File size: 7,620 Bytes
9a235dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
#!/usr/bin/env python3
"""
Data Processing module for MTEB Turkish Leaderboard - HF Spaces Version
Simplified version for loading and processing CSV data
"""
import os
import pandas as pd
from pandas.io.formats.style import Styler
from matplotlib.colors import LinearSegmentedColormap
import html
# CSV file path
CSV_FILE_PATH = "leaderboard_data.csv"
def load_leaderboard_from_csv() -> pd.DataFrame:
"""Load leaderboard data from CSV file"""
try:
if not os.path.exists(CSV_FILE_PATH):
print(f"β CSV file not found: {CSV_FILE_PATH}")
return create_empty_leaderboard_dataframe()
df = pd.read_csv(CSV_FILE_PATH)
print(f"β
Loaded {len(df)} records from {CSV_FILE_PATH}")
# Convert to leaderboard format
leaderboard_df = csv_to_leaderboard_format(df)
# Sort by Mean (Task) score and add rankings
leaderboard_df = leaderboard_df.sort_values("Mean (Task)", ascending=False).reset_index(drop=True)
leaderboard_df["Rank"] = range(1, len(leaderboard_df) + 1)
return leaderboard_df
except Exception as e:
print(f"β Error loading CSV: {e}")
return create_empty_leaderboard_dataframe()
def create_empty_leaderboard_dataframe() -> pd.DataFrame:
"""Create an empty DataFrame with proper leaderboard column structure"""
return pd.DataFrame(columns=[
"Rank",
"Model",
"Mean (Task)",
"Mean (TaskType)",
"Classification",
"Clustering",
"Pair Classification",
"Retrieval",
"STS",
"Correlation",
"Parameters",
"Embed Dim",
"Max Sequence Length",
"Vocab Size",
])
def csv_to_leaderboard_format(df: pd.DataFrame) -> pd.DataFrame:
"""Convert CSV data to leaderboard format"""
data = []
for idx, row in df.iterrows():
model_name = row['Model']
# Prepare model name for display
model_name_clean = html.escape(model_name)
# Create clickable HuggingFace link for model name
hf_link = f"https://huggingface.co/{model_name_clean}"
clickable_model = f'<a href="{hf_link}" target="_blank" style="color: #2563eb; text-decoration: underline;">{model_name_clean}</a>'
# Handle different column name variations
embedding_dim_col = 'Embedding Dim'
max_seq_col = 'Max Seq Length'
pair_classification_col = 'Pair Classification'
data_row = {
"Rank": idx + 1, # Initial ranking, will be recalculated
"Model": clickable_model,
"Mean (Task)": round(float(row['Mean (Task)']), 2),
"Mean (TaskType)": round(float(row['Mean (TaskType)']), 2),
"Classification": round(float(row['Classification']), 2),
"Clustering": round(float(row['Clustering']), 2),
"Pair Classification": round(float(row[pair_classification_col]), 2),
"Retrieval": round(float(row['Retrieval']), 2),
"STS": round(float(row['STS']), 2),
"Correlation": round(float(row['Correlation']), 3) if not pd.isna(row['Correlation']) else "N/A",
"Parameters": row['Number of Parameters'],
"Embed Dim": int(float(row[embedding_dim_col])) if not pd.isna(row[embedding_dim_col]) else 0,
"Max Sequence Length": "N/A" if pd.isna(row[max_seq_col]) or row[max_seq_col] == "Unknown" else int(float(row[max_seq_col])),
"Vocab Size": int(float(row['Vocab Size'])) if 'Vocab Size' in row and not pd.isna(row['Vocab Size']) else 0
}
data.append(data_row)
result_df = pd.DataFrame(data)
return result_df
def create_excel_like_cmap():
"""Create Excel-like colormap for score visualization"""
colors = [
(0.9, 0.1, 0.2), # Red
(1.0, 1.0, 0.0), # Yellow
(0/255, 176/255, 80/255) # Excel-style Green
]
return LinearSegmentedColormap.from_list("excel_like", colors, N=256)
def rgb_to_hex(rgb_tuple):
"""Convert RGB tuple to hex color"""
r, g, b = [int(x * 255) for x in rgb_tuple[:3]]
return f"#{r:02x}{g:02x}{b:02x}"
def create_colored_cell(value: float, min_val: float, max_val: float, colormap) -> str:
"""Create colored cell HTML for score visualization"""
if pd.isna(value) or value == "N/A":
return str(value)
try:
# Normalize value to 0-1 range
if max_val > min_val:
normalized = (float(value) - min_val) / (max_val - min_val)
else:
normalized = 0.5
# Get color from colormap
color_rgba = colormap(normalized)
color_hex = rgb_to_hex(color_rgba)
# Create colored cell HTML with data-sort attribute for proper numeric sorting
return f'<div style="background-color: {color_hex}; padding: 4px 8px; border-radius: 4px; text-align: center; font-weight: bold; color: #333;" data-sort="{value}">{value}</div>'
except (ValueError, TypeError):
return str(value)
def create_styled_leaderboard_dataframe(df: pd.DataFrame) -> Styler:
"""Create styled leaderboard dataframe with color coding and clickable model names using pandas Styler
Returns a pandas Styler object that Gradio Dataframe can render with both colors AND correct sorting.
"""
if df.empty:
return df.style
colormap = create_excel_like_cmap()
# Score columns to colorize
score_columns = ["Mean (Task)", "Mean (TaskType)", "Classification", "Clustering",
"Pair Classification", "Retrieval", "STS", "Correlation"]
# Calculate min/max for each score column for normalization
color_ranges = {}
for col in score_columns:
if col in df.columns:
numeric_values = pd.to_numeric(df[col], errors='coerce')
if not numeric_values.isna().all():
color_ranges[col] = {
'min': numeric_values.min(),
'max': numeric_values.max()
}
# Create styler with background colors for score columns
def apply_color_gradient(val, col_name):
"""Apply background color based on value"""
if col_name not in color_ranges:
return ''
if pd.isna(val) or val == "N/A":
return ''
try:
min_val = color_ranges[col_name]['min']
max_val = color_ranges[col_name]['max']
# Normalize value to 0-1 range
if max_val > min_val:
normalized = (float(val) - min_val) / (max_val - min_val)
else:
normalized = 0.5
# Get color from colormap
color_rgba = colormap(normalized)
color_hex = rgb_to_hex(color_rgba)
return f'background-color: {color_hex}; text-align: center; font-weight: bold; color: #333;'
except (ValueError, TypeError):
return ''
# Apply styling to score columns using map (applymap is deprecated)
styler = df.style
for col in score_columns:
if col in df.columns:
styler = styler.map(lambda val, c=col: apply_color_gradient(val, c), subset=[col])
# Format score columns to 2 decimal places
format_dict = {}
for col in score_columns:
if col in df.columns:
format_dict[col] = '{:.2f}'
if format_dict:
styler = styler.format(format_dict, na_rep='N/A')
return styler |