File size: 57,613 Bytes
3232d64 8c404fc 3232d64 8c404fc 3232d64 8c404fc 3232d64 8c404fc 3232d64 8c404fc 3232d64 8c404fc 3232d64 8c404fc 3232d64 1326dcc 3232d64 8c404fc 3232d64 8c404fc 3232d64 8c404fc 3232d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 |
import pandas as pd
import json
import os
import glob
import gradio as gr
import traceback
import re
import plotly.express as px
import plotly.graph_objects as go
from src.envs import API, TOKEN, REPO_ID
import requests
import logging
from datetime import datetime
from dotenv import load_dotenv
from utils.rag_score_calculator import RAGScoreCalculator
# Logger setup
logger = logging.getLogger("mezura.utils")
# Setup a dedicated logger for tracking model submissions
submission_logger = logging.getLogger("mezura.submissions")
submission_handler = logging.FileHandler("submissions.log")
submission_formatter = logging.Formatter('%(asctime)s - %(message)s')
submission_handler.setFormatter(submission_formatter)
submission_logger.addHandler(submission_handler)
submission_logger.setLevel(logging.INFO)
# Model metadata lookup table - centralized for all benchmark functions
MODEL_METADATA_LOOKUP = {
"mistralai/Magistral-Small-2506": {"license": "Apache 2.0", "dtype": "bfloat16"},
"newmindai/Qwen2.5-72B-Instruct": {"license": "Qwen", "dtype": "bfloat16"},
"Qwen/Qwen2.5-72B-Instruct": {"license": "Qwen", "dtype": "bfloat16"},
"deepseek-ai/DeepSeek-R1": {"license": "MIT", "dtype": "bfloat16"},
"Qwen/Qwen3-32B": {"license": "Qwen", "dtype": "bfloat16"},
"newmindai/QwQ-32B-r1": {"license": "Apache 2.0", "dtype": "bfloat16"},
"google/gemma-3-27b-it": {"license": "Gemma", "dtype": "bfloat16"},
"Qwen/Qwen3-14B": {"license": "Apache 2.0", "dtype": "bfloat16"},
"newmindai/Llama-3.3-70b-Instruct": {"license": "Llama-3.3", "dtype": "bfloat16"},
"Qwen/QwQ-32B": {"license": "Apache 2.0", "dtype": "bfloat16"},
"microsoft/phi-4": {"license": "MIT", "dtype": "bfloat16"},
"meta-llama/Meta-Llama-3.1-70B-Instruct": {"license": "Llama 3.1", "dtype": "bfloat16"},
"grok-3": {"license": "Proprietary", "dtype": "Unknown"},
"grok-3-mini-fast": {"license": "Proprietary", "dtype": "Unknown"},
"meta-llama/Llama-3.3-70B-Instruct": {"license": "Llama-3.3", "dtype": "bfloat16"},
"meta-llama/Llama-3.3-70b-Instruct": {"license": "Llama 3.3", "dtype": "bfloat16"}, # lowercase b variant
"newmindai/Qwen2.5-72b-Instruct": {"license": "Qwen", "dtype": "bfloat16"}, # lowercase b variant
"grok-3-mini-fast-beta": {"license": "Proprietary", "dtype": "Unknown"}, # beta variant
# Legacy entries for backward compatibility
"deepseek-r1-distill-llama-70b": {"license": "MIT", "dtype": "bfloat16"},
"qwen-qwq-32b": {"license": "Apache 2.0", "dtype": "bfloat16"}
}
def log_model_submission(repo_id, base_model):
"""
Logs model submission details to a dedicated log file
Args:
repo_id: The repository ID of the model
base_model: The base model used
"""
submission_logger.info(f"SUBMISSION - REPO_ID: {repo_id}, BASE_MODEL: {base_model}")
def restart_space():
try:
if API is not None:
API.restart_space(repo_id=REPO_ID, token=TOKEN)
else:
print("Warning: API is None, cannot restart space")
except Exception as e:
print(f"Warning: Could not restart space: {e}")
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
# Always include model and model_type_symbol columns
selected_columns = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
# Add selected columns
for column in columns:
if column in df.columns:
selected_columns.append(column)
# Add dummy column for search
selected_columns.append(AutoEvalColumn.dummy.name)
return df[selected_columns]
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
if not query:
return filtered_df
# Split query by ; and filter for each part
queries = query.split(";")
filtered_dfs = []
for q in queries:
q = q.strip()
if not q:
continue
filtered_dfs.append(filtered_df[filtered_df[AutoEvalColumn.dummy.name].str.contains(q, case=False)])
if not filtered_dfs:
return filtered_df
# Combine all filtered dataframes
return pd.concat(filtered_dfs).drop_duplicates()
def filter_models(
df: pd.DataFrame
) -> pd.DataFrame:
# Show all models
filtered_df = df.copy()
# Always filter out deleted models
filtered_df = filtered_df[filtered_df[AutoEvalColumn.still_on_hub.name]]
return filtered_df
# Yeni fonksiyonlar
def load_benchmark_results():
"""
Load benchmark results from local files
"""
results = {
"avg": {
"evalmix": [],
"light_eval": [],
"snake": [],
"retrieval": [],
"arena": [],
"human_arena": []
},
"raw": {
"evalmix": [],
"light_eval": [],
"snake": [],
"retrieval": [],
"arena": [],
"human_arena": []
}
}
# Define benchmark types to look for
benchmark_types = ["evalmix", "light_eval", "snake", "retrieval", "arena", "human_arena"] # "lm_harness" removed
# Initialize RAG Score calculator for runtime calculation
rag_calculator = None
rag_scores_cache = {} # Cache for RAG scores by run_id
try:
rag_calculator = RAGScoreCalculator()
if rag_calculator.stats:
logger.info("RAG Score calculator initialized successfully")
# Pre-calculate RAG scores from detail files
for data in rag_calculator.all_data:
run_id = data.get('run_id')
if run_id:
rag_score = rag_calculator.calculate_rag_score(data)
rag_scores_cache[run_id] = rag_score
logger.info(f"Pre-calculated {len(rag_scores_cache)} RAG scores")
else:
logger.warning("No RAG statistics available for score calculation")
except Exception as e:
logger.warning(f"Could not initialize RAG Score calculator: {e}")
rag_calculator = None
# Load raw JSON files (detailed results)
for benchmark_type in benchmark_types:
dir_path = f"result/{benchmark_type}"
# if benchmark_type == "lm_harness" and not os.path.exists(dir_path):
# dir_path = "result/lmharness"
# Skip if directory doesn't exist
if not os.path.exists(dir_path):
continue
# Load avg files for leaderboard
avg_files = glob.glob(f"{dir_path}/avg_*.json")
for file in avg_files:
try:
with open(file, "r") as f:
data = json.load(f)
# Handle different data formats
if isinstance(data, list):
# If data is a list, convert it to a dictionary
if benchmark_type == "arena" and len(data) > 0:
# For arena, create a dictionary with model_name
processed_data = {
"model_name": f"Model {os.path.basename(file).replace('avg_', '').split('.')[0]}",
"file": os.path.basename(file)
}
# Add metrics from the list if available
if len(data) > 0:
for i, item in enumerate(data):
if isinstance(item, dict):
for key, value in item.items():
processed_data[f"item_{i}_{key}"] = value
data = processed_data
else:
# For other types, create a dictionary with model_name
data = {"model_name": f"Model {os.path.basename(file).replace('avg_', '').split('.')[0]}"}
else:
# Ensure data is a dictionary
if not isinstance(data, dict):
data = {"model_name": f"Model {os.path.basename(file).replace('avg_', '').split('.')[0]}"}
# Add file information
data["file"] = os.path.basename(file)
# Ensure model_name exists
if "model_name" not in data or not data["model_name"]:
# Extract model ID from filename
file_name = os.path.basename(file)
model_id = file_name.replace("avg_", "").split(".")[0]
data["model_name"] = f"Model {model_id}"
# Format the model name nicely for display
if "model_name" in data:
data["model_name"] = format_model_name(data["model_name"])
# Add pre-calculated RAG Score for retrieval data (from detail files cache)
if benchmark_type == "retrieval" and rag_scores_cache:
run_id = data.get('run_id')
if run_id and run_id in rag_scores_cache:
data["RAG_score"] = rag_scores_cache[run_id]
logger.debug(f"Added cached RAG_score {rag_scores_cache[run_id]} for avg file {data.get('model_name', 'unknown')}")
else:
logger.debug(f"No cached RAG_score found for run_id: {run_id}")
results["avg"][benchmark_type].append(data)
except Exception as e:
print(f"Error loading {benchmark_type} avg file: {file} - {e}")
# Load detail files for pipeline-specific views
detail_files = glob.glob(f"{dir_path}/detail_*.json")
for file in detail_files:
try:
with open(file, "r") as f:
data = json.load(f)
# Handle different data formats
if isinstance(data, list):
# If data is a list, convert it to a dictionary
if benchmark_type == "arena" and len(data) > 0:
# For arena, create a dictionary with model_name
processed_data = {
"model_name": f"Model {os.path.basename(file).replace('detail_', '').split('.')[0]}",
"file": os.path.basename(file)
}
# Add metrics from the list if available
if len(data) > 0:
for i, item in enumerate(data):
if isinstance(item, dict):
for key, value in item.items():
processed_data[f"item_{i}_{key}"] = value
data = processed_data
else:
# For other types, create a dictionary with model_name
data = {"model_name": f"Model {os.path.basename(file).replace('detail_', '').split('.')[0]}"}
else:
# Ensure data is a dictionary
if not isinstance(data, dict):
data = {"model_name": f"Model {os.path.basename(file).replace('detail_', '').split('.')[0]}"}
# Add file information
data["file"] = os.path.basename(file)
# Ensure model_name exists
if "model_name" not in data or not data["model_name"]:
# Extract model ID from filename
file_name = os.path.basename(file)
model_id = file_name.replace("detail_", "").split(".")[0]
data["model_name"] = f"Model {model_id}"
# Format the model name nicely for display
if "model_name" in data:
data["model_name"] = format_model_name(data["model_name"])
# Add pre-calculated RAG Score for retrieval data (from cache)
if benchmark_type == "retrieval" and rag_scores_cache:
run_id = data.get('run_id')
if run_id and run_id in rag_scores_cache:
data["RAG_score"] = rag_scores_cache[run_id]
logger.debug(f"Added cached RAG_score {rag_scores_cache[run_id]} for detail file {data.get('model_name', 'unknown')}")
else:
logger.debug(f"No cached RAG_score found for detail run_id: {run_id}")
results["raw"][benchmark_type].append(data)
# Also add to default results to ensure we have all models in the leaderboard
# This ensures that models from detail files are also shown in the leaderboard
# Create a simplified version with just the model name and basic metrics
simplified_data = {"model_name": data["model_name"], "file": data["file"]}
# Extract key metrics based on benchmark type
if benchmark_type == "retrieval":
# For RAG Judge, extract RAG_score, RAG_success_rate and average_judge_score if available
# RAG_score should be available since we just calculated it above
if "RAG_score" in data:
simplified_data["RAG_score"] = data["RAG_score"]
if "RAG_success_rate" in data:
simplified_data["RAG_success_rate"] = data["RAG_success_rate"]
if "average_judge_score" in data:
simplified_data["average_judge_score"] = data["average_judge_score"]
# Add to default results if not already present
if not any(item.get("model_name") == data["model_name"] for item in results["avg"][benchmark_type]):
results["avg"][benchmark_type].append(simplified_data)
except Exception as e:
print(f"Error loading {benchmark_type} detail file: {file} - {e}")
return results
def format_model_name(model_name):
"""
Formats model names for better display in leaderboards:
- Replaces underscores with spaces
- Preserves original casing
Args:
model_name: Original model name string
Returns:
str: Formatted model name
"""
if not model_name:
return model_name
# Split model name by organization/model if present
if "/" in model_name:
org, name = model_name.split("/", 1)
# Format the model part only - replace underscores with spaces but preserve casing
formatted_name = name.replace("_", " ")
return f"{org}/{formatted_name}"
else:
# Format the whole name - replace underscores with spaces but preserve casing
return model_name.replace("_", " ")
def create_evalmix_table(data):
"""
Hybrid benchmark sonuçlarından tablo oluşturur
"""
if not data:
return pd.DataFrame()
# Apply model name formatting and add metadata from lookup table
for item in data:
if "model_name" in item:
raw_model_name = item["model_name"]
item["model_name"] = format_model_name(raw_model_name)
# Always use lookup table values for metadata (override JSON values)
for field in ["dtype", "license"]:
if raw_model_name in MODEL_METADATA_LOOKUP:
item[field] = MODEL_METADATA_LOOKUP[raw_model_name][field]
else:
defaults = {"dtype": "unknown", "license": "Unknown"}
item[field] = defaults[field]
df = pd.DataFrame(data)
# Remove the file column if present
if 'file' in df.columns:
df = df.drop(columns=['file'])
# Remove all sample count columns
sample_columns = ["total_samples", "Total Samples", "samples_number"]
for col in sample_columns:
if col in df.columns:
df = df.drop(columns=[col])
if "model_name" in df.columns:
df = df.sort_values(by="model_name")
# Ortalama metrik ekle - now handling the case when judge_metric is not available
if all(col in df.columns for col in ["lexical_metric", "semantic_metric"]):
if "judge_metric" in df.columns:
df["average_score"] = df[["lexical_metric", "semantic_metric", "judge_metric"]].mean(axis=1).round(2)
else:
df["average_score"] = df[["lexical_metric", "semantic_metric"]].mean(axis=1).round(2)
# Float değerleri 2 ondalık basamağa yuvarla
for column in df.columns:
try:
if pd.api.types.is_float_dtype(df[column]):
df[column] = df[column].round(2)
except:
continue
# Format column names for better display
column_mapping = {}
for col in df.columns:
# Skip already well-formatted columns
if col == "model_name":
column_mapping[col] = "Model Name"
continue
# Special handling for Turkish and Multilingual Semantic
if "turkish_semantic" in col.lower():
column_mapping[col] = "Turkish Semantic"
continue
if "multilingual_semantic" in col.lower():
column_mapping[col] = "Multilingual Semantic"
continue
# Special handling for certain columns
if col == "average_score":
column_mapping[col] = "Average Score"
continue
if col == "lexical_metric":
column_mapping[col] = "Lexical Score"
continue
if col == "semantic_metric":
column_mapping[col] = "Semantic Score"
continue
if col == "judge_metric":
column_mapping[col] = "Judge Score"
continue
if col == "openai_accuracy":
column_mapping[col] = "OpenAI Accuracy"
continue
if col == "dtype":
column_mapping[col] = "Dtype"
continue
if col == "license":
column_mapping[col] = "License"
continue
# Format column name
formatted_col = " ".join([word.capitalize() for word in col.replace("_", " ").split()])
column_mapping[col] = formatted_col
# Rename DataFrame columns
df = df.rename(columns=column_mapping)
# Sort by openai_accuracy if present, otherwise use Average Score
if "Turkish Semantic" in df.columns:
df = df.sort_values(by="Turkish Semantic", ascending=False)
elif "turkish_semantic" in df.columns:
df = df.sort_values(by="turkish_semantic", ascending=False)
# Define desired column order for EvalMix - metadata columns at the end
desired_cols = [
"Model Name",
"Turkish Semantic",
"Multilingual Semantic",
"Average Score",
"Lexical Score",
"Semantic Score",
"Judge Score",
"OpenAI Accuracy",
"Dtype",
"License"
]
# Filter out columns that don't exist in the DataFrame
final_cols = [col for col in desired_cols if col in df.columns]
# Add any remaining columns that weren't in the desired list
remaining_cols = [col for col in df.columns if col not in final_cols]
final_cols.extend(remaining_cols)
# Set the new column order
df = df[final_cols]
return df
def create_light_eval_table(data, is_detail=False):
"""
Creates a table from Light Eval results
Args:
data: Light eval data
is_detail: If True, keep 4 decimal places for detail results
"""
if not data:
return pd.DataFrame()
# Light eval sonuçları farklı formatta, düzenleme gerekiyor
formatted_data = []
for item in data:
model_data = {"model_name": format_model_name(item.get("model_name", "Bilinmeyen Model"))}
# Add specific metrics we're interested in
metrics = [
"overall_average",
"mmlu_average",
"truthfulqa",
"winogrande",
"hellaswag",
"gsm8k",
"arc_challenge",
"dtype",
"license"
# Removed total_samples
]
for metric in metrics:
try:
if metric in ["dtype", "license"]:
# Always use lookup table for metadata (override JSON values)
raw_model_name = item.get("model_name", "")
if raw_model_name in MODEL_METADATA_LOOKUP:
model_data[metric] = MODEL_METADATA_LOOKUP[raw_model_name][metric]
else:
# Default values for unknown models
defaults = {"dtype": "unknown", "license": "Unknown"}
model_data[metric] = defaults[metric]
elif metric in item:
if metric == "overall_average" and item[metric] == "N/A":
model_data[metric] = "N/A"
elif isinstance(item[metric], str) and item[metric] != "N/A":
model_data[metric] = float(item[metric])
else:
model_data[metric] = item[metric]
else:
model_data[metric] = "N/A"
except Exception as e:
if metric in ["dtype", "license"]:
defaults = {"dtype": "unknown", "license": "Unknown"}
model_data[metric] = defaults[metric]
else:
model_data[metric] = item.get(metric, "N/A")
formatted_data.append(model_data)
# Create DataFrame
df = pd.DataFrame(formatted_data)
# Remove the file column if present
if 'file' in df.columns:
df = df.drop(columns=['file'])
# Try to convert metrics to float with error handling (only numeric columns)
numeric_cols = ["overall_average", "mmlu_average", "truthfulqa", "winogrande", "hellaswag", "gsm8k", "arc_challenge"]
for col in numeric_cols:
if col in df.columns:
try:
# Convert column to float but keep "N/A" as is
df[col] = df[col].apply(lambda x: float(x) if isinstance(x, (int, float)) or (isinstance(x, str) and x != "N/A") else x)
except Exception as e:
pass # Keep original values if conversion fails
# Sort by overall_average if available
if "overall_average" in df.columns:
# For sorting, replace non-numeric values with NaN temporarily
sort_col = pd.to_numeric(df["overall_average"], errors="coerce")
# Sort with NaN at the end
df = df.iloc[sort_col.fillna(-1).argsort(kind="stable").iloc[::-1]]
# Float değerleri yuvarlama - detail için 4 hane, avg için 2 hane
decimal_places = 4 if is_detail else 2
for column in df.columns:
try:
if pd.api.types.is_float_dtype(df[column]):
df[column] = df[column].round(decimal_places)
except:
continue
# Format column names according to user request
column_mapping = {
"model_name": "Model Name",
"overall_average": "Overall",
"mmlu_average": "MMLU",
"truthfulqa": "Truthfulqa",
"winogrande": "Winogrande",
"hellaswag": "Hellaswag",
"gsm8k": "Gsm8k",
"arc_challenge": "ARC",
"dtype": "Dtype",
"license": "License"
}
# Rename DataFrame columns
df = df.rename(columns=column_mapping)
# Define desired column order for Light-Eval - metadata columns at the end
desired_cols = [
"Model Name",
"Overall",
"MMLU",
"Truthfulqa",
"Winogrande",
"Hellaswag",
"Gsm8k",
"ARC",
"Dtype",
"License"
]
# Filter out columns that don't exist in the DataFrame
final_cols = [col for col in desired_cols if col in df.columns]
# Add any remaining columns that weren't in the desired list
remaining_cols = [col for col in df.columns if col not in final_cols]
final_cols.extend(remaining_cols)
# Set the new column order
df = df[final_cols]
return df
def create_benchmark_plots(benchmark_data, data_type="avg"):
"""
Benchmark verilerinden grafikler oluşturur
Args:
benchmark_data: Benchmark verileri
data_type: "avg" veya "raw" olabilir
"""
plots = {}
# Hybrid Benchmark için çubuk grafik
if benchmark_data[data_type]["evalmix"]:
df = create_evalmix_table(benchmark_data[data_type]["evalmix"])
if not df.empty and all(col in df.columns for col in ["model_name", "lexical_metric", "semantic_metric"]):
# Determine which metrics are available
metrics = ["lexical_metric", "semantic_metric"]
if "judge_metric" in df.columns:
metrics.append("judge_metric")
# Veriyi uzun formata dönüştür
plot_df = pd.melt(
df,
id_vars=["model_name"],
value_vars=metrics,
var_name="Metrik",
value_name="Değer"
)
# Metrik isimlerini daha okunabilir hale getir
plot_df["Metrik"] = plot_df["Metrik"].replace({
"lexical_metric": "Lexical Metric",
"semantic_metric": "Semantic Metric",
"judge_metric": "Judge Metric"
})
fig = px.bar(
plot_df,
x="model_name",
y="Değer",
color="Metrik",
title="Hybrid Benchmark Results",
labels={"model_name": "Model", "Değer": "Score"},
barmode="group"
)
plots["evalmix"] = fig
# Light Eval için radar grafik
if benchmark_data[data_type]["light_eval"]:
df = create_light_eval_table(benchmark_data[data_type]["light_eval"])
if not df.empty:
# Ortalama ve total_samples sütunlarını hariç tut
metric_cols = [col for col in df.columns if col not in ["model_name", "Ortalama", "file", "overall_average", "total_samples"]]
if metric_cols:
fig = go.Figure()
for _, row in df.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row[col] for col in metric_cols],
theta=metric_cols,
fill='toself',
name=row.get("model_name", "Unknown Model")
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
title="Light Eval Results",
showlegend=True
)
plots["light_eval"] = fig
return plots
def create_combined_leaderboard_table(benchmark_data):
"""
Creates a combined leaderboard table from avg JSON data
"""
# Define benchmark types to include in the leaderboard
benchmark_types = ["evalmix", "light_eval", "retrieval", "arena", "human_arena"] # "lm_harness" removed
all_models = {}
# Process each benchmark type - exclude snake
for benchmark_type in benchmark_types:
# For human_arena and retrieval, use raw data since avg files don't have complete info
if benchmark_type in ["human_arena", "retrieval"]:
data_source = benchmark_data["raw"][benchmark_type]
else:
data_source = benchmark_data["avg"][benchmark_type]
# Skip if no data for this benchmark type
if not data_source:
continue
# Process each model in this benchmark type
for item in data_source:
model_name = item.get("model_name", "")
if not model_name:
continue
# Format the model name
formatted_model_name = format_model_name(model_name)
# Create entry for this model if it doesn't exist
if formatted_model_name not in all_models:
all_models[formatted_model_name] = {"model_name": formatted_model_name}
# Add metadata fields using lookup table
for field in ["dtype", "license"]:
if model_name in MODEL_METADATA_LOOKUP:
all_models[formatted_model_name][field] = MODEL_METADATA_LOOKUP[model_name][field]
else:
defaults = {"dtype": "unknown", "license": "Unknown"}
all_models[formatted_model_name][field] = defaults[field]
# Extract only the fields we care about for each benchmark type
if benchmark_type == "evalmix":
if "lexical_metric" in item:
all_models[formatted_model_name]["Lexical"] = round(item.get("lexical_metric", 0), 2)
if "semantic_metric" in item:
all_models[formatted_model_name]["Multilingual Semantic"] = round(item.get("semantic_metric", 0), 2)
# Extract Turkish Semantic score if available
if "turkish_semantic" in item:
all_models[formatted_model_name]["Turkish Semantic"] = round(item.get("turkish_semantic", 0), 2)
elif "turkish_semantic_" in item:
all_models[formatted_model_name]["Turkish Semantic"] = round(item.get("turkish_semantic_", 0), 2)
elif "nlp_metrics" in item and "cosine_similarity_turkish" in item.get("nlp_metrics", {}):
turkish_sim = item.get("nlp_metrics", {}).get("cosine_similarity_turkish", {}).get("mean", 0)
all_models[formatted_model_name]["Turkish Semantic"] = round(turkish_sim, 2)
# Extract Multilingual Semantic explicitly if available
if "multilingual_semantic" in item:
all_models[formatted_model_name]["Multilingual Semantic"] = round(item.get("multilingual_semantic", 0), 2)
elif "multilingual_semantic_" in item:
all_models[formatted_model_name]["Multilingual Semantic"] = round(item.get("multilingual_semantic_", 0), 2)
elif "nlp_metrics" in item and "cosine_similarity_multilingual" in item.get("nlp_metrics", {}):
multi_sim = item.get("nlp_metrics", {}).get("cosine_similarity_multilingual", {}).get("mean", 0)
all_models[formatted_model_name]["Multilingual Semantic"] = round(multi_sim, 2)
# Extract BERTScore F1 if available
if "bert_score" in item and isinstance(item.get("bert_score"), dict) and "f1" in item.get("bert_score", {}):
bert_f1 = item.get("bert_score", {}).get("f1", {}).get("mean", 0)
all_models[formatted_model_name]["BERTScore F1"] = round(bert_f1, 2)
elif "nlp_metrics" in item and "bert_score" in item.get("nlp_metrics", {}):
bert_f1 = item.get("nlp_metrics", {}).get("bert_score", {}).get("f1", {}).get("mean", 0)
all_models[formatted_model_name]["BERTScore F1"] = round(bert_f1, 2)
# Remove dtype and license from JSON - use only lookup table values
elif benchmark_type == "light_eval":
if "overall_average" in item:
try:
if isinstance(item["overall_average"], str) and item["overall_average"] != "N/A":
avg_value = float(item["overall_average"])
else:
avg_value = item["overall_average"]
all_models[formatted_model_name]["Light Eval"] = round(avg_value, 2)
except (ValueError, TypeError):
all_models[formatted_model_name]["Light Eval"] = item["overall_average"]
# Remove dtype and license from JSON - use only lookup table values
elif benchmark_type == "retrieval":
# Prefer RAG_score if available, otherwise use RAG_success_rate
if "RAG_score" in item:
avg_value = item["RAG_score"]
all_models[formatted_model_name]["Retrieval"] = round(avg_value, 4) # Higher precision for RAG Score
elif "RAG_success_rate" in item:
avg_value = item["RAG_success_rate"]
all_models[formatted_model_name]["Retrieval"] = round(avg_value, 2)
# Remove dtype and license from JSON - use only lookup table values
elif benchmark_type == "arena":
if "Melo Score" in item:
all_models[formatted_model_name]["Auto Elo Score"] = round(item.get("Melo Score", 0), 2)
# Remove dtype and license from JSON - use only lookup table values
elif benchmark_type == "human_arena":
if "elo_rating" in item:
all_models[formatted_model_name]["Human Elo Score"] = round(item.get("elo_rating", 0), 2)
# Remove dtype and license from JSON - use only lookup table values
# Create DataFrame from the collected data
if all_models:
df = pd.DataFrame(list(all_models.values()))
# Rename model_name column to be more user-friendly
if "model_name" in df.columns:
df = df.rename(columns={"model_name": "Model Name"})
# Rename metadata columns to proper case
column_mapping = {
"dtype": "Dtype",
"license": "License"
}
df = df.rename(columns=column_mapping)
# Make sure to remove the file column if it's present
if 'file' in df.columns:
df = df.drop(columns=['file'])
# Remove run_id and user_id fields if present
for field in ['run_id', 'user_id', 'Run Id', 'User Id']:
if field in df.columns:
df = df.drop(columns=[field])
# Define the exact columns we want to display in the order we want them
display_cols = [
"Auto Elo Score",
"Human Elo Score",
"Retrieval",
"Light Eval",
"Turkish Semantic",
"Multilingual Semantic",
"Lexical",
"Dtype",
"License"
]
valid_display_cols = [col for col in display_cols if col in df.columns]
# Fill NaN values with 0
for col in valid_display_cols:
df[col] = df[col].fillna(0)
# Explicitly reorder columns to match the UI display order exactly as in the screenshot
desired_order = ["Model Name", "Auto Elo Score", "Human Elo Score", "Retrieval", "Light Eval", "Turkish Semantic", "Multilingual Semantic", "Lexical", "Dtype", "License"]
# Filter out columns that don't exist in the DataFrame
actual_order = [col for col in desired_order if col in df.columns]
# Reorder columns
if len(actual_order) > 0:
df = df[actual_order]
# Sort by Auto Elo Score if available, otherwise by Human Elo Score
if "Auto Elo Score" in df.columns:
df = df.sort_values(by="Auto Elo Score", ascending=False)
elif "Human Elo Score" in df.columns:
df = df.sort_values(by="Human Elo Score", ascending=False)
# Float değerleri 2 ondalık basamağa yuvarla
for column in df.columns:
try:
if pd.api.types.is_float_dtype(df[column]):
df[column] = df[column].round(2)
except:
continue
return df
return pd.DataFrame()
def create_raw_details_table(benchmark_data, benchmark_type):
"""
Creates a detailed table from raw JSON data for a specific benchmark type
"""
if not benchmark_data["raw"][benchmark_type]:
return pd.DataFrame()
# Flatten the raw data
flattened_data = []
for item in benchmark_data["raw"][benchmark_type]:
raw_model_name = item.get("model_name", "Unknown Model")
flat_item = {
"file": item.get("file", ""),
"model_name": format_model_name(raw_model_name)
}
# Always use lookup table values for metadata (override JSON values)
for field in ["dtype", "license"]:
if raw_model_name in MODEL_METADATA_LOOKUP:
flat_item[field] = MODEL_METADATA_LOOKUP[raw_model_name][field]
else:
defaults = {"dtype": "unknown", "license": "Unknown"}
flat_item[field] = defaults[field]
# Define metadata fields to exclude - especially for LightEval
excluded_fields = ["file", "job_id", "start_time", "end_time", "run_id", "user_id",
"total_samples", "Total Samples", "samples_number", "sample_count", "eval_samples",
"total_success_references", "Total Success References", "total_eval_samples",
"provider", "Provider"] # Exclude provider fields
# For LightEval, also exclude mmlu_tasks field
if benchmark_type == "light_eval":
excluded_fields.append("mmlu_tasks")
# Add top-level fields (skip metadata fields and dtype/license which come from lookup table)
for key, value in item.items():
if key not in excluded_fields and key not in ["dtype", "license"] and not key.startswith("_") and not isinstance(value, (dict, list)):
flat_item[key] = value
# Flatten nested fields
for key, value in item.items():
if key.startswith("_") or key in excluded_fields:
# Skip metadata fields
continue
elif isinstance(value, dict):
# Flatten nested dictionaries
_flatten_dict(value, flat_item, prefix=key)
elif isinstance(value, list) and all(isinstance(x, dict) for x in value):
# Flatten list of dictionaries
for i, sub_dict in enumerate(value):
_flatten_dict(sub_dict, flat_item, prefix=f"{key}_{i}")
flattened_data.append(flat_item)
# Create DataFrame
df = pd.DataFrame(flattened_data)
# Format confidence interval for arena data
if benchmark_type == "arena" and "95%(CI)" in df.columns:
def format_confidence_interval(ci_value):
"""Convert '-1.65/+2.66' to '+2.66/-1.65' format"""
if isinstance(ci_value, str) and "/" in ci_value:
parts = ci_value.split("/")
if len(parts) == 2:
negative_part = parts[0].strip()
positive_part = parts[1].strip()
# Remove the signs and get the numbers
if negative_part.startswith("-"):
negative_num = negative_part[1:]
else:
negative_num = negative_part
if positive_part.startswith("+"):
positive_num = positive_part[1:]
else:
positive_num = positive_part
# Return in +positive/-negative format
return f"+{positive_num}/-{negative_num}"
return ci_value
df["95%(CI)"] = df["95%(CI)"].apply(format_confidence_interval)
# Ensure model_name is first column
if "model_name" in df.columns:
cols = ["model_name"] + [col for col in df.columns if col != "model_name"]
df = df[cols]
# Float değerleri 2 ondalık basamağa yuvarla
for column in df.columns:
try:
if pd.api.types.is_float_dtype(df[column]):
df[column] = df[column].round(2)
except:
continue
# Remove the file column
if 'file' in df.columns:
df = df.drop(columns=['file'])
# Format column names for better display based on benchmark type
column_mapping = {
"model_name": "Model Name",
"dtype": "Dtype",
"license": "License"
}
# Use specific column mappings for each benchmark type
if benchmark_type == "arena":
# Arena benchmark column mappings
custom_columns = {
"Melo Score": "Auto Elo Score",
"Win Rate": "Win Rate",
"95%(CI)": "95% CI",
"Response Tokens Average": "Completion Tokens",
"dtype": "Dtype",
"Licance": "License",
}
column_mapping.update(custom_columns)
elif benchmark_type == "retrieval":
# RAG benchmark column mappings
custom_columns = {
"RAG_score": "RAG Score",
"RAG_success_rate": "Rag Success Rate",
"max_correct_references": "Max Correct Ref.",
"total_false_positives": "Hallucinate Ref.",
"total_missed_references": "Missed Ref.",
"average_judge_score": "Legal Judge Score"
# Removed "samples_number": "Total Samples"
}
column_mapping.update(custom_columns)
elif benchmark_type == "evalmix":
# Hybrid/EvalMix benchmark column mappings
custom_columns = {
"turkish_semantic_mean": "Turkish Semantic",
"turkish_semantic": "Turkish Semantic",
"multilingual_semantic_mean": "Multilingual Semantic",
"multilingual_semantic": "Multilingual Semantic",
"judge_metric": "Judge Score",
"bleu mean": "BLEU",
"rouge1 mean": "ROUGE-1",
"rouge2 mean": "ROUGE-2",
"rougeL mean": "ROUGE-L",
"bert_score f1 mean": "BERTScore F1",
"dtype": "Dtype",
"license": "License",
"bert_score precision mean": "BERTScore Precision"
# Removed "total_samples": "Total Samples"
}
column_mapping.update(custom_columns)
# Calculate Judge Average Score from OpenAI scores if they exist
if all(col in df.columns for col in ["openai_accuracy", "openai_relevance", "openai_coherence"]):
df["judge_average_score"] = df[["openai_accuracy", "openai_relevance", "openai_coherence"]].mean(axis=1).round(2)
column_mapping["judge_average_score"] = "Judge Score"
# Remove individual OpenAI score columns
columns_to_drop = ["openai_accuracy", "openai_relevance", "openai_coherence"]
for col in columns_to_drop:
if col in df.columns:
df = df.drop(columns=[col])
elif benchmark_type == "light_eval":
# Light Eval benchmark column mappings
custom_columns = {
"overall_average": "Overall",
"mmlu_average": "MMLU",
"truthfulqa": "Truthfulqa",
"winogrande": "Winogrande",
"hellaswag": "Hellaswag",
"gsm8k": "Gsm8k",
"arc_challenge": "ARC",
"dtype": "Dtype",
"license": "License"
}
column_mapping.update(custom_columns)
elif benchmark_type == "snake":
# Snake benchmark column mappings
custom_columns = {
"elo": "Elo Rating",
"win_rate": "Win Rate",
"draw_rate": "Draw Rate",
"dtype": "Dtype",
"license": "License"
}
column_mapping.update(custom_columns)
# For any columns not specifically mapped, use the default formatting
for col in df.columns:
if col not in column_mapping:
# Remove "mean" from column names
cleaned_col = col.replace(" mean", "")
# Format column name with default formatting
formatted_col = " ".join([word.capitalize() for word in cleaned_col.replace("_", " ").split()])
column_mapping[col] = formatted_col
# Rename DataFrame columns
df = df.rename(columns=column_mapping)
# Drop specific columns based on benchmark type
if benchmark_type == "retrieval" and "Success Ref." in df.columns:
df = df.drop(columns=["Success Ref."])
# Drop "Total Success References" column if it exists
if "Total Success References" in df.columns:
df = df.drop(columns=["Total Success References"])
# Sort by specific metrics based on benchmark type - AFTER column renaming
if benchmark_type == "arena" and "Auto Elo Score" in df.columns:
df = df.sort_values(by="Auto Elo Score", ascending=False)
# Define desired column order for Arena - metadata columns at the end
desired_cols = [
"Model Name",
"Auto Elo Score",
"Win Rate",
"95% CI",
"Completion Tokens",
"Dtype",
"License"
]
# Filter out columns that don't exist in the DataFrame
final_cols = [col for col in desired_cols if col in df.columns]
# Add any remaining columns that weren't in the desired list
remaining_cols = [col for col in df.columns if col not in final_cols]
final_cols.extend(remaining_cols)
# Set the new column order
df = df[final_cols]
elif benchmark_type == "retrieval":
# Sort by RAG Score if available, otherwise by Rag Success Rate
if "RAG Score" in df.columns:
df = df.sort_values(by="RAG Score", ascending=False)
primary_metric = "RAG Score"
elif "Rag Success Rate" in df.columns:
df = df.sort_values(by="Rag Success Rate", ascending=False)
primary_metric = "Rag Success Rate"
else:
primary_metric = None
# Define desired column order for Retrieval - metadata columns at the end
desired_cols = [
"Model Name",
"RAG Score",
"Rag Success Rate",
"Max Correct Ref.",
"Hallucinate Ref.",
"Missed Ref.",
"Legal Judge Score",
"Dtype",
"License"
]
# Filter out columns that don't exist in the DataFrame
final_cols = [col for col in desired_cols if col in df.columns]
# Add any remaining columns that weren't in the desired list
remaining_cols = [col for col in df.columns if col not in final_cols]
final_cols.extend(remaining_cols)
# Set the new column order
df = df[final_cols]
elif benchmark_type == "evalmix":
if "Turkish Semantic" in df.columns:
df = df.sort_values(by="Turkish Semantic", ascending=False)
# Define desired column order
desired_cols = [
"Model Name",
"Turkish Semantic",
"Multilingual Semantic",
"Judge Score",
"BLEU",
"ROUGE-1",
"ROUGE-2",
"ROUGE-L",
"BERTScore F1",
"BERTScore Precision",
"BERTScore Recall",
"Dtype",
"License"
# "Total Samples" removed
]
# Filter out columns that don't exist in the DataFrame
final_cols = [col for col in desired_cols if col in df.columns]
# Set the new column order
df = df[final_cols]
# elif benchmark_type == "lm_harness" and "Overall" in df.columns:
# df = df.sort_values(by="Overall", ascending=False)
elif benchmark_type == "light_eval" and "Overall" in df.columns:
df = df.sort_values(by="Overall", ascending=False)
elif benchmark_type == "snake":
# Sort by Elo or Elo Rating if available
if "Elo Rating" in df.columns:
df = df.sort_values(by="Elo Rating", ascending=False)
elif "Elo" in df.columns:
df = df.sort_values(by="Elo", ascending=False)
# Define desired column order for Snake - metadata columns at the end
desired_cols = [
"Model Name",
"Elo Rating",
"Win Rate",
"Draw Rate",
"Wins",
"Losses",
"Ties",
"Loss Rate",
"Dtype",
"License"
]
# Filter out columns that don't exist in the DataFrame
final_cols = [col for col in desired_cols if col in df.columns]
# Add any remaining columns that weren't in the desired list
remaining_cols = [col for col in df.columns if col not in final_cols]
final_cols.extend(remaining_cols)
# Set the new column order
df = df[final_cols]
return df
def _flatten_dict(d, target_dict, prefix=""):
"""
Flattens nested dictionaries
Args:
d: Dictionary to flatten
target_dict: Target dictionary to add flattened values to
prefix: Key prefix
"""
# List of fields to exclude when flattening
excluded_fields = ["total_success_references", "total_eval_samples",
"details", "metadata", "config", "logs"]
# List of special field name transformations
special_field_mappings = {
"turkish_semantic_mean": "turkish_semantic",
"turkish_semantic_ mean": "turkish_semantic",
"multilingual_semantic_mean": "multilingual_semantic"
}
for key, value in d.items():
# Skip excluded fields
if key in excluded_fields:
continue
# Apply special field name transformations
transformed_key = special_field_mappings.get(key, key)
new_key = f"{prefix}_{transformed_key}" if prefix else transformed_key
if isinstance(value, dict):
# Flatten nested dictionaries
_flatten_dict(value, target_dict, new_key)
elif isinstance(value, list) and all(isinstance(x, dict) for x in value):
# Flatten list of dictionaries
for i, sub_dict in enumerate(value):
_flatten_dict(sub_dict, target_dict, f"{new_key}_{i}")
elif isinstance(value, list) and len(value) > 0:
# Convert simple lists to string
try:
# For numeric lists, calculate mean and std
if all(isinstance(x, (int, float)) for x in value):
import numpy as np
target_dict[f"{new_key}_mean"] = round(sum(value) / len(value), 2)
if len(value) > 1:
target_dict[f"{new_key}_std"] = round(np.std(value), 2)
else:
# For non-numeric lists, convert to string
target_dict[new_key] = str(value)
except:
# Fallback to string representation
target_dict[new_key] = str(value)
else:
# Add other values directly
# Float değerleri yuvarla
if isinstance(value, float):
target_dict[new_key] = round(value, 2)
else:
target_dict[new_key] = value
def update_supported_base_models():
"""
Updates the list of supported base models by querying API.
This function is called when the application starts to keep the base model list up to date.
"""
try:
import requests
import json
import re
from dotenv import load_dotenv
import os
# Load environment variables from .env file
load_dotenv()
# Get API key from environment variable
api_key = os.getenv("API_KEY")
if not api_key:
logger.error("API_KEY not found in environment variables")
return None
# API endpoint and headers
url = os.getenv("API_URL")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# Test payload with non-existent model
payload = {
"source": "FILE_ID_BURAYA_GELECEK",
"base_model": "non-existent-model/fake-model-123",
"name": "test-invalid-model",
"description": "Desteklenen modelleri görmeye çalışıyorum"
}
# Make the request
response = requests.post(url, headers=headers, json=payload)
# Extract supported models from error message
if response.status_code != 200:
error_detail = response.json().get("detail", "")
# Extract the list of supported models using regex
match = re.search(r"list of supported models: \[(.*?)\]", error_detail)
if match:
supported_models_str = match.group(1)
# Parse the list of models without filtering out 'fast' models
supported_models = [model.strip("'") for model in supported_models_str.split(", ")]
# Update the base model list in the configuration
from api.config import update_base_model_list
update_base_model_list(supported_models)
logger.info(f"Successfully updated supported base models: {supported_models}")
return supported_models
else:
logger.error("Could not extract supported models from API response")
return None
else:
logger.error("Unexpected successful response from API")
return None
except Exception as e:
logger.error(f"Error updating supported base models: {str(e)}")
return None
def create_human_arena_table(data):
"""
Create Human Arena results table from detail data
"""
if not data:
return pd.DataFrame()
# Apply model name formatting and add metadata from lookup table
for item in data:
if "model_name" in item:
raw_model_name = item["model_name"]
item["model_name"] = format_model_name(raw_model_name)
# Always use lookup table values for metadata (override JSON values)
for field in ["dtype", "license"]:
if raw_model_name in MODEL_METADATA_LOOKUP:
item[field] = MODEL_METADATA_LOOKUP[raw_model_name][field]
else:
defaults = {"dtype": "unknown", "license": "Unknown"}
item[field] = defaults[field]
df = pd.DataFrame(data)
# Ensure model_name is first column
if "model_name" in df.columns:
cols = ["model_name"] + [col for col in df.columns if col != "model_name"]
df = df[cols]
# Define column mapping for better display
column_mapping = {
'model_name': 'Model Name',
'elo_rating': 'Human Elo Score',
'wins': 'Wins',
'losses': 'Losses',
'ties': 'Ties',
'total_games': 'Total Games',
'win_rate': 'Win Rate (%)',
'votes': 'Votes',
'dtype': 'Dtype',
'license': 'License',
'evaluation_date': 'Evaluation Date',
'evaluation_type': 'Type'
}
# Rename columns
df = df.rename(columns=column_mapping)
# Remove file, run_id, evaluation_date, evaluation_type, votes, and provider columns if present
columns_to_remove = ['file', 'run_id', 'Evaluation Date', 'Type', 'provider', 'Provider', 'Votes']
for col in columns_to_remove:
if col in df.columns:
df = df.drop(columns=[col])
# Sort by Human Elo Score in descending order
if 'Human Elo Score' in df.columns:
df = df.sort_values(by='Human Elo Score', ascending=False)
# Round numeric columns
numeric_cols = ['Human Elo Score', 'Win Rate (%)']
for col in numeric_cols:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce').round(2)
return df
|