Spaces:
Sleeping
Sleeping
Update api.py
Browse files
api.py
CHANGED
|
@@ -99,6 +99,12 @@ async def verify_api_key(credentials: Optional[HTTPAuthorizationCredentials] = S
|
|
| 99 |
|
| 100 |
return True
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
@app.on_event("startup")
|
| 103 |
async def startup_event():
|
| 104 |
load_models()
|
|
@@ -113,6 +119,22 @@ class ElasticsearchInferenceRequest(BaseModel):
|
|
| 113 |
}
|
| 114 |
}
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
class ElasticsearchInferenceResponse(BaseModel):
|
| 117 |
embedding: List[float] = Field(..., description="Embedding vector for single input")
|
| 118 |
|
|
@@ -172,7 +194,7 @@ async def health():
|
|
| 172 |
"api_key_required": REQUIRE_API_KEY
|
| 173 |
}
|
| 174 |
|
| 175 |
-
@app.post("/embed", response_model=
|
| 176 |
async def create_embeddings_elasticsearch(
|
| 177 |
request: ElasticsearchInferenceRequest,
|
| 178 |
model: str = Query("jobbertv3", description="Model: jobbertv2, jobbertv3, jina, or voyage"),
|
|
@@ -224,10 +246,21 @@ async def create_embeddings_elasticsearch(
|
|
| 224 |
)
|
| 225 |
embeddings = result.embeddings
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
except Exception as e:
|
| 232 |
raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
|
| 233 |
|
|
@@ -249,10 +282,28 @@ async def create_embeddings_elasticsearch(
|
|
| 249 |
|
| 250 |
embeddings_list = embeddings.tolist()
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
except Exception as e:
|
| 257 |
raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
|
| 258 |
|
|
|
|
| 99 |
|
| 100 |
return True
|
| 101 |
|
| 102 |
+
def estimate_token_count(texts: List[str]) -> int:
|
| 103 |
+
"""Estimate token count for input texts (rough approximation)"""
|
| 104 |
+
# Simple estimation: ~1 token per 4 characters
|
| 105 |
+
total_chars = sum(len(text) for text in texts)
|
| 106 |
+
return max(1, total_chars // 4)
|
| 107 |
+
|
| 108 |
@app.on_event("startup")
|
| 109 |
async def startup_event():
|
| 110 |
load_models()
|
|
|
|
| 119 |
}
|
| 120 |
}
|
| 121 |
|
| 122 |
+
class EmbeddingObject(BaseModel):
|
| 123 |
+
object: str = Field("embedding", description="Object type")
|
| 124 |
+
index: int = Field(..., description="Index of the embedding")
|
| 125 |
+
embedding: List[float] = Field(..., description="Embedding vector")
|
| 126 |
+
|
| 127 |
+
class UsageInfo(BaseModel):
|
| 128 |
+
total_tokens: int = Field(..., description="Total tokens processed")
|
| 129 |
+
prompt_tokens: int = Field(..., description="Prompt tokens")
|
| 130 |
+
|
| 131 |
+
class OpenAIEmbeddingResponse(BaseModel):
|
| 132 |
+
model: str = Field(..., description="Model used for embeddings")
|
| 133 |
+
object: str = Field("list", description="Object type")
|
| 134 |
+
usage: UsageInfo = Field(..., description="Token usage information")
|
| 135 |
+
data: List[EmbeddingObject] = Field(..., description="List of embeddings")
|
| 136 |
+
|
| 137 |
+
# Legacy response models (kept for backward compatibility if needed)
|
| 138 |
class ElasticsearchInferenceResponse(BaseModel):
|
| 139 |
embedding: List[float] = Field(..., description="Embedding vector for single input")
|
| 140 |
|
|
|
|
| 194 |
"api_key_required": REQUIRE_API_KEY
|
| 195 |
}
|
| 196 |
|
| 197 |
+
@app.post("/embed", response_model=OpenAIEmbeddingResponse)
|
| 198 |
async def create_embeddings_elasticsearch(
|
| 199 |
request: ElasticsearchInferenceRequest,
|
| 200 |
model: str = Query("jobbertv3", description="Model: jobbertv2, jobbertv3, jina, or voyage"),
|
|
|
|
| 246 |
)
|
| 247 |
embeddings = result.embeddings
|
| 248 |
|
| 249 |
+
# Calculate token usage
|
| 250 |
+
token_count = estimate_token_count(texts)
|
| 251 |
+
|
| 252 |
+
# Create OpenAI-compatible response
|
| 253 |
+
data = [
|
| 254 |
+
EmbeddingObject(index=i, embedding=emb)
|
| 255 |
+
for i, emb in enumerate(embeddings)
|
| 256 |
+
]
|
| 257 |
+
|
| 258 |
+
return OpenAIEmbeddingResponse(
|
| 259 |
+
model="voyage-3",
|
| 260 |
+
object="list",
|
| 261 |
+
usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
|
| 262 |
+
data=data
|
| 263 |
+
)
|
| 264 |
except Exception as e:
|
| 265 |
raise HTTPException(status_code=500, detail=f"Voyage AI error: {str(e)}")
|
| 266 |
|
|
|
|
| 282 |
|
| 283 |
embeddings_list = embeddings.tolist()
|
| 284 |
|
| 285 |
+
# Calculate token usage
|
| 286 |
+
token_count = estimate_token_count(texts)
|
| 287 |
+
|
| 288 |
+
# Create OpenAI-compatible response
|
| 289 |
+
data = [
|
| 290 |
+
EmbeddingObject(index=i, embedding=emb)
|
| 291 |
+
for i, emb in enumerate(embeddings_list)
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
# Determine the full model name for response
|
| 295 |
+
model_display_name = {
|
| 296 |
+
"jobbertv2": "TechWolf/JobBERT-v2",
|
| 297 |
+
"jobbertv3": "TechWolf/JobBERT-v3",
|
| 298 |
+
"jina": "jina-embeddings-v3"
|
| 299 |
+
}.get(model_name, model_name)
|
| 300 |
+
|
| 301 |
+
return OpenAIEmbeddingResponse(
|
| 302 |
+
model=model_display_name,
|
| 303 |
+
object="list",
|
| 304 |
+
usage=UsageInfo(total_tokens=token_count, prompt_tokens=token_count),
|
| 305 |
+
data=data
|
| 306 |
+
)
|
| 307 |
except Exception as e:
|
| 308 |
raise HTTPException(status_code=500, detail=f"Model error: {str(e)}")
|
| 309 |
|