Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,14 @@
|
|
| 1 |
import os
|
| 2 |
import warnings
|
|
|
|
|
|
|
| 3 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
import torch
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
-
from typing import List, Callable
|
| 10 |
import glob
|
| 11 |
from tqdm import tqdm
|
| 12 |
import pickle
|
|
@@ -19,9 +21,22 @@ import re
|
|
| 19 |
import time
|
| 20 |
import requests
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Force CPU device
|
| 23 |
torch.device('cpu')
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Logging configuration
|
| 26 |
LOGGING_CONFIG = {
|
| 27 |
'enabled': True,
|
|
@@ -49,36 +64,7 @@ def download_file_with_progress(url: str, filename: str):
|
|
| 49 |
for data in response.iter_content(chunk_size=1024):
|
| 50 |
size = file.write(data)
|
| 51 |
progress_bar.update(size)
|
| 52 |
-
|
| 53 |
-
@st.cache_data
|
| 54 |
-
def load_from_drive(file_id: str):
|
| 55 |
-
"""Load pickle file directly from Google Drive"""
|
| 56 |
-
try:
|
| 57 |
-
# Direct download URL for Google Drive
|
| 58 |
-
url = f"https://drive.google.com/uc?id={file_id}&export=download"
|
| 59 |
-
|
| 60 |
-
# First request to get the confirmation token
|
| 61 |
-
session = requests.Session()
|
| 62 |
-
response = session.get(url, stream=True)
|
| 63 |
-
|
| 64 |
-
# Check if we need to confirm download
|
| 65 |
-
for key, value in response.cookies.items():
|
| 66 |
-
if key.startswith('download_warning'):
|
| 67 |
-
# Add confirmation parameter to the URL
|
| 68 |
-
url = f"{url}&confirm={value}"
|
| 69 |
-
response = session.get(url, stream=True)
|
| 70 |
-
break
|
| 71 |
-
|
| 72 |
-
# Load the content and convert to pickle
|
| 73 |
-
content = response.content
|
| 74 |
-
print(f"Successfully downloaded {len(content)} bytes")
|
| 75 |
-
return pickle.loads(content)
|
| 76 |
-
|
| 77 |
-
except Exception as e:
|
| 78 |
-
print(f"Detailed error: {str(e)}") # This will help debug
|
| 79 |
-
st.error(f"Error loading file from Drive: {str(e)}")
|
| 80 |
-
return None
|
| 81 |
-
|
| 82 |
def log_function(func: Callable) -> Callable:
|
| 83 |
"""Decorator to log function inputs and outputs"""
|
| 84 |
@functools.wraps(func)
|
|
@@ -135,48 +121,70 @@ def check_environment():
|
|
| 135 |
st.stop()
|
| 136 |
return False
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
class SentenceTransformerRetriever:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
with warnings.catch_warnings():
|
| 145 |
warnings.simplefilter("ignore")
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
|
| 153 |
def get_cache_path(self, data_folder: str = None) -> str:
|
| 154 |
return os.path.join(self.cache_dir, self.cache_file)
|
| 155 |
-
|
| 156 |
|
| 157 |
@log_function
|
| 158 |
def save_cache(self, data_folder: str, cache_data: dict):
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
os.
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
@log_function
|
| 167 |
@st.cache_data
|
| 168 |
-
def load_cache(
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
@log_function
|
| 177 |
def encode(self, texts: List[str], batch_size: int = 32) -> torch.Tensor:
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
@log_function
|
| 182 |
def store_embeddings(self, embeddings: torch.Tensor):
|
|
@@ -187,23 +195,16 @@ class SentenceTransformerRetriever:
|
|
| 187 |
if self.doc_embeddings is None:
|
| 188 |
raise ValueError("No document embeddings stored!")
|
| 189 |
|
| 190 |
-
# Compute similarities
|
| 191 |
similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
|
| 192 |
-
|
| 193 |
-
# Get top k scores and indices
|
| 194 |
k = min(k, len(documents))
|
| 195 |
scores, indices = torch.topk(similarities, k=k)
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
print(f"Selected similarities: {scores.tolist()}")
|
| 202 |
|
| 203 |
return indices.cpu(), scores.cpu()
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
|
| 208 |
class RAGPipeline:
|
| 209 |
def __init__(self, data_folder: str, k: int = 5):
|
|
@@ -212,29 +213,25 @@ class RAGPipeline:
|
|
| 212 |
self.retriever = SentenceTransformerRetriever()
|
| 213 |
self.documents = []
|
| 214 |
self.device = torch.device("cpu")
|
| 215 |
-
self.model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
| 216 |
-
# Initialize model in init
|
| 217 |
self.llm = None
|
| 218 |
-
self.
|
| 219 |
-
|
| 220 |
|
| 221 |
-
st.cache_resource
|
| 222 |
-
def
|
| 223 |
-
"""Initialize the model with proper error handling and verification
|
| 224 |
-
|
| 225 |
-
Note: Using _self instead of self for Streamlit caching compatibility
|
| 226 |
-
"""
|
| 227 |
try:
|
| 228 |
-
|
|
|
|
|
|
|
| 229 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 230 |
-
download_file_with_progress(direct_url,
|
| 231 |
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
raise FileNotFoundError(f"Model file {_self.model_path} not found after download attempts")
|
| 235 |
|
| 236 |
-
if os.path.getsize(
|
| 237 |
-
os.remove(
|
| 238 |
raise ValueError("Downloaded model file is too small, likely corrupted")
|
| 239 |
|
| 240 |
llm_config = {
|
|
@@ -245,43 +242,73 @@ class RAGPipeline:
|
|
| 245 |
"verbose": False
|
| 246 |
}
|
| 247 |
|
| 248 |
-
|
| 249 |
st.success("Model loaded successfully!")
|
| 250 |
|
| 251 |
except Exception as e:
|
|
|
|
| 252 |
st.error(f"Error initializing model: {str(e)}")
|
| 253 |
raise
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
@log_function
|
| 256 |
@st.cache_data
|
| 257 |
-
def load_and_process_csvs(
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
def preprocess_query(self, query: str) -> str:
|
| 287 |
"""Clean and prepare the query"""
|
|
@@ -299,6 +326,12 @@ class RAGPipeline:
|
|
| 299 |
@log_function
|
| 300 |
def process_query(self, query: str, placeholder) -> str:
|
| 301 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
# Preprocess query
|
| 303 |
query = self.preprocess_query(query)
|
| 304 |
|
|
@@ -311,9 +344,9 @@ class RAGPipeline:
|
|
| 311 |
indices, scores = self.retriever.search(query_embedding, self.k, self.documents)
|
| 312 |
|
| 313 |
# Print search results for debugging
|
| 314 |
-
|
| 315 |
for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 316 |
-
|
| 317 |
|
| 318 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 319 |
|
|
@@ -339,7 +372,6 @@ class RAGPipeline:
|
|
| 339 |
|
| 340 |
# Generate response
|
| 341 |
response_placeholder = placeholder.empty()
|
| 342 |
-
generated_text = ""
|
| 343 |
|
| 344 |
try:
|
| 345 |
response = self.llm(
|
|
@@ -368,163 +400,183 @@ class RAGPipeline:
|
|
| 368 |
return message
|
| 369 |
|
| 370 |
except Exception as e:
|
| 371 |
-
|
| 372 |
message = "Had some trouble generating the response. Please try again."
|
| 373 |
response_placeholder.warning(message)
|
| 374 |
return message
|
| 375 |
|
| 376 |
except Exception as e:
|
| 377 |
-
|
| 378 |
message = "Something went wrong. Please try again with a different question."
|
| 379 |
placeholder.warning(message)
|
| 380 |
return message
|
| 381 |
-
|
| 382 |
|
| 383 |
-
|
| 384 |
-
@st.cache_resource
|
| 385 |
def initialize_rag_pipeline():
|
| 386 |
"""Initialize the RAG pipeline once"""
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
def main():
|
| 393 |
-
# Environment check
|
| 394 |
-
if not check_environment():
|
| 395 |
-
return
|
| 396 |
-
|
| 397 |
-
# Page config
|
| 398 |
-
st.set_page_config(
|
| 399 |
-
page_title="The Sport Chatbot",
|
| 400 |
-
page_icon="π",
|
| 401 |
-
layout="wide" # Changed back to wide for more space
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
# Improved CSS styling
|
| 405 |
-
st.markdown("""
|
| 406 |
-
<style>
|
| 407 |
-
/* Container styling */
|
| 408 |
-
.block-container {
|
| 409 |
-
padding-top: 2rem;
|
| 410 |
-
padding-bottom: 2rem;
|
| 411 |
-
}
|
| 412 |
-
|
| 413 |
-
/* Text input styling */
|
| 414 |
-
.stTextInput > div > div > input {
|
| 415 |
-
width: 100%;
|
| 416 |
-
}
|
| 417 |
-
|
| 418 |
-
/* Button styling */
|
| 419 |
-
.stButton > button {
|
| 420 |
-
width: 200px;
|
| 421 |
-
margin: 0 auto;
|
| 422 |
-
display: block;
|
| 423 |
-
background-color: #FF4B4B;
|
| 424 |
-
color: white;
|
| 425 |
-
border-radius: 5px;
|
| 426 |
-
padding: 0.5rem 1rem;
|
| 427 |
-
}
|
| 428 |
-
|
| 429 |
-
/* Title styling */
|
| 430 |
-
.main-title {
|
| 431 |
-
text-align: center;
|
| 432 |
-
padding: 1rem 0;
|
| 433 |
-
font-size: 3rem;
|
| 434 |
-
color: #1F1F1F;
|
| 435 |
-
}
|
| 436 |
-
|
| 437 |
-
.sub-title {
|
| 438 |
-
text-align: center;
|
| 439 |
-
padding: 0.5rem 0;
|
| 440 |
-
font-size: 1.5rem;
|
| 441 |
-
color: #4F4F4F;
|
| 442 |
-
}
|
| 443 |
-
|
| 444 |
-
/* Description styling */
|
| 445 |
-
.description {
|
| 446 |
-
text-align: center;
|
| 447 |
-
color: #666666;
|
| 448 |
-
padding: 0.5rem 0;
|
| 449 |
-
font-size: 1.1rem;
|
| 450 |
-
line-height: 1.6;
|
| 451 |
-
margin-bottom: 1rem;
|
| 452 |
-
}
|
| 453 |
-
|
| 454 |
-
/* Answer container styling */
|
| 455 |
-
.stMarkdown {
|
| 456 |
-
max-width: 100%;
|
| 457 |
-
}
|
| 458 |
-
|
| 459 |
-
/* Streamlit default overrides */
|
| 460 |
-
.st-emotion-cache-16idsys p {
|
| 461 |
-
font-size: 1.1rem;
|
| 462 |
-
line-height: 1.6;
|
| 463 |
-
}
|
| 464 |
-
|
| 465 |
-
/* Container for main content */
|
| 466 |
-
.main-content {
|
| 467 |
-
max-width: 1200px;
|
| 468 |
-
margin: 0 auto;
|
| 469 |
-
padding: 0 1rem;
|
| 470 |
-
}
|
| 471 |
-
</style>
|
| 472 |
-
""", unsafe_allow_html=True)
|
| 473 |
-
|
| 474 |
-
# Header section with improved styling
|
| 475 |
-
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
| 476 |
-
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
| 477 |
-
st.markdown("""
|
| 478 |
-
<p class='description'>
|
| 479 |
-
Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
| 480 |
-
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
| 481 |
-
</p>
|
| 482 |
-
<p class='description'>
|
| 483 |
-
Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
|
| 484 |
-
</p>
|
| 485 |
-
""", unsafe_allow_html=True)
|
| 486 |
-
|
| 487 |
-
# Add some spacing
|
| 488 |
-
st.markdown("<br>", unsafe_allow_html=True)
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
# Initialize the pipeline
|
| 492 |
try:
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
print(f"Initialization error: {str(e)}")
|
| 497 |
-
st.error("Unable to initialize the system. Please check if all required files are present.")
|
| 498 |
-
st.stop()
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
|
| 529 |
if __name__ == "__main__":
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import warnings
|
| 3 |
+
import logging
|
| 4 |
+
import sys
|
| 5 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import pandas as pd
|
| 9 |
import torch
|
| 10 |
from sentence_transformers import SentenceTransformer
|
| 11 |
+
from typing import List, Callable, Dict, Optional, Any
|
| 12 |
import glob
|
| 13 |
from tqdm import tqdm
|
| 14 |
import pickle
|
|
|
|
| 21 |
import time
|
| 22 |
import requests
|
| 23 |
|
| 24 |
+
# Configure logging
|
| 25 |
+
logging.basicConfig(
|
| 26 |
+
level=logging.INFO,
|
| 27 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 28 |
+
handlers=[
|
| 29 |
+
logging.StreamHandler(sys.stdout)
|
| 30 |
+
]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
# Force CPU device
|
| 34 |
torch.device('cpu')
|
| 35 |
|
| 36 |
+
# Create necessary directories
|
| 37 |
+
for directory in ['models', 'ESPN_data', 'embeddings_cache']:
|
| 38 |
+
os.makedirs(directory, exist_ok=True)
|
| 39 |
+
|
| 40 |
# Logging configuration
|
| 41 |
LOGGING_CONFIG = {
|
| 42 |
'enabled': True,
|
|
|
|
| 64 |
for data in response.iter_content(chunk_size=1024):
|
| 65 |
size = file.write(data)
|
| 66 |
progress_bar.update(size)
|
| 67 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
def log_function(func: Callable) -> Callable:
|
| 69 |
"""Decorator to log function inputs and outputs"""
|
| 70 |
@functools.wraps(func)
|
|
|
|
| 121 |
st.stop()
|
| 122 |
return False
|
| 123 |
|
|
|
|
|
|
|
| 124 |
class SentenceTransformerRetriever:
|
| 125 |
+
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"):
|
| 126 |
+
self.device = torch.device("cpu")
|
| 127 |
+
self.model_name = model_name
|
| 128 |
+
self.cache_dir = cache_dir
|
| 129 |
+
self.cache_file = "embeddings.pkl"
|
| 130 |
+
self.doc_embeddings = None
|
| 131 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 132 |
+
# Initialize model using cached method
|
| 133 |
+
self.model = self._load_model()
|
| 134 |
+
|
| 135 |
+
@st.cache_resource(show_spinner=False)
|
| 136 |
+
def _load_model(self):
|
| 137 |
+
"""Load and cache the sentence transformer model"""
|
| 138 |
with warnings.catch_warnings():
|
| 139 |
warnings.simplefilter("ignore")
|
| 140 |
+
model = SentenceTransformer(self.model_name, device="cpu")
|
| 141 |
+
# Verify model is loaded correctly
|
| 142 |
+
test_embedding = model.encode("test", convert_to_tensor=True)
|
| 143 |
+
if not isinstance(test_embedding, torch.Tensor):
|
| 144 |
+
raise ValueError("Model initialization failed")
|
| 145 |
+
return model
|
| 146 |
|
| 147 |
def get_cache_path(self, data_folder: str = None) -> str:
|
| 148 |
return os.path.join(self.cache_dir, self.cache_file)
|
|
|
|
| 149 |
|
| 150 |
@log_function
|
| 151 |
def save_cache(self, data_folder: str, cache_data: dict):
|
| 152 |
+
try:
|
| 153 |
+
cache_path = self.get_cache_path()
|
| 154 |
+
if os.path.exists(cache_path):
|
| 155 |
+
os.remove(cache_path)
|
| 156 |
+
with open(cache_path, 'wb') as f:
|
| 157 |
+
pickle.dump(cache_data, f)
|
| 158 |
+
logging.info(f"Cache saved at: {cache_path}")
|
| 159 |
+
except Exception as e:
|
| 160 |
+
logging.error(f"Error saving cache: {str(e)}")
|
| 161 |
+
raise
|
| 162 |
|
| 163 |
@log_function
|
| 164 |
@st.cache_data
|
| 165 |
+
def load_cache(self, data_folder: str = None) -> Optional[Dict]:
|
| 166 |
+
try:
|
| 167 |
+
cache_path = self.get_cache_path()
|
| 168 |
+
if os.path.exists(cache_path):
|
| 169 |
+
with open(cache_path, 'rb') as f:
|
| 170 |
+
logging.info(f"Loading cache from: {cache_path}")
|
| 171 |
+
cache_data = pickle.load(f)
|
| 172 |
+
if isinstance(cache_data, dict) and 'embeddings' in cache_data and 'documents' in cache_data:
|
| 173 |
+
return cache_data
|
| 174 |
+
logging.warning("Invalid cache format")
|
| 175 |
+
return None
|
| 176 |
+
except Exception as e:
|
| 177 |
+
logging.error(f"Error loading cache: {str(e)}")
|
| 178 |
+
return None
|
| 179 |
+
|
| 180 |
@log_function
|
| 181 |
def encode(self, texts: List[str], batch_size: int = 32) -> torch.Tensor:
|
| 182 |
+
try:
|
| 183 |
+
embeddings = self.model.encode(texts, batch_size=batch_size, convert_to_tensor=True, show_progress_bar=True)
|
| 184 |
+
return F.normalize(embeddings, p=2, dim=1)
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logging.error(f"Error encoding texts: {str(e)}")
|
| 187 |
+
raise
|
| 188 |
|
| 189 |
@log_function
|
| 190 |
def store_embeddings(self, embeddings: torch.Tensor):
|
|
|
|
| 195 |
if self.doc_embeddings is None:
|
| 196 |
raise ValueError("No document embeddings stored!")
|
| 197 |
|
|
|
|
| 198 |
similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
|
|
|
|
|
|
|
| 199 |
k = min(k, len(documents))
|
| 200 |
scores, indices = torch.topk(similarities, k=k)
|
| 201 |
|
| 202 |
+
logging.info(f"\nSimilarity Stats:")
|
| 203 |
+
logging.info(f"Max similarity: {similarities.max().item():.4f}")
|
| 204 |
+
logging.info(f"Mean similarity: {similarities.mean().item():.4f}")
|
| 205 |
+
logging.info(f"Selected similarities: {scores.tolist()}")
|
|
|
|
| 206 |
|
| 207 |
return indices.cpu(), scores.cpu()
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
class RAGPipeline:
|
| 210 |
def __init__(self, data_folder: str, k: int = 5):
|
|
|
|
| 213 |
self.retriever = SentenceTransformerRetriever()
|
| 214 |
self.documents = []
|
| 215 |
self.device = torch.device("cpu")
|
| 216 |
+
self.model_path = os.path.join("models", "mistral-7b-v0.1.Q4_K_M.gguf")
|
|
|
|
| 217 |
self.llm = None
|
| 218 |
+
self._initialize_model()
|
|
|
|
| 219 |
|
| 220 |
+
@st.cache_resource(show_spinner=False)
|
| 221 |
+
def _initialize_model(self):
|
| 222 |
+
"""Initialize the model with proper error handling and verification"""
|
|
|
|
|
|
|
|
|
|
| 223 |
try:
|
| 224 |
+
os.makedirs(os.path.dirname(self.model_path), exist_ok=True)
|
| 225 |
+
|
| 226 |
+
if not os.path.exists(self.model_path):
|
| 227 |
direct_url = "https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF/resolve/main/mistral-7b-v0.1.Q4_K_M.gguf"
|
| 228 |
+
download_file_with_progress(direct_url, self.model_path)
|
| 229 |
|
| 230 |
+
if not os.path.exists(self.model_path):
|
| 231 |
+
raise FileNotFoundError(f"Model file {self.model_path} not found after download attempts")
|
|
|
|
| 232 |
|
| 233 |
+
if os.path.getsize(self.model_path) < 1000000: # Less than 1MB
|
| 234 |
+
os.remove(self.model_path)
|
| 235 |
raise ValueError("Downloaded model file is too small, likely corrupted")
|
| 236 |
|
| 237 |
llm_config = {
|
|
|
|
| 242 |
"verbose": False
|
| 243 |
}
|
| 244 |
|
| 245 |
+
self.llm = Llama(model_path=self.model_path, **llm_config)
|
| 246 |
st.success("Model loaded successfully!")
|
| 247 |
|
| 248 |
except Exception as e:
|
| 249 |
+
logging.error(f"Error initializing model: {str(e)}")
|
| 250 |
st.error(f"Error initializing model: {str(e)}")
|
| 251 |
raise
|
| 252 |
+
|
| 253 |
+
def check_model_health(self):
|
| 254 |
+
"""Verify that the model is loaded and functioning"""
|
| 255 |
+
try:
|
| 256 |
+
if self.llm is None:
|
| 257 |
+
return False
|
| 258 |
+
|
| 259 |
+
# Simple test prompt
|
| 260 |
+
test_response = self.llm(
|
| 261 |
+
"Test prompt",
|
| 262 |
+
max_tokens=10,
|
| 263 |
+
temperature=0.4,
|
| 264 |
+
echo=False
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
return isinstance(test_response, dict) and 'choices' in test_response
|
| 268 |
+
except Exception:
|
| 269 |
+
return False
|
| 270 |
+
|
| 271 |
@log_function
|
| 272 |
@st.cache_data
|
| 273 |
+
def load_and_process_csvs(self):
|
| 274 |
+
try:
|
| 275 |
+
cache_data = self.retriever.load_cache(self.data_folder)
|
| 276 |
+
if cache_data is not None:
|
| 277 |
+
self.documents = cache_data['documents']
|
| 278 |
+
self.retriever.store_embeddings(cache_data['embeddings'])
|
| 279 |
+
return
|
| 280 |
+
|
| 281 |
+
csv_files = glob.glob(os.path.join(self.data_folder, "*.csv"))
|
| 282 |
+
if not csv_files:
|
| 283 |
+
raise FileNotFoundError(f"No CSV files found in {self.data_folder}")
|
| 284 |
+
|
| 285 |
+
all_documents = []
|
| 286 |
+
|
| 287 |
+
for csv_file in tqdm(csv_files, desc="Reading CSV files"):
|
| 288 |
+
try:
|
| 289 |
+
df = pd.read_csv(csv_file)
|
| 290 |
+
texts = df.apply(lambda x: " ".join(x.astype(str)), axis=1).tolist()
|
| 291 |
+
all_documents.extend(texts)
|
| 292 |
+
except Exception as e:
|
| 293 |
+
logging.error(f"Error processing file {csv_file}: {e}")
|
| 294 |
+
continue
|
| 295 |
+
|
| 296 |
+
if not all_documents:
|
| 297 |
+
raise ValueError("No documents were successfully loaded")
|
| 298 |
+
|
| 299 |
+
self.documents = all_documents
|
| 300 |
+
embeddings = self.retriever.encode(all_documents)
|
| 301 |
+
self.retriever.store_embeddings(embeddings)
|
| 302 |
+
|
| 303 |
+
cache_data = {
|
| 304 |
+
'embeddings': embeddings,
|
| 305 |
+
'documents': self.documents
|
| 306 |
+
}
|
| 307 |
+
self.retriever.save_cache(self.data_folder, cache_data)
|
| 308 |
+
|
| 309 |
+
except Exception as e:
|
| 310 |
+
logging.error(f"Error in load_and_process_csvs: {str(e)}")
|
| 311 |
+
raise
|
| 312 |
|
| 313 |
def preprocess_query(self, query: str) -> str:
|
| 314 |
"""Clean and prepare the query"""
|
|
|
|
| 326 |
@log_function
|
| 327 |
def process_query(self, query: str, placeholder) -> str:
|
| 328 |
try:
|
| 329 |
+
# Check if models are properly initialized
|
| 330 |
+
if self.llm is None:
|
| 331 |
+
raise RuntimeError("LLM model not initialized")
|
| 332 |
+
if self.retriever.model is None:
|
| 333 |
+
raise RuntimeError("Sentence transformer model not initialized")
|
| 334 |
+
|
| 335 |
# Preprocess query
|
| 336 |
query = self.preprocess_query(query)
|
| 337 |
|
|
|
|
| 344 |
indices, scores = self.retriever.search(query_embedding, self.k, self.documents)
|
| 345 |
|
| 346 |
# Print search results for debugging
|
| 347 |
+
logging.info("\nSearch Results:")
|
| 348 |
for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 349 |
+
logging.info(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 350 |
|
| 351 |
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 352 |
|
|
|
|
| 372 |
|
| 373 |
# Generate response
|
| 374 |
response_placeholder = placeholder.empty()
|
|
|
|
| 375 |
|
| 376 |
try:
|
| 377 |
response = self.llm(
|
|
|
|
| 400 |
return message
|
| 401 |
|
| 402 |
except Exception as e:
|
| 403 |
+
logging.error(f"Generation error: {str(e)}")
|
| 404 |
message = "Had some trouble generating the response. Please try again."
|
| 405 |
response_placeholder.warning(message)
|
| 406 |
return message
|
| 407 |
|
| 408 |
except Exception as e:
|
| 409 |
+
logging.error(f"Process error: {str(e)}")
|
| 410 |
message = "Something went wrong. Please try again with a different question."
|
| 411 |
placeholder.warning(message)
|
| 412 |
return message
|
|
|
|
| 413 |
|
| 414 |
+
@st.cache_resource(show_spinner=False)
|
|
|
|
| 415 |
def initialize_rag_pipeline():
|
| 416 |
"""Initialize the RAG pipeline once"""
|
| 417 |
+
try:
|
| 418 |
+
data_folder = "ESPN_data"
|
| 419 |
+
if not os.path.exists(data_folder):
|
| 420 |
+
os.makedirs(data_folder, exist_ok=True)
|
| 421 |
+
|
| 422 |
+
rag = RAGPipeline(data_folder)
|
| 423 |
+
rag.load_and_process_csvs()
|
| 424 |
+
return rag
|
| 425 |
+
except Exception as e:
|
| 426 |
+
logging.error(f"Pipeline initialization error: {str(e)}")
|
| 427 |
+
st.error("Failed to initialize the system. Please check your data folder and try again.")
|
| 428 |
+
raise
|
| 429 |
|
| 430 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
try:
|
| 432 |
+
# Environment check
|
| 433 |
+
if not check_environment():
|
| 434 |
+
return
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
+
# Page config
|
| 437 |
+
st.set_page_config(
|
| 438 |
+
page_title="The Sport Chatbot",
|
| 439 |
+
page_icon="π",
|
| 440 |
+
layout="wide"
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
# Improved CSS styling
|
| 444 |
+
st.markdown("""
|
| 445 |
+
<style>
|
| 446 |
+
/* Container styling */
|
| 447 |
+
.block-container {
|
| 448 |
+
padding-top: 2rem;
|
| 449 |
+
padding-bottom: 2rem;
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
/* Text input styling */
|
| 453 |
+
.stTextInput > div > div > input {
|
| 454 |
+
width: 100%;
|
| 455 |
+
}
|
| 456 |
+
|
| 457 |
+
/* Button styling */
|
| 458 |
+
.stButton > button {
|
| 459 |
+
width: 200px;
|
| 460 |
+
margin: 0 auto;
|
| 461 |
+
display: block;
|
| 462 |
+
background-color: #FF4B4B;
|
| 463 |
+
color: white;
|
| 464 |
+
border-radius: 5px;
|
| 465 |
+
padding: 0.5rem 1rem;
|
| 466 |
+
}
|
| 467 |
+
|
| 468 |
+
/* Title styling */
|
| 469 |
+
.main-title {
|
| 470 |
+
text-align: center;
|
| 471 |
+
padding: 1rem 0;
|
| 472 |
+
font-size: 3rem;
|
| 473 |
+
color: #1F1F1F;
|
| 474 |
+
}
|
| 475 |
+
|
| 476 |
+
.sub-title {
|
| 477 |
+
text-align: center;
|
| 478 |
+
padding: 0.5rem 0;
|
| 479 |
+
font-size: 1.5rem;
|
| 480 |
+
color: #4F4F4F;
|
| 481 |
+
}
|
| 482 |
+
|
| 483 |
+
/* Description styling */
|
| 484 |
+
.description {
|
| 485 |
+
text-align: center;
|
| 486 |
+
color: #666666;
|
| 487 |
+
padding: 0.5rem 0;
|
| 488 |
+
font-size: 1.1rem;
|
| 489 |
+
line-height: 1.6;
|
| 490 |
+
margin-bottom: 1rem;
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
/* Answer container styling */
|
| 494 |
+
.stMarkdown {
|
| 495 |
+
max-width: 100%;
|
| 496 |
+
}
|
| 497 |
+
|
| 498 |
+
/* Streamlit default overrides */
|
| 499 |
+
.st-emotion-cache-16idsys p {
|
| 500 |
+
font-size: 1.1rem;
|
| 501 |
+
line-height: 1.6;
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
/* Container for main content */
|
| 505 |
+
.main-content {
|
| 506 |
+
max-width: 1200px;
|
| 507 |
+
margin: 0 auto;
|
| 508 |
+
padding: 0 1rem;
|
| 509 |
+
}
|
| 510 |
+
</style>
|
| 511 |
+
""", unsafe_allow_html=True)
|
| 512 |
+
|
| 513 |
+
# Header section
|
| 514 |
+
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
| 515 |
+
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
| 516 |
+
st.markdown("""
|
| 517 |
+
<p class='description'>
|
| 518 |
+
Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
| 519 |
+
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
| 520 |
+
</p>
|
| 521 |
+
<p class='description'>
|
| 522 |
+
Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
|
| 523 |
+
</p>
|
| 524 |
+
""", unsafe_allow_html=True)
|
| 525 |
+
|
| 526 |
+
# Add spacing
|
| 527 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
| 528 |
+
|
| 529 |
+
# Initialize the pipeline
|
| 530 |
+
try:
|
| 531 |
+
with st.spinner("Loading resources..."):
|
| 532 |
+
rag = initialize_rag_pipeline()
|
| 533 |
+
|
| 534 |
+
# Add a model health check
|
| 535 |
+
if not rag.check_model_health():
|
| 536 |
+
st.error("Model initialization failed. Please try restarting the application.")
|
| 537 |
+
return
|
| 538 |
+
|
| 539 |
+
except Exception as e:
|
| 540 |
+
logging.error(f"Initialization error: {str(e)}")
|
| 541 |
+
st.error("Unable to initialize the system. Please check if all required files are present.")
|
| 542 |
+
return
|
| 543 |
+
|
| 544 |
+
# Create columns for layout with golden ratio
|
| 545 |
+
col1, col2, col3 = st.columns([1, 6, 1])
|
| 546 |
|
| 547 |
+
with col2:
|
| 548 |
+
# Query input with label styling
|
| 549 |
+
query = st.text_input("What would you like to know about sports?")
|
| 550 |
+
|
| 551 |
+
# Centered button
|
| 552 |
+
if st.button("Get Answer"):
|
| 553 |
+
if query:
|
| 554 |
+
response_placeholder = st.empty()
|
| 555 |
+
try:
|
| 556 |
+
response = rag.process_query(query, response_placeholder)
|
| 557 |
+
logging.info(f"Generated response: {response}")
|
| 558 |
+
except Exception as e:
|
| 559 |
+
logging.error(f"Query processing error: {str(e)}")
|
| 560 |
+
response_placeholder.warning("Unable to process your question. Please try again.")
|
| 561 |
+
else:
|
| 562 |
+
st.warning("Please enter a question!")
|
| 563 |
+
|
| 564 |
+
# Footer
|
| 565 |
+
st.markdown("<br><br>", unsafe_allow_html=True)
|
| 566 |
+
st.markdown("---")
|
| 567 |
+
st.markdown("""
|
| 568 |
+
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
| 569 |
+
Powered by ESPN Data & Mistral AI π
|
| 570 |
+
</p>
|
| 571 |
+
""", unsafe_allow_html=True)
|
| 572 |
+
|
| 573 |
+
except Exception as e:
|
| 574 |
+
logging.error(f"Application error: {str(e)}")
|
| 575 |
+
st.error("An unexpected error occurred. Please check the logs and try again.")
|
| 576 |
|
| 577 |
if __name__ == "__main__":
|
| 578 |
+
try:
|
| 579 |
+
main()
|
| 580 |
+
except Exception as e:
|
| 581 |
+
logging.error(f"Application error: {str(e)}")
|
| 582 |
+
st.error("An unexpected error occurred. Please check the logs and try again.")
|