Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -164,37 +164,39 @@ class RAGPipeline:
|
|
| 164 |
query = re.sub(r'\s+', ' ', query)
|
| 165 |
return query
|
| 166 |
|
| 167 |
-
|
| 168 |
-
"""Clean up the generated response"""
|
| 169 |
-
response = response.strip()
|
| 170 |
-
response = re.sub(r'\s+', ' ', response)
|
| 171 |
-
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
| 172 |
-
return response
|
| 173 |
|
| 174 |
-
def
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
# def process_query(self, query: str, placeholder) -> str:
|
| 200 |
# try:
|
|
@@ -258,90 +260,213 @@ class RAGPipeline:
|
|
| 258 |
# placeholder.warning(message)
|
| 259 |
# return message
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
def process_query(self, query: str, placeholder) -> str:
|
| 262 |
try:
|
| 263 |
-
# Preprocess query
|
| 264 |
query = self.preprocess_query(query)
|
| 265 |
-
logging.info(f"Processing query: {query}")
|
| 266 |
-
|
| 267 |
-
# Show retrieval status
|
| 268 |
status = placeholder.empty()
|
| 269 |
status.write("🔍 Finding relevant information...")
|
| 270 |
-
|
| 271 |
-
# Get embeddings and search
|
| 272 |
query_embedding = self.retriever.encode([query])
|
| 273 |
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 274 |
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 275 |
-
|
| 276 |
-
# Log similarity scores
|
| 277 |
-
for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 278 |
-
logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 279 |
-
|
| 280 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
-
# Update status
|
| 283 |
status.write("💭 Generating response...")
|
| 284 |
-
|
| 285 |
-
# Prepare context and prompt
|
| 286 |
-
context = "\n".join(relevant_docs[:3])
|
| 287 |
prompt = f"""Context information is below:
|
| 288 |
-
{
|
| 289 |
-
|
| 290 |
Given the context above, please answer the following question:
|
| 291 |
{query}
|
| 292 |
-
|
| 293 |
-
Guidelines:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
- If you cannot answer based on the context, say so politely
|
| 295 |
-
- Keep the response concise and focused
|
| 296 |
-
- Only include sports-related information
|
| 297 |
-
- No dates or timestamps in the response
|
| 298 |
-
- Use clear, natural language
|
| 299 |
|
|
|
|
|
|
|
| 300 |
Answer:"""
|
| 301 |
-
|
| 302 |
-
# Generate response
|
| 303 |
response_placeholder = placeholder.empty()
|
| 304 |
-
|
| 305 |
-
try:
|
| 306 |
-
# Add logging for model state
|
| 307 |
-
logging.info("Model state check - Is None?: " + str(self.llm is None))
|
| 308 |
-
|
| 309 |
-
# Directly use Llama model
|
| 310 |
-
response = self.llm(
|
| 311 |
-
prompt,
|
| 312 |
-
max_tokens=512,
|
| 313 |
-
temperature=0.4,
|
| 314 |
-
top_p=0.95,
|
| 315 |
-
echo=False,
|
| 316 |
-
stop=["Question:", "\n\n"]
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
logging.info(f"Raw model response: {response}")
|
| 320 |
-
|
| 321 |
-
if response and isinstance(response, dict) and 'choices' in response:
|
| 322 |
-
generated_text = response['choices'][0].get('text', '').strip()
|
| 323 |
-
if generated_text:
|
| 324 |
-
final_response = self.postprocess_response(generated_text)
|
| 325 |
-
response_placeholder.markdown(final_response)
|
| 326 |
-
return final_response
|
| 327 |
-
|
| 328 |
-
message = "No relevant answer found. Please try rephrasing your question."
|
| 329 |
-
response_placeholder.warning(message)
|
| 330 |
-
return message
|
| 331 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
except Exception as e:
|
| 333 |
logging.error(f"Generation error: {str(e)}")
|
| 334 |
-
|
| 335 |
-
message = f"Had some trouble generating the response: {str(e)}"
|
| 336 |
response_placeholder.warning(message)
|
| 337 |
return message
|
| 338 |
-
|
| 339 |
except Exception as e:
|
| 340 |
logging.error(f"Process error: {str(e)}")
|
| 341 |
-
|
| 342 |
-
message = f"Something went wrong: {str(e)}"
|
| 343 |
placeholder.warning(message)
|
| 344 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
@st.cache_resource(show_spinner=False)
|
| 347 |
def initialize_rag_pipeline():
|
|
|
|
| 164 |
query = re.sub(r'\s+', ' ', query)
|
| 165 |
return query
|
| 166 |
|
| 167 |
+
### Added on Nov 2, 2024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
# def postprocess_response(self, response: str) -> str:
|
| 170 |
+
# """Clean up the generated response"""
|
| 171 |
+
# response = response.strip()
|
| 172 |
+
# response = re.sub(r'\s+', ' ', response)
|
| 173 |
+
# response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
| 174 |
+
# return response
|
| 175 |
+
|
| 176 |
+
# def query_model(self, prompt: str) -> str:
|
| 177 |
+
# """Query the local Llama model"""
|
| 178 |
+
# try:
|
| 179 |
+
# if self.llm is None:
|
| 180 |
+
# raise RuntimeError("Model not initialized")
|
| 181 |
|
| 182 |
+
# response = self.llm(
|
| 183 |
+
# prompt,
|
| 184 |
+
# max_tokens=512,
|
| 185 |
+
# temperature=0.4,
|
| 186 |
+
# top_p=0.95,
|
| 187 |
+
# echo=False,
|
| 188 |
+
# stop=["Question:", "\n\n"]
|
| 189 |
+
# )
|
| 190 |
+
|
| 191 |
+
# if response and 'choices' in response and len(response['choices']) > 0:
|
| 192 |
+
# text = response['choices'][0].get('text', '').strip()
|
| 193 |
+
# return text
|
| 194 |
+
# else:
|
| 195 |
+
# raise ValueError("No valid response generated")
|
| 196 |
|
| 197 |
+
# except Exception as e:
|
| 198 |
+
# logging.error(f"Error in query_model: {str(e)}")
|
| 199 |
+
# raise
|
| 200 |
|
| 201 |
# def process_query(self, query: str, placeholder) -> str:
|
| 202 |
# try:
|
|
|
|
| 260 |
# placeholder.warning(message)
|
| 261 |
# return message
|
| 262 |
|
| 263 |
+
# def process_query(self, query: str, placeholder) -> str:
|
| 264 |
+
# try:
|
| 265 |
+
# # Preprocess query
|
| 266 |
+
# query = self.preprocess_query(query)
|
| 267 |
+
# logging.info(f"Processing query: {query}")
|
| 268 |
+
|
| 269 |
+
# # Show retrieval status
|
| 270 |
+
# status = placeholder.empty()
|
| 271 |
+
# status.write("🔍 Finding relevant information...")
|
| 272 |
+
|
| 273 |
+
# # Get embeddings and search
|
| 274 |
+
# query_embedding = self.retriever.encode([query])
|
| 275 |
+
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 276 |
+
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 277 |
+
|
| 278 |
+
# # Log similarity scores
|
| 279 |
+
# for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 280 |
+
# logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 281 |
+
|
| 282 |
+
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 283 |
+
|
| 284 |
+
# # Update status
|
| 285 |
+
# status.write("💭 Generating response...")
|
| 286 |
+
|
| 287 |
+
# # Prepare context and prompt
|
| 288 |
+
# context = "\n".join(relevant_docs[:3])
|
| 289 |
+
# prompt = f"""Context information is below:
|
| 290 |
+
# {context}
|
| 291 |
+
|
| 292 |
+
# Given the context above, please answer the following question:
|
| 293 |
+
# {query}
|
| 294 |
+
|
| 295 |
+
# Guidelines:
|
| 296 |
+
# - If you cannot answer based on the context, say so politely
|
| 297 |
+
# - Keep the response concise and focused
|
| 298 |
+
# - Only include sports-related information
|
| 299 |
+
# - No dates or timestamps in the response
|
| 300 |
+
# - Use clear, natural language
|
| 301 |
+
|
| 302 |
+
# Answer:"""
|
| 303 |
+
|
| 304 |
+
# # Generate response
|
| 305 |
+
# response_placeholder = placeholder.empty()
|
| 306 |
+
|
| 307 |
+
# try:
|
| 308 |
+
# # Add logging for model state
|
| 309 |
+
# logging.info("Model state check - Is None?: " + str(self.llm is None))
|
| 310 |
+
|
| 311 |
+
# # Directly use Llama model
|
| 312 |
+
# response = self.llm(
|
| 313 |
+
# prompt,
|
| 314 |
+
# max_tokens=512,
|
| 315 |
+
# temperature=0.4,
|
| 316 |
+
# top_p=0.95,
|
| 317 |
+
# echo=False,
|
| 318 |
+
# stop=["Question:", "\n\n"]
|
| 319 |
+
# )
|
| 320 |
+
|
| 321 |
+
# logging.info(f"Raw model response: {response}")
|
| 322 |
+
|
| 323 |
+
# if response and isinstance(response, dict) and 'choices' in response:
|
| 324 |
+
# generated_text = response['choices'][0].get('text', '').strip()
|
| 325 |
+
# if generated_text:
|
| 326 |
+
# final_response = self.postprocess_response(generated_text)
|
| 327 |
+
# response_placeholder.markdown(final_response)
|
| 328 |
+
# return final_response
|
| 329 |
+
|
| 330 |
+
# message = "No relevant answer found. Please try rephrasing your question."
|
| 331 |
+
# response_placeholder.warning(message)
|
| 332 |
+
# return message
|
| 333 |
+
|
| 334 |
+
# except Exception as e:
|
| 335 |
+
# logging.error(f"Generation error: {str(e)}")
|
| 336 |
+
# logging.error(f"Full error details: ", exc_info=True)
|
| 337 |
+
# message = f"Had some trouble generating the response: {str(e)}"
|
| 338 |
+
# response_placeholder.warning(message)
|
| 339 |
+
# return message
|
| 340 |
+
|
| 341 |
+
# except Exception as e:
|
| 342 |
+
# logging.error(f"Process error: {str(e)}")
|
| 343 |
+
# logging.error(f"Full error details: ", exc_info=True)
|
| 344 |
+
# message = f"Something went wrong: {str(e)}"
|
| 345 |
+
# placeholder.warning(message)
|
| 346 |
+
# return message
|
| 347 |
+
|
| 348 |
+
### Added on Nov 2, 2024
|
| 349 |
+
def postprocess_response(self, response: str) -> str:
|
| 350 |
+
"""Clean up the generated response"""
|
| 351 |
+
try:
|
| 352 |
+
# Remove datetime patterns and other unwanted content
|
| 353 |
+
response = re.sub(r'\d{4}-\d{2}-\d{2}(?:T|\s)\d{2}:\d{2}:\d{2}(?:\.\d+)?(?:Z|[+-]\d{2}:?\d{2})?', '', response)
|
| 354 |
+
response = re.sub(r'User \d+:.*?(?=User \d+:|$)', '', response)
|
| 355 |
+
response = re.sub(r'\d{2}:\d{2}(?::\d{2})?(?:\s?(?:AM|PM))?', '', response)
|
| 356 |
+
response = re.sub(r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}', '', response)
|
| 357 |
+
response = re.sub(r'(?m)^User \d+:', '', response)
|
| 358 |
+
|
| 359 |
+
# Clean up spacing but preserve intentional paragraph breaks
|
| 360 |
+
# Replace multiple newlines with two newlines (one paragraph break)
|
| 361 |
+
response = re.sub(r'\n\s*\n\s*\n+', '\n\n', response)
|
| 362 |
+
# Replace multiple spaces with single space
|
| 363 |
+
response = re.sub(r' +', ' ', response)
|
| 364 |
+
# Clean up beginning/end
|
| 365 |
+
response = response.strip()
|
| 366 |
+
|
| 367 |
+
return response
|
| 368 |
+
except Exception as e:
|
| 369 |
+
logging.error(f"Error in postprocess_response: {str(e)}")
|
| 370 |
+
return response
|
| 371 |
+
|
| 372 |
def process_query(self, query: str, placeholder) -> str:
|
| 373 |
try:
|
|
|
|
| 374 |
query = self.preprocess_query(query)
|
|
|
|
|
|
|
|
|
|
| 375 |
status = placeholder.empty()
|
| 376 |
status.write("🔍 Finding relevant information...")
|
| 377 |
+
|
|
|
|
| 378 |
query_embedding = self.retriever.encode([query])
|
| 379 |
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 380 |
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 381 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 383 |
+
cleaned_docs = []
|
| 384 |
+
for doc in relevant_docs[:3]:
|
| 385 |
+
cleaned_text = self.postprocess_response(doc)
|
| 386 |
+
if cleaned_text:
|
| 387 |
+
cleaned_docs.append(cleaned_text)
|
| 388 |
|
|
|
|
| 389 |
status.write("💭 Generating response...")
|
| 390 |
+
|
|
|
|
|
|
|
| 391 |
prompt = f"""Context information is below:
|
| 392 |
+
{' '.join(cleaned_docs)}
|
| 393 |
+
|
| 394 |
Given the context above, please answer the following question:
|
| 395 |
{query}
|
| 396 |
+
|
| 397 |
+
Guidelines for your response:
|
| 398 |
+
- Structure your response in clear, logical paragraphs
|
| 399 |
+
- Start a new paragraph for each new main point or aspect
|
| 400 |
+
- If listing multiple items, use separate paragraphs
|
| 401 |
+
- Keep each paragraph focused on a single topic or point
|
| 402 |
+
- Use natural paragraph breaks where the content shifts focus
|
| 403 |
+
- Maintain clear transitions between paragraphs
|
| 404 |
+
- If providing statistics or achievements, group them logically
|
| 405 |
+
- If describing different aspects (e.g., career, playing style, achievements), use separate paragraphs
|
| 406 |
+
- Keep paragraphs concise but complete
|
| 407 |
+
- Exclude any dates, timestamps, or user comments
|
| 408 |
+
- Focus on factual sports information
|
| 409 |
- If you cannot answer based on the context, say so politely
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
+
Format your response with proper paragraph breaks where appropriate.
|
| 412 |
+
|
| 413 |
Answer:"""
|
| 414 |
+
|
|
|
|
| 415 |
response_placeholder = placeholder.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 416 |
|
| 417 |
+
try:
|
| 418 |
+
response_text = self.query_model(prompt)
|
| 419 |
+
if response_text:
|
| 420 |
+
# Clean up the response while preserving paragraph structure
|
| 421 |
+
final_response = self.postprocess_response(response_text)
|
| 422 |
+
|
| 423 |
+
# Convert cleaned response to markdown with proper paragraph spacing
|
| 424 |
+
markdown_response = final_response.replace('\n\n', '\n\n \n\n') # Add visual spacing between paragraphs
|
| 425 |
+
|
| 426 |
+
response_placeholder.markdown(markdown_response)
|
| 427 |
+
return final_response
|
| 428 |
+
else:
|
| 429 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
| 430 |
+
response_placeholder.warning(message)
|
| 431 |
+
return message
|
| 432 |
+
|
| 433 |
except Exception as e:
|
| 434 |
logging.error(f"Generation error: {str(e)}")
|
| 435 |
+
message = "Had some trouble generating the response. Please try again."
|
|
|
|
| 436 |
response_placeholder.warning(message)
|
| 437 |
return message
|
| 438 |
+
|
| 439 |
except Exception as e:
|
| 440 |
logging.error(f"Process error: {str(e)}")
|
| 441 |
+
message = "Something went wrong. Please try again with a different question."
|
|
|
|
| 442 |
placeholder.warning(message)
|
| 443 |
+
return messag
|
| 444 |
+
|
| 445 |
+
def query_model(self, prompt: str) -> str:
|
| 446 |
+
"""Query the local Llama model"""
|
| 447 |
+
try:
|
| 448 |
+
if self.llm is None:
|
| 449 |
+
raise RuntimeError("Model not initialized")
|
| 450 |
+
|
| 451 |
+
response = self.llm(
|
| 452 |
+
prompt,
|
| 453 |
+
max_tokens=512,
|
| 454 |
+
temperature=0.4,
|
| 455 |
+
top_p=0.95,
|
| 456 |
+
echo=False,
|
| 457 |
+
stop=["Question:", "Context:", "Guidelines:"], # Removed \n\n from stop tokens to allow paragraphs
|
| 458 |
+
repeat_penalty=1.1 # Added to encourage more diverse text
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
if response and 'choices' in response and len(response['choices']) > 0:
|
| 462 |
+
text = response['choices'][0].get('text', '').strip()
|
| 463 |
+
return text
|
| 464 |
+
else:
|
| 465 |
+
raise ValueError("No valid response generated")
|
| 466 |
+
|
| 467 |
+
except Exception as e:
|
| 468 |
+
logging.error(f"Error in query_model: {str(e)}")
|
| 469 |
+
raise
|
| 470 |
|
| 471 |
@st.cache_resource(show_spinner=False)
|
| 472 |
def initialize_rag_pipeline():
|