")
def extend_existing_video(input_image_gallery: List[str], prompt_input: str, output_image: str, previous_video_path: str, oauth_token: Optional[gr.OAuthToken]) -> tuple:
if not verify_pro_status(oauth_token): raise gr.Error("Access Denied.")
if not previous_video_path: raise gr.Error("No previous video to extend.")
if not input_image_gallery or not output_image: raise gr.Error("Input/output images required.")
try:
_, target_resolution = _get_video_info(previous_video_path)
resized_input_path = _resize_image(input_image_gallery[0][0], target_resolution)
resized_output_path = _resize_image(output_image, target_resolution)
new_segment_path = _generate_video_segment(resized_input_path, resized_output_path, prompt_input, oauth_token.token)
trimmed_segment_path = _trim_first_frame_fast(new_segment_path)
final_video_path = _combine_videos_simple(previous_video_path, trimmed_segment_path)
return final_video_path, final_video_path, output_image
except Exception as e:
raise gr.Error(f"Video extension failed: {e}")
css = '''
#sub_title{margin-top: -15px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
.grid-container img{object-fit: contain}
.grid-container {display: grid;grid-template-columns: repeat(2, 1fr)}
.grid-container:has(> .gallery-item:only-child) {grid-template-columns: 1fr}
#wan_ad p{text-align: center;padding: .5em}
'''
with gr.Blocks() as demo:
gr.HTML('''
<img class="logo-dark" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='margin: 0 auto; max-width: 650px' />
<img class="logo-light" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros_light.png' style='margin: 0 auto; max-width: 650px' />
''')
gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana and Nano Banana PRO on this Space. <a href='http://huggingface.co/subscribe/pro?source=nana_banana' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
previous_video_state = gr.State(None)
last_frame_of_video_state = gr.State(None)
with main_interface:
with gr.Row():
with gr.Column(scale=1):
image_input_gallery = gr.Gallery(label="Upload one or more images here. Leave empty for text-to-image", file_types=["image"], height="auto")
prompt_input = gr.Textbox(label="Prompt", placeholder="Turns this photo into a masterpiece")
# Model selection radio
model_radio = gr.Radio(
choices=["Nano Banana", "Nano Banana PRO"],
value="Nano Banana PRO",
label="Model",
)
with gr.Row():
aspect_ratio_dropdown = gr.Dropdown(
label="Aspect Ratio",
choices=["Auto", "1:1", "9:16", "16:9", "3:4", "4:3", "3:2", "2:3", "5:4", "4:5", "21:9"],
value="Auto",
interactive=True
)
resolution_dropdown = gr.Dropdown(
label="Resolution",
choices=["1K", "2K", "4K"],
value="1K",
interactive=True,
visible=True
)
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Output", interactive=False, elem_id="output", type="filepath")
use_image_button = gr.Button("♻️ Use this Image for Next Edit", variant="primary")
with gr.Row():
create_video_button = gr.Button("Create video between the two images 🎥", variant="secondary", visible=False)
extend_video_button = gr.Button("Extend existing video with new scene 🎞️", variant="secondary", visible=False)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(label="Generated Video", buttons=["download"], autoplay=True)
gr.Markdown("Generate more with [Wan 2.2 first-last-frame](https://huggingface.co/spaces/multimodalart/wan-2-2-first-last-frame)", elem_id="wan_ad")
manual_token = gr.Textbox("Manual Token (to use with the API)", visible=False)
gr.Markdown("<h2 style='text-align: center'>Thank you for being a PRO! 🤗</h2>")
login_button = gr.LoginButton()
# Show/hide resolution dropdown based on model selection
def update_resolution_visibility(model_selection):
return gr.update(visible=(model_selection == "Nano Banana PRO"))
model_radio.change(
fn=update_resolution_visibility,
inputs=[model_radio],
outputs=[resolution_dropdown]
)
gr.on(
triggers=[generate_button.click, prompt_input.submit],
fn=unified_image_generator,
inputs=[prompt_input, image_input_gallery, previous_video_state, last_frame_of_video_state, aspect_ratio_dropdown, model_radio, resolution_dropdown, manual_token],
outputs=[output_image, create_video_button, extend_video_button, video_group],
api_visibility="private"
)
use_image_button.click(
fn=lambda img: (
[img] if img else None, None, gr.update(visible=False),
gr.update(visible=False), gr.update(visible=False)
),
inputs=[output_image],
outputs=[image_input_gallery, output_image, create_video_button, extend_video_button, video_group],
api_visibility="private"
)
create_video_button.click(
fn=lambda: gr.update(visible=True), outputs=[video_group],
api_visibility="private"
).then(
fn=create_new_video,
inputs=[image_input_gallery, prompt_input, output_image],
outputs=[video_output, previous_video_state, last_frame_of_video_state],
api_visibility="private"
)
extend_video_button.click(
fn=lambda: gr.update(visible=True), outputs=[video_group],
api_visibility="private"
).then(
fn=extend_existing_video,
inputs=[image_input_gallery, prompt_input, output_image, previous_video_state],
outputs=[video_output, previous_video_state, last_frame_of_video_state],
api_visibility="private"
)
def control_access(profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None):
if not profile: return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This app is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other cool stuff, please consider upgrading your account.\n\n"
"### [**Become a PRO Today!**](http://huggingface.co/subscribe/pro?source=nana_banana)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.queue(max_size=None, default_concurrency_limit=None).launch(
show_error=True,
theme=gr.themes.Citrus(),
css=css
) |