Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,24 +7,14 @@ import torch
|
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import re
|
| 9 |
import requests
|
| 10 |
-
#from dotenv import load_dotenv
|
| 11 |
from embedding_processor import SentenceTransformerRetriever, process_data
|
| 12 |
import pickle
|
| 13 |
-
|
| 14 |
-
import os
|
| 15 |
-
import warnings
|
| 16 |
-
import json # Add this import
|
| 17 |
-
|
| 18 |
-
# Add at the top with other imports
|
| 19 |
-
from llama_cpp import Llama
|
| 20 |
-
import requests
|
| 21 |
-
from tqdm import tqdm
|
| 22 |
-
|
| 23 |
-
|
| 24 |
import logging
|
| 25 |
import sys
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
# Set page config
|
| 28 |
st.set_page_config(
|
| 29 |
page_title="The Sport Chatbot",
|
| 30 |
page_icon="π",
|
|
@@ -38,16 +28,21 @@ logging.basicConfig(
|
|
| 38 |
handlers=[logging.StreamHandler(sys.stdout)]
|
| 39 |
)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@st.cache_data
|
| 53 |
def load_from_drive(file_id: str):
|
|
@@ -72,93 +67,72 @@ def load_from_drive(file_id: str):
|
|
| 72 |
st.error(f"Error loading file from Drive: {str(e)}")
|
| 73 |
return None
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
class RAGPipeline:
|
| 83 |
-
|
| 84 |
def __init__(self, data_folder: str, k: int = 5):
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# Model path with absolute path
|
| 93 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 94 |
-
self.model_path = os.path.join(current_dir, "models", "mistral-7b-v0.1.Q4_K_M.gguf")
|
| 95 |
-
|
| 96 |
-
# Initialize model
|
| 97 |
-
self.llm = self.get_model()
|
| 98 |
-
|
| 99 |
-
except Exception as e:
|
| 100 |
-
logging.error(f"Error in RAGPipeline initialization: {str(e)}")
|
| 101 |
-
raise
|
| 102 |
-
|
| 103 |
-
@st.cache_resource(show_spinner=False)
|
| 104 |
-
def get_model(_self):
|
| 105 |
-
"""Get or initialize the model with caching"""
|
| 106 |
-
try:
|
| 107 |
-
if not os.path.exists(_self.model_path):
|
| 108 |
-
os.makedirs(os.path.dirname(_self.model_path), exist_ok=True)
|
| 109 |
-
st.info("Downloading model... This may take a while.")
|
| 110 |
-
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 111 |
-
_self.download_file_with_progress(direct_url, _self.model_path)
|
| 112 |
-
|
| 113 |
-
# Verify file exists and has content
|
| 114 |
-
if not os.path.exists(_self.model_path):
|
| 115 |
-
raise FileNotFoundError(f"Model file {_self.model_path} not found after download attempts")
|
| 116 |
-
|
| 117 |
-
if os.path.getsize(_self.model_path) < 1000000: # Less than 1MB
|
| 118 |
-
os.remove(_self.model_path)
|
| 119 |
-
raise ValueError("Downloaded model file is too small, likely corrupted")
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
"n_gpu_layers": 0,
|
| 127 |
-
"verbose": False
|
| 128 |
-
}
|
| 129 |
-
|
| 130 |
-
model = Llama(**llm_config)
|
| 131 |
-
st.success("Model loaded successfully!")
|
| 132 |
-
return model
|
| 133 |
-
|
| 134 |
-
except Exception as e:
|
| 135 |
-
st.error(f"Error initializing model: {str(e)}")
|
| 136 |
-
raise
|
| 137 |
|
| 138 |
-
def
|
| 139 |
-
"""
|
| 140 |
-
response =
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
desc=filename,
|
| 145 |
-
total=total_size,
|
| 146 |
-
unit='iB',
|
| 147 |
-
unit_scale=True,
|
| 148 |
-
unit_divisor=1024,
|
| 149 |
-
) as progress_bar:
|
| 150 |
-
for data in response.iter_content(chunk_size=1024):
|
| 151 |
-
size = file.write(data)
|
| 152 |
-
progress_bar.update(size)
|
| 153 |
|
| 154 |
-
# Alternative API call with streaming
|
| 155 |
def query_model(self, prompt: str) -> str:
|
| 156 |
-
"""Query the local Llama model
|
| 157 |
try:
|
| 158 |
if self.llm is None:
|
| 159 |
raise RuntimeError("Model not initialized")
|
| 160 |
-
|
| 161 |
-
# Generate response using Llama model
|
| 162 |
response = self.llm(
|
| 163 |
prompt,
|
| 164 |
max_tokens=512,
|
|
@@ -167,47 +141,41 @@ class RAGPipeline:
|
|
| 167 |
echo=False,
|
| 168 |
stop=["Question:", "\n\n"]
|
| 169 |
)
|
| 170 |
-
|
| 171 |
-
# Check and extract response
|
| 172 |
if response and 'choices' in response and len(response['choices']) > 0:
|
| 173 |
text = response['choices'][0].get('text', '').strip()
|
| 174 |
return text
|
| 175 |
else:
|
| 176 |
raise ValueError("No valid response generated")
|
| 177 |
-
|
| 178 |
except Exception as e:
|
| 179 |
logging.error(f"Error in query_model: {str(e)}")
|
| 180 |
raise
|
| 181 |
-
|
| 182 |
-
"""Clean and prepare the query"""
|
| 183 |
-
query = query.lower().strip()
|
| 184 |
-
query = re.sub(r'\s+', ' ', query)
|
| 185 |
-
return query
|
| 186 |
-
|
| 187 |
def process_query(self, query: str, placeholder) -> str:
|
| 188 |
try:
|
| 189 |
# Preprocess query
|
| 190 |
query = self.preprocess_query(query)
|
| 191 |
-
|
| 192 |
# Show retrieval status
|
| 193 |
status = placeholder.empty()
|
| 194 |
status.write("π Finding relevant information...")
|
| 195 |
-
|
| 196 |
# Get embeddings and search
|
| 197 |
query_embedding = self.retriever.encode([query])
|
| 198 |
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 199 |
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 200 |
-
|
| 201 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 202 |
-
|
| 203 |
# Update status
|
| 204 |
status.write("π Generating response...")
|
| 205 |
-
|
| 206 |
# Prepare context and prompt
|
| 207 |
-
context = "\n".join(relevant_docs[:3])
|
| 208 |
prompt = f"""Context information is below:
|
| 209 |
{context}
|
| 210 |
-
|
| 211 |
Given the context above, please answer the following question:
|
| 212 |
{query}
|
| 213 |
|
|
@@ -217,12 +185,12 @@ class RAGPipeline:
|
|
| 217 |
- Only include sports-related information
|
| 218 |
- No dates or timestamps in the response
|
| 219 |
- Use clear, natural language
|
| 220 |
-
|
| 221 |
Answer:"""
|
| 222 |
-
|
| 223 |
# Generate response
|
| 224 |
response_placeholder = placeholder.empty()
|
| 225 |
-
|
| 226 |
try:
|
| 227 |
response_text = self.query_model(prompt)
|
| 228 |
if response_text:
|
|
@@ -233,174 +201,27 @@ class RAGPipeline:
|
|
| 233 |
message = "No relevant answer found. Please try rephrasing your question."
|
| 234 |
response_placeholder.warning(message)
|
| 235 |
return message
|
| 236 |
-
|
| 237 |
except Exception as e:
|
| 238 |
logging.error(f"Generation error: {str(e)}")
|
| 239 |
message = "Had some trouble generating the response. Please try again."
|
| 240 |
response_placeholder.warning(message)
|
| 241 |
return message
|
| 242 |
-
|
| 243 |
except Exception as e:
|
| 244 |
logging.error(f"Process error: {str(e)}")
|
| 245 |
message = "Something went wrong. Please try again with a different question."
|
| 246 |
placeholder.warning(message)
|
| 247 |
return message
|
| 248 |
|
| 249 |
-
def postprocess_response(self, response: str) -> str:
|
| 250 |
-
"""Clean up the generated response"""
|
| 251 |
-
response = response.strip()
|
| 252 |
-
response = re.sub(r'\s+', ' ', response)
|
| 253 |
-
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
| 254 |
-
return response
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
# def process_query(self, query: str, placeholder) -> str:
|
| 258 |
-
# try:
|
| 259 |
-
# # Preprocess query
|
| 260 |
-
# query = self.preprocess_query(query)
|
| 261 |
-
|
| 262 |
-
# # Show retrieval status
|
| 263 |
-
# status = placeholder.empty()
|
| 264 |
-
# status.write("π Finding relevant information...")
|
| 265 |
-
|
| 266 |
-
# # Get embeddings and search using tensor operations
|
| 267 |
-
# query_embedding = self.retriever.encode([query])
|
| 268 |
-
# similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 269 |
-
# scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 270 |
-
|
| 271 |
-
# # Print search results for debugging
|
| 272 |
-
# print("\nSearch Results:")
|
| 273 |
-
# for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 274 |
-
# print(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 275 |
-
|
| 276 |
-
# relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 277 |
-
|
| 278 |
-
# # Update status
|
| 279 |
-
# status.write("π Generating response...")
|
| 280 |
-
|
| 281 |
-
# # Prepare context and prompt
|
| 282 |
-
# context = "\n".join(relevant_docs[:3]) # Only use top 3 most relevant docs
|
| 283 |
-
# prompt = f"""Answer this question using the given context. Be specific and detailed.
|
| 284 |
-
|
| 285 |
-
# Context: {context}
|
| 286 |
-
|
| 287 |
-
# Question: {query}
|
| 288 |
-
|
| 289 |
-
# Answer (provide a complete, detailed response):"""
|
| 290 |
-
|
| 291 |
-
# # Generate response
|
| 292 |
-
# response_placeholder = placeholder.empty()
|
| 293 |
-
|
| 294 |
-
# try:
|
| 295 |
-
# response = requests.post(
|
| 296 |
-
# model_name,
|
| 297 |
-
# #headers=headers,
|
| 298 |
-
# json={
|
| 299 |
-
# "inputs": prompt,
|
| 300 |
-
# "parameters": {
|
| 301 |
-
# "max_new_tokens": 1024,
|
| 302 |
-
# "temperature": 0.5,
|
| 303 |
-
# "top_p": 0.9,
|
| 304 |
-
# "top_k": 50,
|
| 305 |
-
# "repetition_penalty": 1.03,
|
| 306 |
-
# "do_sample": True
|
| 307 |
-
# }
|
| 308 |
-
# },
|
| 309 |
-
# timeout=30
|
| 310 |
-
# ).json()
|
| 311 |
-
|
| 312 |
-
# if response and isinstance(response, list) and len(response) > 0:
|
| 313 |
-
# generated_text = response[0].get('generated_text', '').strip()
|
| 314 |
-
# if generated_text:
|
| 315 |
-
# # Find and extract only the answer part
|
| 316 |
-
# if "Answer:" in generated_text:
|
| 317 |
-
# answer_part = generated_text.split("Answer:")[-1].strip()
|
| 318 |
-
# elif "Answer (provide a complete, detailed response):" in generated_text:
|
| 319 |
-
# answer_part = generated_text.split("Answer (provide a complete, detailed response):")[-1].strip()
|
| 320 |
-
# else:
|
| 321 |
-
# answer_part = generated_text.strip()
|
| 322 |
-
|
| 323 |
-
# # Clean up the answer
|
| 324 |
-
# answer_part = answer_part.replace("Context:", "").replace("Question:", "")
|
| 325 |
-
|
| 326 |
-
# final_response = self.postprocess_response(answer_part)
|
| 327 |
-
# response_placeholder.markdown(final_response)
|
| 328 |
-
# return final_response
|
| 329 |
-
|
| 330 |
-
# message = "No relevant answer found. Please try rephrasing your question."
|
| 331 |
-
# response_placeholder.warning(message)
|
| 332 |
-
# return message
|
| 333 |
-
|
| 334 |
-
# except Exception as e:
|
| 335 |
-
# print(f"Generation error: {str(e)}")
|
| 336 |
-
# message = "Had some trouble generating the response. Please try again."
|
| 337 |
-
# response_placeholder.warning(message)
|
| 338 |
-
# return message
|
| 339 |
-
|
| 340 |
-
# except Exception as e:
|
| 341 |
-
# print(f"Process error: {str(e)}")
|
| 342 |
-
# message = "Something went wrong. Please try again with a different question."
|
| 343 |
-
# placeholder.warning(message)
|
| 344 |
-
# return message
|
| 345 |
-
def check_environment():
|
| 346 |
-
"""Check if the environment is properly set up"""
|
| 347 |
-
# if not headers['Authorization']:
|
| 348 |
-
# st.error("HUGGINGFACE_API_KEY environment variable not set!")
|
| 349 |
-
# st.stop()
|
| 350 |
-
# return False
|
| 351 |
-
|
| 352 |
-
try:
|
| 353 |
-
import torch
|
| 354 |
-
import sentence_transformers
|
| 355 |
-
return True
|
| 356 |
-
except ImportError as e:
|
| 357 |
-
st.error(f"Missing required package: {str(e)}")
|
| 358 |
-
st.stop()
|
| 359 |
-
return False
|
| 360 |
-
|
| 361 |
-
# @st.cache_resource
|
| 362 |
-
# def initialize_rag_pipeline():
|
| 363 |
-
# """Initialize the RAG pipeline once"""
|
| 364 |
-
# data_folder = "ESPN_data"
|
| 365 |
-
# return RAGPipeline(data_folder)
|
| 366 |
-
def check_space_requirements():
|
| 367 |
-
"""Check if we're running on HF Space and have necessary resources"""
|
| 368 |
-
try:
|
| 369 |
-
# Check if we're on HF Space
|
| 370 |
-
is_space = os.environ.get('SPACE_ID') is not None
|
| 371 |
-
|
| 372 |
-
if is_space:
|
| 373 |
-
# Check disk space
|
| 374 |
-
disk_space = os.statvfs('/')
|
| 375 |
-
free_space_gb = (disk_space.f_frsize * disk_space.f_bavail) / (1024**3)
|
| 376 |
-
|
| 377 |
-
if free_space_gb < 10: # Need at least 10GB free
|
| 378 |
-
st.warning(f"Low disk space: {free_space_gb:.1f}GB free")
|
| 379 |
-
|
| 380 |
-
# Check if model exists
|
| 381 |
-
model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
| 382 |
-
if not os.path.exists(model_path):
|
| 383 |
-
st.info("Model will be downloaded on first run")
|
| 384 |
-
|
| 385 |
-
# Check if embeddings exist
|
| 386 |
-
if not os.path.exists('embeddings_cache/embeddings.pkl'):
|
| 387 |
-
st.info("Embeddings will be loaded from Drive")
|
| 388 |
-
|
| 389 |
-
return True
|
| 390 |
-
|
| 391 |
-
except Exception as e:
|
| 392 |
-
logging.error(f"Space requirements check failed: {str(e)}")
|
| 393 |
-
return False
|
| 394 |
-
|
| 395 |
@st.cache_resource(show_spinner=False)
|
| 396 |
def initialize_rag_pipeline():
|
| 397 |
"""Initialize the RAG pipeline once"""
|
| 398 |
try:
|
| 399 |
-
#
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
# Load embeddings from Drive first
|
| 404 |
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
|
| 405 |
with st.spinner("Loading embeddings from Google Drive..."):
|
| 406 |
cache_data = load_from_drive(drive_file_id)
|
|
@@ -408,7 +229,7 @@ def initialize_rag_pipeline():
|
|
| 408 |
st.error("Failed to load embeddings from Google Drive")
|
| 409 |
st.stop()
|
| 410 |
|
| 411 |
-
#
|
| 412 |
data_folder = "ESPN_data"
|
| 413 |
rag = RAGPipeline(data_folder)
|
| 414 |
|
|
@@ -426,20 +247,9 @@ def initialize_rag_pipeline():
|
|
| 426 |
def main():
|
| 427 |
try:
|
| 428 |
# Environment check
|
| 429 |
-
if not check_environment()
|
| 430 |
return
|
| 431 |
|
| 432 |
-
# Session state for initialization status
|
| 433 |
-
if 'initialized' not in st.session_state:
|
| 434 |
-
st.session_state.initialized = False
|
| 435 |
-
|
| 436 |
-
# # Page config
|
| 437 |
-
# st.set_page_config(
|
| 438 |
-
# page_title="The Sport Chatbot",
|
| 439 |
-
# page_icon="π",
|
| 440 |
-
# layout="wide"
|
| 441 |
-
# )
|
| 442 |
-
|
| 443 |
# Improved CSS styling
|
| 444 |
st.markdown("""
|
| 445 |
<style>
|
|
@@ -510,7 +320,7 @@ def main():
|
|
| 510 |
</style>
|
| 511 |
""", unsafe_allow_html=True)
|
| 512 |
|
| 513 |
-
# Header section
|
| 514 |
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
| 515 |
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
| 516 |
st.markdown("""
|
|
@@ -523,40 +333,22 @@ def main():
|
|
| 523 |
</p>
|
| 524 |
""", unsafe_allow_html=True)
|
| 525 |
|
| 526 |
-
# Add some spacing
|
| 527 |
-
st.markdown("<br>", unsafe_allow_html=True)
|
| 528 |
-
|
| 529 |
# Initialize the pipeline
|
| 530 |
-
if not st.session_state
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
# Create necessary directories
|
| 534 |
-
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
| 535 |
-
os.makedirs(directory, exist_ok=True)
|
| 536 |
-
|
| 537 |
-
# Initialize RAG pipeline
|
| 538 |
-
st.session_state.rag = initialize_rag_pipeline()
|
| 539 |
-
st.session_state.initialized = True
|
| 540 |
-
|
| 541 |
-
st.success("System initialized successfully!")
|
| 542 |
-
except Exception as e:
|
| 543 |
-
logging.error(f"Initialization error: {str(e)}")
|
| 544 |
-
st.error("Unable to initialize the system. Please check if all required files are present.")
|
| 545 |
-
st.stop()
|
| 546 |
|
| 547 |
-
# Create columns for layout
|
| 548 |
col1, col2, col3 = st.columns([1, 6, 1])
|
| 549 |
|
| 550 |
with col2:
|
| 551 |
-
# Query input
|
| 552 |
query = st.text_input("What would you like to know about sports?")
|
| 553 |
|
| 554 |
-
# Centered button
|
| 555 |
if st.button("Get Answer"):
|
| 556 |
if query:
|
| 557 |
response_placeholder = st.empty()
|
| 558 |
try:
|
| 559 |
-
# Get response from RAG pipeline
|
| 560 |
response = st.session_state.rag.process_query(query, response_placeholder)
|
| 561 |
logging.info(f"Generated response: {response}")
|
| 562 |
except Exception as e:
|
|
@@ -565,13 +357,12 @@ def main():
|
|
| 565 |
else:
|
| 566 |
st.warning("Please enter a question!")
|
| 567 |
|
| 568 |
-
# Footer
|
| 569 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
| 570 |
st.markdown("---")
|
| 571 |
st.markdown("""
|
| 572 |
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
| 573 |
-
Powered by ESPN Data & Mistral AI
|
| 574 |
-
<small>Running on Hugging Face Spaces</small>
|
| 575 |
</p>
|
| 576 |
""", unsafe_allow_html=True)
|
| 577 |
|
|
@@ -580,8 +371,4 @@ def main():
|
|
| 580 |
st.error("An unexpected error occurred. Please check the logs and try again.")
|
| 581 |
|
| 582 |
if __name__ == "__main__":
|
| 583 |
-
|
| 584 |
-
main()
|
| 585 |
-
except Exception as e:
|
| 586 |
-
logging.error(f"Application error: {str(e)}")
|
| 587 |
-
st.error("An unexpected error occurred. Please check the logs and try again.")
|
|
|
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import re
|
| 9 |
import requests
|
|
|
|
| 10 |
from embedding_processor import SentenceTransformerRetriever, process_data
|
| 11 |
import pickle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import logging
|
| 13 |
import sys
|
| 14 |
+
from llama_cpp import Llama
|
| 15 |
+
from tqdm import tqdm
|
| 16 |
|
| 17 |
+
# Set page config first
|
| 18 |
st.set_page_config(
|
| 19 |
page_title="The Sport Chatbot",
|
| 20 |
page_icon="π",
|
|
|
|
| 28 |
handlers=[logging.StreamHandler(sys.stdout)]
|
| 29 |
)
|
| 30 |
|
| 31 |
+
def download_file_with_progress(url: str, filename: str):
|
| 32 |
+
"""Download a file with progress bar using requests"""
|
| 33 |
+
response = requests.get(url, stream=True)
|
| 34 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 35 |
+
|
| 36 |
+
with open(filename, 'wb') as file, tqdm(
|
| 37 |
+
desc=filename,
|
| 38 |
+
total=total_size,
|
| 39 |
+
unit='iB',
|
| 40 |
+
unit_scale=True,
|
| 41 |
+
unit_divisor=1024,
|
| 42 |
+
) as progress_bar:
|
| 43 |
+
for data in response.iter_content(chunk_size=1024):
|
| 44 |
+
size = file.write(data)
|
| 45 |
+
progress_bar.update(size)
|
| 46 |
|
| 47 |
@st.cache_data
|
| 48 |
def load_from_drive(file_id: str):
|
|
|
|
| 67 |
st.error(f"Error loading file from Drive: {str(e)}")
|
| 68 |
return None
|
| 69 |
|
| 70 |
+
@st.cache_resource(show_spinner=False)
|
| 71 |
+
def load_llama_model():
|
| 72 |
+
"""Load Llama model with caching"""
|
| 73 |
+
try:
|
| 74 |
+
model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(model_path):
|
| 77 |
+
st.info("Downloading model... This may take a while.")
|
| 78 |
+
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 79 |
+
download_file_with_progress(direct_url, model_path)
|
| 80 |
+
|
| 81 |
+
llm_config = {
|
| 82 |
+
"model_path": model_path,
|
| 83 |
+
"n_ctx": 2048,
|
| 84 |
+
"n_threads": 4,
|
| 85 |
+
"n_batch": 512,
|
| 86 |
+
"n_gpu_layers": 0,
|
| 87 |
+
"verbose": False
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
model = Llama(**llm_config)
|
| 91 |
+
st.success("Model loaded successfully!")
|
| 92 |
+
return model
|
| 93 |
+
except Exception as e:
|
| 94 |
+
st.error(f"Error loading model: {str(e)}")
|
| 95 |
+
raise
|
| 96 |
|
| 97 |
+
def check_environment():
|
| 98 |
+
"""Check if the environment is properly set up"""
|
| 99 |
+
try:
|
| 100 |
+
import torch
|
| 101 |
+
import sentence_transformers
|
| 102 |
+
return True
|
| 103 |
+
except ImportError as e:
|
| 104 |
+
st.error(f"Missing required package: {str(e)}")
|
| 105 |
+
st.stop()
|
| 106 |
+
return False
|
| 107 |
|
| 108 |
class RAGPipeline:
|
|
|
|
| 109 |
def __init__(self, data_folder: str, k: int = 5):
|
| 110 |
+
self.data_folder = data_folder
|
| 111 |
+
self.k = k
|
| 112 |
+
self.retriever = SentenceTransformerRetriever()
|
| 113 |
+
self.documents = []
|
| 114 |
+
self.device = torch.device("cpu")
|
| 115 |
+
self.llm = load_llama_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
def preprocess_query(self, query: str) -> str:
|
| 118 |
+
"""Clean and prepare the query"""
|
| 119 |
+
query = query.lower().strip()
|
| 120 |
+
query = re.sub(r'\s+', ' ', query)
|
| 121 |
+
return query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
def postprocess_response(self, response: str) -> str:
|
| 124 |
+
"""Clean up the generated response"""
|
| 125 |
+
response = response.strip()
|
| 126 |
+
response = re.sub(r'\s+', ' ', response)
|
| 127 |
+
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
| 128 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
|
|
|
| 130 |
def query_model(self, prompt: str) -> str:
|
| 131 |
+
"""Query the local Llama model"""
|
| 132 |
try:
|
| 133 |
if self.llm is None:
|
| 134 |
raise RuntimeError("Model not initialized")
|
| 135 |
+
|
|
|
|
| 136 |
response = self.llm(
|
| 137 |
prompt,
|
| 138 |
max_tokens=512,
|
|
|
|
| 141 |
echo=False,
|
| 142 |
stop=["Question:", "\n\n"]
|
| 143 |
)
|
| 144 |
+
|
|
|
|
| 145 |
if response and 'choices' in response and len(response['choices']) > 0:
|
| 146 |
text = response['choices'][0].get('text', '').strip()
|
| 147 |
return text
|
| 148 |
else:
|
| 149 |
raise ValueError("No valid response generated")
|
| 150 |
+
|
| 151 |
except Exception as e:
|
| 152 |
logging.error(f"Error in query_model: {str(e)}")
|
| 153 |
raise
|
| 154 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
def process_query(self, query: str, placeholder) -> str:
|
| 156 |
try:
|
| 157 |
# Preprocess query
|
| 158 |
query = self.preprocess_query(query)
|
| 159 |
+
|
| 160 |
# Show retrieval status
|
| 161 |
status = placeholder.empty()
|
| 162 |
status.write("π Finding relevant information...")
|
| 163 |
+
|
| 164 |
# Get embeddings and search
|
| 165 |
query_embedding = self.retriever.encode([query])
|
| 166 |
similarities = F.cosine_similarity(query_embedding, self.retriever.doc_embeddings)
|
| 167 |
scores, indices = torch.topk(similarities, k=min(self.k, len(self.documents)))
|
| 168 |
+
|
| 169 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 170 |
+
|
| 171 |
# Update status
|
| 172 |
status.write("π Generating response...")
|
| 173 |
+
|
| 174 |
# Prepare context and prompt
|
| 175 |
+
context = "\n".join(relevant_docs[:3])
|
| 176 |
prompt = f"""Context information is below:
|
| 177 |
{context}
|
| 178 |
+
|
| 179 |
Given the context above, please answer the following question:
|
| 180 |
{query}
|
| 181 |
|
|
|
|
| 185 |
- Only include sports-related information
|
| 186 |
- No dates or timestamps in the response
|
| 187 |
- Use clear, natural language
|
| 188 |
+
|
| 189 |
Answer:"""
|
| 190 |
+
|
| 191 |
# Generate response
|
| 192 |
response_placeholder = placeholder.empty()
|
| 193 |
+
|
| 194 |
try:
|
| 195 |
response_text = self.query_model(prompt)
|
| 196 |
if response_text:
|
|
|
|
| 201 |
message = "No relevant answer found. Please try rephrasing your question."
|
| 202 |
response_placeholder.warning(message)
|
| 203 |
return message
|
| 204 |
+
|
| 205 |
except Exception as e:
|
| 206 |
logging.error(f"Generation error: {str(e)}")
|
| 207 |
message = "Had some trouble generating the response. Please try again."
|
| 208 |
response_placeholder.warning(message)
|
| 209 |
return message
|
| 210 |
+
|
| 211 |
except Exception as e:
|
| 212 |
logging.error(f"Process error: {str(e)}")
|
| 213 |
message = "Something went wrong. Please try again with a different question."
|
| 214 |
placeholder.warning(message)
|
| 215 |
return message
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
@st.cache_resource(show_spinner=False)
|
| 218 |
def initialize_rag_pipeline():
|
| 219 |
"""Initialize the RAG pipeline once"""
|
| 220 |
try:
|
| 221 |
+
# Create necessary directories
|
| 222 |
+
os.makedirs("ESPN_data", exist_ok=True)
|
| 223 |
+
|
| 224 |
+
# Load embeddings from Drive
|
|
|
|
| 225 |
drive_file_id = "1MuV63AE9o6zR9aBvdSDQOUextp71r2NN"
|
| 226 |
with st.spinner("Loading embeddings from Google Drive..."):
|
| 227 |
cache_data = load_from_drive(drive_file_id)
|
|
|
|
| 229 |
st.error("Failed to load embeddings from Google Drive")
|
| 230 |
st.stop()
|
| 231 |
|
| 232 |
+
# Initialize pipeline
|
| 233 |
data_folder = "ESPN_data"
|
| 234 |
rag = RAGPipeline(data_folder)
|
| 235 |
|
|
|
|
| 247 |
def main():
|
| 248 |
try:
|
| 249 |
# Environment check
|
| 250 |
+
if not check_environment():
|
| 251 |
return
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
# Improved CSS styling
|
| 254 |
st.markdown("""
|
| 255 |
<style>
|
|
|
|
| 320 |
</style>
|
| 321 |
""", unsafe_allow_html=True)
|
| 322 |
|
| 323 |
+
# Header section
|
| 324 |
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
| 325 |
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
| 326 |
st.markdown("""
|
|
|
|
| 333 |
</p>
|
| 334 |
""", unsafe_allow_html=True)
|
| 335 |
|
|
|
|
|
|
|
|
|
|
| 336 |
# Initialize the pipeline
|
| 337 |
+
if 'rag' not in st.session_state:
|
| 338 |
+
with st.spinner("Loading resources..."):
|
| 339 |
+
st.session_state.rag = initialize_rag_pipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
+
# Create columns for layout
|
| 342 |
col1, col2, col3 = st.columns([1, 6, 1])
|
| 343 |
|
| 344 |
with col2:
|
| 345 |
+
# Query input
|
| 346 |
query = st.text_input("What would you like to know about sports?")
|
| 347 |
|
|
|
|
| 348 |
if st.button("Get Answer"):
|
| 349 |
if query:
|
| 350 |
response_placeholder = st.empty()
|
| 351 |
try:
|
|
|
|
| 352 |
response = st.session_state.rag.process_query(query, response_placeholder)
|
| 353 |
logging.info(f"Generated response: {response}")
|
| 354 |
except Exception as e:
|
|
|
|
| 357 |
else:
|
| 358 |
st.warning("Please enter a question!")
|
| 359 |
|
| 360 |
+
# Footer
|
| 361 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
| 362 |
st.markdown("---")
|
| 363 |
st.markdown("""
|
| 364 |
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
| 365 |
+
Powered by ESPN Data & Mistral AI π
|
|
|
|
| 366 |
</p>
|
| 367 |
""", unsafe_allow_html=True)
|
| 368 |
|
|
|
|
| 371 |
st.error("An unexpected error occurred. Please check the logs and try again.")
|
| 372 |
|
| 373 |
if __name__ == "__main__":
|
| 374 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|