Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -153,43 +153,6 @@ class SentenceTransformerRetriever:
|
|
| 153 |
def get_cache_path(self, data_folder: str = None) -> str:
|
| 154 |
return os.path.join(self.cache_dir, self.cache_file)
|
| 155 |
|
| 156 |
-
@st.cache_resource
|
| 157 |
-
def initialize_model(self):
|
| 158 |
-
try:
|
| 159 |
-
if not os.path.exists(self.model_path):
|
| 160 |
-
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 161 |
-
download_file_with_progress(direct_url, self.model_path)
|
| 162 |
-
|
| 163 |
-
# Verify file exists and has content
|
| 164 |
-
if not os.path.exists(self.model_path):
|
| 165 |
-
raise FileNotFoundError(f"Model file {self.model_path} not found after download attempts")
|
| 166 |
-
|
| 167 |
-
if os.path.getsize(self.model_path) < 1000000: # Less than 1MB
|
| 168 |
-
os.remove(self.model_path)
|
| 169 |
-
raise ValueError("Downloaded model file is too small, likely corrupted")
|
| 170 |
-
|
| 171 |
-
llm_config = {
|
| 172 |
-
"n_ctx": 2048,
|
| 173 |
-
"n_threads": 4,
|
| 174 |
-
"n_batch": 512,
|
| 175 |
-
"n_gpu_layers": 0,
|
| 176 |
-
"verbose": False
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
return Llama(model_path=self.model_path, **llm_config)
|
| 180 |
-
|
| 181 |
-
except FileNotFoundError as e:
|
| 182 |
-
logging.error(f"Failed to find or download model file: {str(e)}")
|
| 183 |
-
raise
|
| 184 |
-
|
| 185 |
-
except ValueError as e:
|
| 186 |
-
logging.error(f"Model file validation failed: {str(e)}")
|
| 187 |
-
raise
|
| 188 |
-
|
| 189 |
-
except Exception as e:
|
| 190 |
-
logging.error(f"Unexpected error during model initialization: {str(e)}")
|
| 191 |
-
raise RuntimeError(f"Failed to initialize model: {str(e)}") from e
|
| 192 |
-
|
| 193 |
|
| 194 |
@log_function
|
| 195 |
def save_cache(self, data_folder: str, cache_data: dict):
|
|
@@ -249,9 +212,47 @@ class RAGPipeline:
|
|
| 249 |
self.retriever = SentenceTransformerRetriever()
|
| 250 |
self.documents = []
|
| 251 |
self.device = torch.device("cpu")
|
|
|
|
|
|
|
| 252 |
self.llm = initialize_model()
|
| 253 |
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
@log_function
|
| 257 |
@st.cache_data
|
|
|
|
| 153 |
def get_cache_path(self, data_folder: str = None) -> str:
|
| 154 |
return os.path.join(self.cache_dir, self.cache_file)
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
@log_function
|
| 158 |
def save_cache(self, data_folder: str, cache_data: dict):
|
|
|
|
| 212 |
self.retriever = SentenceTransformerRetriever()
|
| 213 |
self.documents = []
|
| 214 |
self.device = torch.device("cpu")
|
| 215 |
+
|
| 216 |
+
self.model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
| 217 |
self.llm = initialize_model()
|
| 218 |
|
| 219 |
+
@st.cache_resource
|
| 220 |
+
def initialize_model(self):
|
| 221 |
+
try:
|
| 222 |
+
if not os.path.exists(self.model_path):
|
| 223 |
+
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 224 |
+
download_file_with_progress(direct_url, self.model_path)
|
| 225 |
+
|
| 226 |
+
# Verify file exists and has content
|
| 227 |
+
if not os.path.exists(self.model_path):
|
| 228 |
+
raise FileNotFoundError(f"Model file {self.model_path} not found after download attempts")
|
| 229 |
+
|
| 230 |
+
if os.path.getsize(self.model_path) < 1000000: # Less than 1MB
|
| 231 |
+
os.remove(self.model_path)
|
| 232 |
+
raise ValueError("Downloaded model file is too small, likely corrupted")
|
| 233 |
+
|
| 234 |
+
llm_config = {
|
| 235 |
+
"n_ctx": 2048,
|
| 236 |
+
"n_threads": 4,
|
| 237 |
+
"n_batch": 512,
|
| 238 |
+
"n_gpu_layers": 0,
|
| 239 |
+
"verbose": False
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
return Llama(model_path=self.model_path, **llm_config)
|
| 243 |
+
|
| 244 |
+
except FileNotFoundError as e:
|
| 245 |
+
logging.error(f"Failed to find or download model file: {str(e)}")
|
| 246 |
+
raise
|
| 247 |
+
|
| 248 |
+
except ValueError as e:
|
| 249 |
+
logging.error(f"Model file validation failed: {str(e)}")
|
| 250 |
+
raise
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logging.error(f"Unexpected error during model initialization: {str(e)}")
|
| 254 |
+
raise RuntimeError(f"Failed to initialize model: {str(e)}") from e
|
| 255 |
+
|
| 256 |
|
| 257 |
@log_function
|
| 258 |
@st.cache_data
|