Spaces:
Sleeping
Sleeping
| # Copyright 2025 Xiaomi Corp. (authors: Han Zhu, | |
| # Zengwei Yao) | |
| # | |
| # See ../../../../LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| This script generates speech with our pre-trained ZipVoice or ZipVoice-Distill | |
| ONNX models. If no local model is specified, | |
| Required files will be automatically downloaded from HuggingFace. | |
| Usage: | |
| Note: If you having trouble connecting to HuggingFace, | |
| try switching endpoint to mirror site: | |
| export HF_ENDPOINT=https://hf-mirror.com | |
| (1) Inference of a single sentence: | |
| python3 -m zipvoice.bin.infer_zipvoice_onnx \ | |
| --onnx-int8 False \ | |
| --model-name "zipvoice" \ | |
| --prompt-wav prompt.wav \ | |
| --prompt-text "I am a prompt." \ | |
| --text "I am a sentence." \ | |
| --res-wav-path result.wav | |
| (2) Inference of a list of sentences: | |
| python3 -m zipvoice.bin.infer_zipvoice_onnx \ | |
| --onnx-int8 False \ | |
| --model-name "zipvoice" \ | |
| --test-list test.tsv \ | |
| --res-dir results | |
| `--model-name` can be `zipvoice` or `zipvoice_distill`, | |
| which are the models before and after distillation, respectively. | |
| Each line of `test.tsv` is in the format of | |
| `{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}`. | |
| Set `--onnx-int8 True` to use int8 quantizated ONNX model. | |
| """ | |
| import argparse | |
| import datetime as dt | |
| import json | |
| import os | |
| from typing import List, Tuple | |
| import numpy as np | |
| import onnxruntime as ort | |
| import torch | |
| import torchaudio | |
| from huggingface_hub import hf_hub_download | |
| from lhotse.utils import fix_random_seed | |
| from torch import Tensor, nn | |
| from zipvoice.bin.infer_zipvoice import get_vocoder | |
| from zipvoice.models.modules.solver import get_time_steps | |
| from zipvoice.tokenizer.tokenizer import ( | |
| EmiliaTokenizer, | |
| EspeakTokenizer, | |
| LibriTTSTokenizer, | |
| SimpleTokenizer, | |
| ) | |
| from zipvoice.utils.common import AttributeDict, str2bool | |
| from zipvoice.utils.feature import VocosFbank | |
| HUGGINGFACE_REPO = "k2-fsa/ZipVoice" | |
| TOKEN_FILE = { | |
| "zipvoice": "zipvoice/tokens.txt", | |
| "zipvoice_distill": "zipvoice_distill/tokens.txt", | |
| } | |
| MODEL_CONFIG = { | |
| "zipvoice": "zipvoice/model.json", | |
| "zipvoice_distill": "zipvoice_distill/model.json", | |
| } | |
| def get_parser(): | |
| parser = argparse.ArgumentParser( | |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
| ) | |
| parser.add_argument( | |
| "--onnx-int8", | |
| type=str2bool, | |
| default=False, | |
| help="Whether to use the int8 model", | |
| ) | |
| parser.add_argument( | |
| "--model-name", | |
| type=str, | |
| default="zipvoice", | |
| choices=["zipvoice", "zipvoice_distill"], | |
| help="The model used for inference", | |
| ) | |
| parser.add_argument( | |
| "--onnx-model-dir", | |
| type=str, | |
| default=None, | |
| help="The path to the local onnx model. " | |
| "Will download pre-trained checkpoint from huggingface if not specified.", | |
| ) | |
| parser.add_argument( | |
| "--model-config", | |
| type=str, | |
| default=None, | |
| help="The model configuration file. " | |
| "Will download model.json from huggingface if not specified.", | |
| ) | |
| parser.add_argument( | |
| "--vocoder-path", | |
| type=str, | |
| default=None, | |
| help="The vocoder checkpoint. " | |
| "Will download pre-trained vocoder from huggingface if not specified.", | |
| ) | |
| parser.add_argument( | |
| "--token-file", | |
| type=str, | |
| default=None, | |
| help="The file that contains information that maps tokens to ids," | |
| "which is a text file with '{token}\t{token_id}' per line. " | |
| "Will download tokens_emilia.txt from huggingface if not specified.", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer", | |
| type=str, | |
| default="emilia", | |
| choices=["emilia", "libritts", "espeak", "simple"], | |
| help="Tokenizer type.", | |
| ) | |
| parser.add_argument( | |
| "--lang", | |
| type=str, | |
| default="en-us", | |
| help="Language identifier, used when tokenizer type is espeak. see" | |
| "https://github.com/rhasspy/espeak-ng/blob/master/docs/languages.md", | |
| ) | |
| parser.add_argument( | |
| "--test-list", | |
| type=str, | |
| default=None, | |
| help="The list of prompt speech, prompt_transcription, " | |
| "and text to synthesizein the format of " | |
| "'{wav_name}\t{prompt_transcription}\t{prompt_wav}\t{text}'.", | |
| ) | |
| parser.add_argument( | |
| "--prompt-wav", | |
| type=str, | |
| default=None, | |
| help="The prompt wav to mimic", | |
| ) | |
| parser.add_argument( | |
| "--prompt-text", | |
| type=str, | |
| default=None, | |
| help="The transcription of the prompt wav", | |
| ) | |
| parser.add_argument( | |
| "--text", | |
| type=str, | |
| default=None, | |
| help="The text to synthesize", | |
| ) | |
| parser.add_argument( | |
| "--res-dir", | |
| type=str, | |
| default="results", | |
| help=""" | |
| Path name of the generated wavs dir, | |
| used when test-list is not None | |
| """, | |
| ) | |
| parser.add_argument( | |
| "--res-wav-path", | |
| type=str, | |
| default="result.wav", | |
| help=""" | |
| Path name of the generated wav path, | |
| used when test-list is None | |
| """, | |
| ) | |
| parser.add_argument( | |
| "--guidance-scale", | |
| type=float, | |
| default=None, | |
| help="The scale of classifier-free guidance during inference.", | |
| ) | |
| parser.add_argument( | |
| "--num-step", | |
| type=int, | |
| default=None, | |
| help="The number of sampling steps.", | |
| ) | |
| parser.add_argument( | |
| "--feat-scale", | |
| type=float, | |
| default=0.1, | |
| help="The scale factor of fbank feature", | |
| ) | |
| parser.add_argument( | |
| "--speed", | |
| type=float, | |
| default=1.0, | |
| help="Control speech speed, 1.0 means normal, >1.0 means speed up", | |
| ) | |
| parser.add_argument( | |
| "--t-shift", | |
| type=float, | |
| default=0.5, | |
| help="Shift t to smaller ones if t_shift < 1.0", | |
| ) | |
| parser.add_argument( | |
| "--target-rms", | |
| type=float, | |
| default=0.1, | |
| help="Target speech normalization rms value, set to 0 to disable normalization", | |
| ) | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| default=666, | |
| help="Random seed", | |
| ) | |
| return parser | |
| class OnnxModel: | |
| def __init__( | |
| self, | |
| text_encoder_path: str, | |
| fm_decoder_path: str, | |
| ): | |
| session_opts = ort.SessionOptions() | |
| session_opts.inter_op_num_threads = 1 | |
| session_opts.intra_op_num_threads = 1 | |
| self.session_opts = session_opts | |
| self.init_text_encoder(text_encoder_path) | |
| self.init_fm_decoder(fm_decoder_path) | |
| def init_text_encoder(self, model_path: str): | |
| self.text_encoder = ort.InferenceSession( | |
| model_path, | |
| sess_options=self.session_opts, | |
| providers=["CPUExecutionProvider"], | |
| ) | |
| def init_fm_decoder(self, model_path: str): | |
| self.fm_decoder = ort.InferenceSession( | |
| model_path, | |
| sess_options=self.session_opts, | |
| providers=["CPUExecutionProvider"], | |
| ) | |
| meta = self.fm_decoder.get_modelmeta().custom_metadata_map | |
| self.feat_dim = int(meta["feat_dim"]) | |
| def run_text_encoder( | |
| self, | |
| tokens: Tensor, | |
| prompt_tokens: Tensor, | |
| prompt_features_len: Tensor, | |
| speed: Tensor, | |
| ) -> Tuple[Tensor, Tensor]: | |
| out = self.text_encoder.run( | |
| [ | |
| self.text_encoder.get_outputs()[0].name, | |
| ], | |
| { | |
| self.text_encoder.get_inputs()[0].name: tokens.numpy(), | |
| self.text_encoder.get_inputs()[1].name: prompt_tokens.numpy(), | |
| self.text_encoder.get_inputs()[2].name: prompt_features_len.numpy(), | |
| self.text_encoder.get_inputs()[3].name: speed.numpy(), | |
| }, | |
| ) | |
| return torch.from_numpy(out[0]) | |
| def run_fm_decoder( | |
| self, | |
| t: Tensor, | |
| x: Tensor, | |
| text_condition: Tensor, | |
| speech_condition: torch.Tensor, | |
| guidance_scale: Tensor, | |
| ) -> Tensor: | |
| out = self.fm_decoder.run( | |
| [ | |
| self.fm_decoder.get_outputs()[0].name, | |
| ], | |
| { | |
| self.fm_decoder.get_inputs()[0].name: t.numpy(), | |
| self.fm_decoder.get_inputs()[1].name: x.numpy(), | |
| self.fm_decoder.get_inputs()[2].name: text_condition.numpy(), | |
| self.fm_decoder.get_inputs()[3].name: speech_condition.numpy(), | |
| self.fm_decoder.get_inputs()[4].name: guidance_scale.numpy(), | |
| }, | |
| ) | |
| return torch.from_numpy(out[0]) | |
| def sample( | |
| model: OnnxModel, | |
| tokens: List[List[int]], | |
| prompt_tokens: List[List[int]], | |
| prompt_features: Tensor, | |
| speed: float = 1.0, | |
| t_shift: float = 0.5, | |
| guidance_scale: float = 1.0, | |
| num_step: int = 16, | |
| ) -> torch.Tensor: | |
| """ | |
| Generate acoustic features, given text tokens, prompts feature and prompt | |
| transcription's text tokens. | |
| Args: | |
| tokens: a list of list of text tokens. | |
| prompt_tokens: a list of list of prompt tokens. | |
| prompt_features: the prompt feature with the shape | |
| (batch_size, seq_len, feat_dim). | |
| speed : speed control. | |
| t_shift: time shift. | |
| guidance_scale: the guidance scale for classifier-free guidance. | |
| num_step: the number of steps to use in the ODE solver. | |
| """ | |
| # Run text encoder | |
| assert len(tokens) == len(prompt_tokens) == 1 | |
| tokens = torch.tensor(tokens, dtype=torch.int64) | |
| prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.int64) | |
| prompt_features_len = torch.tensor(prompt_features.size(1), dtype=torch.int64) | |
| speed = torch.tensor(speed, dtype=torch.float32) | |
| text_condition = model.run_text_encoder( | |
| tokens, prompt_tokens, prompt_features_len, speed | |
| ) | |
| batch_size, num_frames, _ = text_condition.shape | |
| assert batch_size == 1 | |
| feat_dim = model.feat_dim | |
| # Run flow matching model | |
| timesteps = get_time_steps( | |
| t_start=0.0, | |
| t_end=1.0, | |
| num_step=num_step, | |
| t_shift=t_shift, | |
| ) | |
| x = torch.randn(batch_size, num_frames, feat_dim) | |
| speech_condition = torch.nn.functional.pad( | |
| prompt_features, (0, 0, 0, num_frames - prompt_features.shape[1]) | |
| ) # (B, T, F) | |
| guidance_scale = torch.tensor(guidance_scale, dtype=torch.float32) | |
| for step in range(num_step): | |
| v = model.run_fm_decoder( | |
| t=timesteps[step], | |
| x=x, | |
| text_condition=text_condition, | |
| speech_condition=speech_condition, | |
| guidance_scale=guidance_scale, | |
| ) | |
| x = x + v * (timesteps[step + 1] - timesteps[step]) | |
| x = x[:, prompt_features_len.item() :, :] | |
| return x | |
| # Copied from zipvoice/infer/infer_zipvoice.py, but call an external sample function | |
| def generate_sentence( | |
| save_path: str, | |
| prompt_text: str, | |
| prompt_wav: str, | |
| text: str, | |
| model: OnnxModel, | |
| vocoder: nn.Module, | |
| tokenizer: EmiliaTokenizer, | |
| feature_extractor: VocosFbank, | |
| num_step: int = 16, | |
| guidance_scale: float = 1.0, | |
| speed: float = 1.0, | |
| t_shift: float = 0.5, | |
| target_rms: float = 0.1, | |
| feat_scale: float = 0.1, | |
| sampling_rate: int = 24000, | |
| ): | |
| """ | |
| Generate waveform of a text based on a given prompt | |
| waveform and its transcription. | |
| Args: | |
| save_path (str): Path to save the generated wav. | |
| prompt_text (str): Transcription of the prompt wav. | |
| prompt_wav (str): Path to the prompt wav file. | |
| text (str): Text to be synthesized into a waveform. | |
| model (torch.nn.Module): The model used for generation. | |
| vocoder (torch.nn.Module): The vocoder used to convert features to waveforms. | |
| tokenizer (EmiliaTokenizer): The tokenizer used to convert text to tokens. | |
| feature_extractor (VocosFbank): The feature extractor used to | |
| extract acoustic features. | |
| num_step (int, optional): Number of steps for decoding. Defaults to 16. | |
| guidance_scale (float, optional): Scale for classifier-free guidance. | |
| Defaults to 1.0. | |
| speed (float, optional): Speed control. Defaults to 1.0. | |
| t_shift (float, optional): Time shift. Defaults to 0.5. | |
| target_rms (float, optional): Target RMS for waveform normalization. | |
| Defaults to 0.1. | |
| feat_scale (float, optional): Scale for features. | |
| Defaults to 0.1. | |
| sampling_rate (int, optional): Sampling rate for the waveform. | |
| Defaults to 24000. | |
| Returns: | |
| metrics (dict): Dictionary containing time and real-time | |
| factor metrics for processing. | |
| """ | |
| # Convert text to tokens | |
| tokens = tokenizer.texts_to_token_ids([text]) | |
| prompt_tokens = tokenizer.texts_to_token_ids([prompt_text]) | |
| # Load and preprocess prompt wav | |
| prompt_wav, prompt_sampling_rate = torchaudio.load(prompt_wav) | |
| if prompt_sampling_rate != sampling_rate: | |
| resampler = torchaudio.transforms.Resample( | |
| orig_freq=prompt_sampling_rate, new_freq=sampling_rate | |
| ) | |
| prompt_wav = resampler(prompt_wav) | |
| prompt_rms = torch.sqrt(torch.mean(torch.square(prompt_wav))) | |
| if prompt_rms < target_rms: | |
| prompt_wav = prompt_wav * target_rms / prompt_rms | |
| # Extract features from prompt wav | |
| prompt_features = feature_extractor.extract(prompt_wav, sampling_rate=sampling_rate) | |
| prompt_features = prompt_features.unsqueeze(0) * feat_scale | |
| # Start timing | |
| start_t = dt.datetime.now() | |
| # Generate features | |
| pred_features = sample( | |
| model=model, | |
| tokens=tokens, | |
| prompt_tokens=prompt_tokens, | |
| prompt_features=prompt_features, | |
| speed=speed, | |
| t_shift=t_shift, | |
| guidance_scale=guidance_scale, | |
| num_step=num_step, | |
| ) | |
| # Postprocess predicted features | |
| pred_features = pred_features.permute(0, 2, 1) / feat_scale # (B, C, T) | |
| # Start vocoder processing | |
| start_vocoder_t = dt.datetime.now() | |
| wav = vocoder.decode(pred_features).squeeze(1).clamp(-1, 1) | |
| # Calculate processing times and real-time factors | |
| t = (dt.datetime.now() - start_t).total_seconds() | |
| t_no_vocoder = (start_vocoder_t - start_t).total_seconds() | |
| t_vocoder = (dt.datetime.now() - start_vocoder_t).total_seconds() | |
| wav_seconds = wav.shape[-1] / sampling_rate | |
| rtf = t / wav_seconds | |
| rtf_no_vocoder = t_no_vocoder / wav_seconds | |
| rtf_vocoder = t_vocoder / wav_seconds | |
| metrics = { | |
| "t": t, | |
| "t_no_vocoder": t_no_vocoder, | |
| "t_vocoder": t_vocoder, | |
| "wav_seconds": wav_seconds, | |
| "rtf": rtf, | |
| "rtf_no_vocoder": rtf_no_vocoder, | |
| "rtf_vocoder": rtf_vocoder, | |
| } | |
| # Adjust wav volume if necessary | |
| if prompt_rms < target_rms: | |
| wav = wav * prompt_rms / target_rms | |
| torchaudio.save(save_path, wav.cpu(), sample_rate=sampling_rate) | |
| return metrics | |
| def generate_list( | |
| res_dir: str, | |
| test_list: str, | |
| model: OnnxModel, | |
| vocoder: nn.Module, | |
| tokenizer: EmiliaTokenizer, | |
| feature_extractor: VocosFbank, | |
| num_step: int = 16, | |
| guidance_scale: float = 1.0, | |
| speed: float = 1.0, | |
| t_shift: float = 0.5, | |
| target_rms: float = 0.1, | |
| feat_scale: float = 0.1, | |
| sampling_rate: int = 24000, | |
| ): | |
| total_t = [] | |
| total_t_no_vocoder = [] | |
| total_t_vocoder = [] | |
| total_wav_seconds = [] | |
| with open(test_list, "r") as fr: | |
| lines = fr.readlines() | |
| for i, line in enumerate(lines): | |
| wav_name, prompt_text, prompt_wav, text = line.strip().split("\t") | |
| save_path = f"{res_dir}/{wav_name}.wav" | |
| metrics = generate_sentence( | |
| save_path=save_path, | |
| prompt_text=prompt_text, | |
| prompt_wav=prompt_wav, | |
| text=text, | |
| model=model, | |
| vocoder=vocoder, | |
| tokenizer=tokenizer, | |
| feature_extractor=feature_extractor, | |
| num_step=num_step, | |
| guidance_scale=guidance_scale, | |
| speed=speed, | |
| t_shift=t_shift, | |
| target_rms=target_rms, | |
| feat_scale=feat_scale, | |
| sampling_rate=sampling_rate, | |
| ) | |
| print(f"[Sentence: {i}] RTF: {metrics['rtf']:.4f}") | |
| total_t.append(metrics["t"]) | |
| total_t_no_vocoder.append(metrics["t_no_vocoder"]) | |
| total_t_vocoder.append(metrics["t_vocoder"]) | |
| total_wav_seconds.append(metrics["wav_seconds"]) | |
| print(f"Average RTF: {np.sum(total_t) / np.sum(total_wav_seconds):.4f}") | |
| print( | |
| f"Average RTF w/o vocoder: " | |
| f"{np.sum(total_t_no_vocoder) / np.sum(total_wav_seconds):.4f}" | |
| ) | |
| print( | |
| f"Average RTF vocoder: " | |
| f"{np.sum(total_t_vocoder) / np.sum(total_wav_seconds):.4f}" | |
| ) | |
| def main(): | |
| parser = get_parser() | |
| args = parser.parse_args() | |
| params = AttributeDict() | |
| params.update(vars(args)) | |
| fix_random_seed(params.seed) | |
| model_defaults = { | |
| "zipvoice": { | |
| "num_step": 16, | |
| "guidance_scale": 1.0, | |
| }, | |
| "zipvoice_distill": { | |
| "num_step": 8, | |
| "guidance_scale": 3.0, | |
| }, | |
| } | |
| model_specific_defaults = model_defaults.get(params.model_name, {}) | |
| for param, value in model_specific_defaults.items(): | |
| if getattr(params, param) is None: | |
| setattr(params, param, value) | |
| print(f"Setting {param} to default value: {value}") | |
| assert (params.test_list is not None) ^ ( | |
| (params.prompt_wav and params.prompt_text and params.text) is not None | |
| ), ( | |
| "For inference, please provide prompts and text with either '--test-list'" | |
| " or '--prompt-wav, --prompt-text and --text'." | |
| ) | |
| print("Loading model...") | |
| if params.model_config is None: | |
| model_config = hf_hub_download( | |
| HUGGINGFACE_REPO, filename=MODEL_CONFIG[params.model_name] | |
| ) | |
| else: | |
| model_config = params.model_config | |
| with open(model_config, "r") as f: | |
| model_config = json.load(f) | |
| if params.token_file is None: | |
| token_file = hf_hub_download( | |
| HUGGINGFACE_REPO, filename=TOKEN_FILE[params.model_name] | |
| ) | |
| else: | |
| token_file = params.token_file | |
| if params.tokenizer == "emilia": | |
| tokenizer = EmiliaTokenizer(token_file=token_file) | |
| elif params.dataset == "libritts": | |
| tokenizer = LibriTTSTokenizer(token_file=token_file) | |
| elif params.tokenizer == "espeak": | |
| tokenizer = EspeakTokenizer(token_file=token_file, lang=params.lang) | |
| else: | |
| assert params.tokenizer == "simple" | |
| tokenizer = SimpleTokenizer(token_file=token_file) | |
| if params.onnx_model_dir is not None: | |
| dirname = params.onnx_model_dir | |
| else: | |
| if params.model_name == "zipvoice_distill": | |
| dirname = "zipvoice_distill" | |
| else: | |
| dirname = "zipvoice" | |
| if not params.onnx_int8: | |
| text_encoder_path = f"{dirname}/text_encoder.onnx" | |
| fm_decoder_path = f"{dirname}/fm_decoder.onnx" | |
| else: | |
| text_encoder_path = f"{dirname}/text_encoder_int8.onnx" | |
| fm_decoder_path = f"{dirname}/fm_decoder_int8.onnx" | |
| if params.onnx_model_dir is None: | |
| text_encoder_path = hf_hub_download( | |
| HUGGINGFACE_REPO, filename=text_encoder_path | |
| ) | |
| fm_decoder_path = hf_hub_download(HUGGINGFACE_REPO, filename=fm_decoder_path) | |
| model = OnnxModel(text_encoder_path, fm_decoder_path) | |
| vocoder = get_vocoder(params.vocoder_path) | |
| vocoder.eval() | |
| if model_config["feature"]["type"] == "vocos": | |
| feature_extractor = VocosFbank() | |
| else: | |
| raise NotImplementedError( | |
| f"Unsupported feature type: {model_config['feature']['type']}" | |
| ) | |
| params.sampling_rate = model_config["feature"]["sampling_rate"] | |
| print("Start generating...") | |
| if params.test_list: | |
| os.makedirs(params.res_dir, exist_ok=True) | |
| generate_list( | |
| res_dir=params.res_dir, | |
| test_list=params.test_list, | |
| model=model, | |
| vocoder=vocoder, | |
| tokenizer=tokenizer, | |
| feature_extractor=feature_extractor, | |
| num_step=params.num_step, | |
| guidance_scale=params.guidance_scale, | |
| speed=params.speed, | |
| t_shift=params.t_shift, | |
| target_rms=params.target_rms, | |
| feat_scale=params.feat_scale, | |
| sampling_rate=params.sampling_rate, | |
| ) | |
| else: | |
| generate_sentence( | |
| save_path=params.res_wav_path, | |
| prompt_text=params.prompt_text, | |
| prompt_wav=params.prompt_wav, | |
| text=params.text, | |
| model=model, | |
| vocoder=vocoder, | |
| tokenizer=tokenizer, | |
| feature_extractor=feature_extractor, | |
| num_step=params.num_step, | |
| guidance_scale=params.guidance_scale, | |
| speed=params.speed, | |
| t_shift=params.t_shift, | |
| target_rms=params.target_rms, | |
| feat_scale=params.feat_scale, | |
| sampling_rate=params.sampling_rate, | |
| ) | |
| print("Done") | |
| if __name__ == "__main__": | |
| torch.set_num_threads(1) | |
| torch.set_num_interop_threads(1) | |
| main() | |