Spaces:
Runtime error
Runtime error
Upload app_new.py
Browse files- app_new.py +492 -0
app_new.py
ADDED
|
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import warnings
|
| 3 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
+
from typing import List, Callable
|
| 10 |
+
import glob
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
import pickle
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from llama_cpp import Llama
|
| 15 |
+
import streamlit as st
|
| 16 |
+
import functools
|
| 17 |
+
from datetime import datetime
|
| 18 |
+
import re
|
| 19 |
+
import time
|
| 20 |
+
import requests
|
| 21 |
+
|
| 22 |
+
# Force CPU device
|
| 23 |
+
torch.device('cpu')
|
| 24 |
+
|
| 25 |
+
# Logging configuration
|
| 26 |
+
LOGGING_CONFIG = {
|
| 27 |
+
'enabled': True,
|
| 28 |
+
'functions': {
|
| 29 |
+
'encode': True,
|
| 30 |
+
'store_embeddings': True,
|
| 31 |
+
'search': True,
|
| 32 |
+
'load_and_process_csvs': True,
|
| 33 |
+
'process_query': True
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
@st.cache_data
|
| 37 |
+
def load_from_drive(file_id: str):
|
| 38 |
+
"""Load pickle file directly from Google Drive"""
|
| 39 |
+
try:
|
| 40 |
+
# Direct download URL for Google Drive
|
| 41 |
+
url = f"https://drive.google.com/uc?id={file_id}&export=download"
|
| 42 |
+
|
| 43 |
+
# First request to get the confirmation token
|
| 44 |
+
session = requests.Session()
|
| 45 |
+
response = session.get(url, stream=True)
|
| 46 |
+
|
| 47 |
+
# Check if we need to confirm download
|
| 48 |
+
for key, value in response.cookies.items():
|
| 49 |
+
if key.startswith('download_warning'):
|
| 50 |
+
# Add confirmation parameter to the URL
|
| 51 |
+
url = f"{url}&confirm={value}"
|
| 52 |
+
response = session.get(url, stream=True)
|
| 53 |
+
break
|
| 54 |
+
|
| 55 |
+
# Load the content and convert to pickle
|
| 56 |
+
content = response.content
|
| 57 |
+
print(f"Successfully downloaded {len(content)} bytes")
|
| 58 |
+
return pickle.loads(content)
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Detailed error: {str(e)}") # This will help debug
|
| 62 |
+
st.error(f"Error loading file from Drive: {str(e)}")
|
| 63 |
+
return None
|
| 64 |
+
|
| 65 |
+
def log_function(func: Callable) -> Callable:
|
| 66 |
+
"""Decorator to log function inputs and outputs"""
|
| 67 |
+
@functools.wraps(func)
|
| 68 |
+
def wrapper(*args, **kwargs):
|
| 69 |
+
if not LOGGING_CONFIG['enabled'] or not LOGGING_CONFIG['functions'].get(func.__name__, False):
|
| 70 |
+
return func(*args, **kwargs)
|
| 71 |
+
|
| 72 |
+
if args and hasattr(args[0], '__class__'):
|
| 73 |
+
class_name = args[0].__class__.__name__
|
| 74 |
+
else:
|
| 75 |
+
class_name = func.__module__
|
| 76 |
+
|
| 77 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
|
| 78 |
+
log_args = args[1:] if class_name != func.__module__ else args
|
| 79 |
+
|
| 80 |
+
def format_arg(arg):
|
| 81 |
+
if isinstance(arg, torch.Tensor):
|
| 82 |
+
return f"Tensor(shape={list(arg.shape)}, device={arg.device})"
|
| 83 |
+
elif isinstance(arg, list):
|
| 84 |
+
return f"List(len={len(arg)})"
|
| 85 |
+
elif isinstance(arg, str) and len(arg) > 100:
|
| 86 |
+
return f"String(len={len(arg)}): {arg[:100]}..."
|
| 87 |
+
return arg
|
| 88 |
+
|
| 89 |
+
formatted_args = [format_arg(arg) for arg in log_args]
|
| 90 |
+
formatted_kwargs = {k: format_arg(v) for k, v in kwargs.items()}
|
| 91 |
+
|
| 92 |
+
print(f"\n{'='*80}")
|
| 93 |
+
print(f"[{timestamp}] FUNCTION CALL: {class_name}.{func.__name__}")
|
| 94 |
+
print(f"INPUTS:")
|
| 95 |
+
print(f" args: {formatted_args}")
|
| 96 |
+
print(f" kwargs: {formatted_kwargs}")
|
| 97 |
+
|
| 98 |
+
result = func(*args, **kwargs)
|
| 99 |
+
|
| 100 |
+
formatted_result = format_arg(result)
|
| 101 |
+
print(f"OUTPUT:")
|
| 102 |
+
print(f" {formatted_result}")
|
| 103 |
+
print(f"{'='*80}\n")
|
| 104 |
+
|
| 105 |
+
return result
|
| 106 |
+
return wrapper
|
| 107 |
+
|
| 108 |
+
def check_environment():
|
| 109 |
+
"""Check if the environment is properly set up"""
|
| 110 |
+
try:
|
| 111 |
+
import numpy as np
|
| 112 |
+
import torch
|
| 113 |
+
import sentence_transformers
|
| 114 |
+
import llama_cpp
|
| 115 |
+
return True
|
| 116 |
+
except ImportError as e:
|
| 117 |
+
st.error(f"Missing required package: {str(e)}")
|
| 118 |
+
st.stop()
|
| 119 |
+
return False
|
| 120 |
+
|
| 121 |
+
@st.cache_resource
|
| 122 |
+
def initialize_model():
|
| 123 |
+
"""Initialize the Llama model once"""
|
| 124 |
+
#model_path = "mistral-7b-v0.1.Q4_K_M.gguf"
|
| 125 |
+
model_path = "mistralai/Mistral-7B-v0.1"
|
| 126 |
+
if not os.path.exists(model_path):
|
| 127 |
+
st.error(f"Model file {model_path} not found!")
|
| 128 |
+
st.stop()
|
| 129 |
+
|
| 130 |
+
llm_config = {
|
| 131 |
+
"n_ctx": 2048,
|
| 132 |
+
"n_threads": 4,
|
| 133 |
+
"n_batch": 512,
|
| 134 |
+
"n_gpu_layers": 0,
|
| 135 |
+
"verbose": False
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
return Llama(model_path=model_path, **llm_config)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class SentenceTransformerRetriever:
|
| 142 |
+
@st.cache_resource
|
| 143 |
+
def __init__(_self, model_name: str = "sentence-transformers/all-MiniLM-L6-v2", cache_dir: str = "embeddings_cache"):
|
| 144 |
+
# Force CPU device and suppress warnings
|
| 145 |
+
with warnings.catch_warnings():
|
| 146 |
+
warnings.simplefilter("ignore")
|
| 147 |
+
_self.device = torch.device("cpu")
|
| 148 |
+
_self.model = SentenceTransformer(model_name, device="cpu")
|
| 149 |
+
_self.doc_embeddings = None
|
| 150 |
+
_self.cache_dir = cache_dir
|
| 151 |
+
_self.cache_file = "embeddings.pkl"
|
| 152 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 153 |
+
|
| 154 |
+
def get_cache_path(self, data_folder: str = None) -> str:
|
| 155 |
+
return os.path.join(self.cache_dir, self.cache_file)
|
| 156 |
+
|
| 157 |
+
@log_function
|
| 158 |
+
def save_cache(self, data_folder: str, cache_data: dict):
|
| 159 |
+
cache_path = self.get_cache_path()
|
| 160 |
+
if os.path.exists(cache_path):
|
| 161 |
+
os.remove(cache_path)
|
| 162 |
+
with open(cache_path, 'wb') as f:
|
| 163 |
+
pickle.dump(cache_data, f)
|
| 164 |
+
print(f"Cache saved at: {cache_path}")
|
| 165 |
+
|
| 166 |
+
@log_function
|
| 167 |
+
@st.cache_data
|
| 168 |
+
def load_cache(_self, data_folder: str = None) -> dict:
|
| 169 |
+
cache_path = _self.get_cache_path()
|
| 170 |
+
if os.path.exists(cache_path):
|
| 171 |
+
with open(cache_path, 'rb') as f:
|
| 172 |
+
print(f"Loading cache from: {cache_path}")
|
| 173 |
+
return pickle.load(f)
|
| 174 |
+
return None
|
| 175 |
+
|
| 176 |
+
@log_function
|
| 177 |
+
def encode(self, texts: List[str], batch_size: int = 32) -> torch.Tensor:
|
| 178 |
+
embeddings = self.model.encode(texts, batch_size=batch_size, convert_to_tensor=True, show_progress_bar=True)
|
| 179 |
+
return F.normalize(embeddings, p=2, dim=1)
|
| 180 |
+
|
| 181 |
+
@log_function
|
| 182 |
+
def store_embeddings(self, embeddings: torch.Tensor):
|
| 183 |
+
self.doc_embeddings = embeddings
|
| 184 |
+
|
| 185 |
+
@log_function
|
| 186 |
+
def search(self, query_embedding: torch.Tensor, k: int, documents: List[str]):
|
| 187 |
+
if self.doc_embeddings is None:
|
| 188 |
+
raise ValueError("No document embeddings stored!")
|
| 189 |
+
|
| 190 |
+
# Compute similarities
|
| 191 |
+
similarities = F.cosine_similarity(query_embedding, self.doc_embeddings)
|
| 192 |
+
|
| 193 |
+
# Get top k scores and indices
|
| 194 |
+
k = min(k, len(documents))
|
| 195 |
+
scores, indices = torch.topk(similarities, k=k)
|
| 196 |
+
|
| 197 |
+
# Log similarity statistics
|
| 198 |
+
print(f"\nSimilarity Stats:")
|
| 199 |
+
print(f"Max similarity: {similarities.max().item():.4f}")
|
| 200 |
+
print(f"Mean similarity: {similarities.mean().item():.4f}")
|
| 201 |
+
print(f"Selected similarities: {scores.tolist()}")
|
| 202 |
+
|
| 203 |
+
return indices.cpu(), scores.cpu()
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
class RAGPipeline:
|
| 209 |
+
def __init__(self, data_folder: str, k: int = 5):
|
| 210 |
+
self.data_folder = data_folder
|
| 211 |
+
self.k = k
|
| 212 |
+
self.retriever = SentenceTransformerRetriever()
|
| 213 |
+
self.documents = []
|
| 214 |
+
self.device = torch.device("cpu")
|
| 215 |
+
self.llm = initialize_model()
|
| 216 |
+
|
| 217 |
+
@log_function
|
| 218 |
+
@st.cache_data
|
| 219 |
+
def load_and_process_csvs(_self):
|
| 220 |
+
cache_data = _self.retriever.load_cache(_self.data_folder)
|
| 221 |
+
if cache_data is not None:
|
| 222 |
+
_self.documents = cache_data['documents']
|
| 223 |
+
_self.retriever.store_embeddings(cache_data['embeddings'])
|
| 224 |
+
return
|
| 225 |
+
|
| 226 |
+
csv_files = glob.glob(os.path.join(_self.data_folder, "*.csv"))
|
| 227 |
+
all_documents = []
|
| 228 |
+
|
| 229 |
+
for csv_file in tqdm(csv_files, desc="Reading CSV files"):
|
| 230 |
+
try:
|
| 231 |
+
df = pd.read_csv(csv_file)
|
| 232 |
+
texts = df.apply(lambda x: " ".join(x.astype(str)), axis=1).tolist()
|
| 233 |
+
all_documents.extend(texts)
|
| 234 |
+
except Exception as e:
|
| 235 |
+
print(f"Error processing file {csv_file}: {e}")
|
| 236 |
+
continue
|
| 237 |
+
|
| 238 |
+
_self.documents = all_documents
|
| 239 |
+
embeddings = _self.retriever.encode(all_documents)
|
| 240 |
+
_self.retriever.store_embeddings(embeddings)
|
| 241 |
+
|
| 242 |
+
cache_data = {
|
| 243 |
+
'embeddings': embeddings,
|
| 244 |
+
'documents': _self.documents
|
| 245 |
+
}
|
| 246 |
+
_self.retriever.save_cache(_self.data_folder, cache_data)
|
| 247 |
+
|
| 248 |
+
def preprocess_query(self, query: str) -> str:
|
| 249 |
+
"""Clean and prepare the query"""
|
| 250 |
+
query = query.lower().strip()
|
| 251 |
+
query = re.sub(r'\s+', ' ', query)
|
| 252 |
+
return query
|
| 253 |
+
|
| 254 |
+
def postprocess_response(self, response: str) -> str:
|
| 255 |
+
"""Clean up the generated response"""
|
| 256 |
+
response = response.strip()
|
| 257 |
+
response = re.sub(r'\s+', ' ', response)
|
| 258 |
+
response = re.sub(r'\d{4}-\d{2}-\d{2}\s\d{2}:\d{2}:\d{2}(?:\+\d{2}:?\d{2})?', '', response)
|
| 259 |
+
return response
|
| 260 |
+
|
| 261 |
+
@log_function
|
| 262 |
+
def process_query(self, query: str, placeholder) -> str:
|
| 263 |
+
try:
|
| 264 |
+
# Preprocess query
|
| 265 |
+
query = self.preprocess_query(query)
|
| 266 |
+
|
| 267 |
+
# Show retrieval status
|
| 268 |
+
status = placeholder.empty()
|
| 269 |
+
status.write("π Finding relevant information...")
|
| 270 |
+
|
| 271 |
+
# Retrieve relevant documents
|
| 272 |
+
query_embedding = self.retriever.encode([query])
|
| 273 |
+
indices, scores = self.retriever.search(query_embedding, self.k, self.documents)
|
| 274 |
+
|
| 275 |
+
# Print search results for debugging
|
| 276 |
+
print("\nSearch Results:")
|
| 277 |
+
for idx, score in zip(indices.tolist(), scores.tolist()):
|
| 278 |
+
print(f"Score: {score:.4f} | Document: {self.documents[idx][:100]}...")
|
| 279 |
+
|
| 280 |
+
relevant_docs = [self.documents[idx] for idx in indices.tolist()]
|
| 281 |
+
|
| 282 |
+
# Update status
|
| 283 |
+
status.write("π Generating response...")
|
| 284 |
+
|
| 285 |
+
# Prepare context and prompt
|
| 286 |
+
context = "\n".join(relevant_docs)
|
| 287 |
+
prompt = f"""Context information is below:
|
| 288 |
+
{context}
|
| 289 |
+
|
| 290 |
+
Given the context above, please answer the following question:
|
| 291 |
+
{query}
|
| 292 |
+
|
| 293 |
+
Guidelines:
|
| 294 |
+
- If you cannot answer based on the context, say so politely
|
| 295 |
+
- Keep the response concise and focused
|
| 296 |
+
- Only include sports-related information
|
| 297 |
+
- No dates or timestamps in the response
|
| 298 |
+
- Use clear, natural language
|
| 299 |
+
|
| 300 |
+
Answer:"""
|
| 301 |
+
|
| 302 |
+
# Generate response
|
| 303 |
+
response_placeholder = placeholder.empty()
|
| 304 |
+
generated_text = ""
|
| 305 |
+
|
| 306 |
+
try:
|
| 307 |
+
response = self.llm(
|
| 308 |
+
prompt,
|
| 309 |
+
max_tokens=512,
|
| 310 |
+
temperature=0.4,
|
| 311 |
+
top_p=0.95,
|
| 312 |
+
echo=False,
|
| 313 |
+
stop=["Question:", "\n\n"]
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
if response and 'choices' in response and len(response['choices']) > 0:
|
| 317 |
+
generated_text = response['choices'][0].get('text', '').strip()
|
| 318 |
+
|
| 319 |
+
if generated_text:
|
| 320 |
+
final_response = self.postprocess_response(generated_text)
|
| 321 |
+
response_placeholder.markdown(final_response)
|
| 322 |
+
return final_response
|
| 323 |
+
else:
|
| 324 |
+
message = "No relevant answer found. Please try rephrasing your question."
|
| 325 |
+
response_placeholder.warning(message)
|
| 326 |
+
return message
|
| 327 |
+
else:
|
| 328 |
+
message = "Unable to generate response. Please try again."
|
| 329 |
+
response_placeholder.warning(message)
|
| 330 |
+
return message
|
| 331 |
+
|
| 332 |
+
except Exception as e:
|
| 333 |
+
print(f"Generation error: {str(e)}")
|
| 334 |
+
message = "Had some trouble generating the response. Please try again."
|
| 335 |
+
response_placeholder.warning(message)
|
| 336 |
+
return message
|
| 337 |
+
|
| 338 |
+
except Exception as e:
|
| 339 |
+
print(f"Process error: {str(e)}")
|
| 340 |
+
message = "Something went wrong. Please try again with a different question."
|
| 341 |
+
placeholder.warning(message)
|
| 342 |
+
return message
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
@st.cache_resource
|
| 347 |
+
def initialize_rag_pipeline():
|
| 348 |
+
"""Initialize the RAG pipeline once"""
|
| 349 |
+
data_folder = "ESPN_data" # Update this path as needed
|
| 350 |
+
rag = RAGPipeline(data_folder)
|
| 351 |
+
rag.load_and_process_csvs()
|
| 352 |
+
return rag
|
| 353 |
+
|
| 354 |
+
def main():
|
| 355 |
+
# Environment check
|
| 356 |
+
if not check_environment():
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
# Page config
|
| 360 |
+
st.set_page_config(
|
| 361 |
+
page_title="The Sport Chatbot",
|
| 362 |
+
page_icon="π",
|
| 363 |
+
layout="wide" # Changed back to wide for more space
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
# Improved CSS styling
|
| 367 |
+
st.markdown("""
|
| 368 |
+
<style>
|
| 369 |
+
/* Container styling */
|
| 370 |
+
.block-container {
|
| 371 |
+
padding-top: 2rem;
|
| 372 |
+
padding-bottom: 2rem;
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
/* Text input styling */
|
| 376 |
+
.stTextInput > div > div > input {
|
| 377 |
+
width: 100%;
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
/* Button styling */
|
| 381 |
+
.stButton > button {
|
| 382 |
+
width: 200px;
|
| 383 |
+
margin: 0 auto;
|
| 384 |
+
display: block;
|
| 385 |
+
background-color: #FF4B4B;
|
| 386 |
+
color: white;
|
| 387 |
+
border-radius: 5px;
|
| 388 |
+
padding: 0.5rem 1rem;
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
/* Title styling */
|
| 392 |
+
.main-title {
|
| 393 |
+
text-align: center;
|
| 394 |
+
padding: 1rem 0;
|
| 395 |
+
font-size: 3rem;
|
| 396 |
+
color: #1F1F1F;
|
| 397 |
+
}
|
| 398 |
+
|
| 399 |
+
.sub-title {
|
| 400 |
+
text-align: center;
|
| 401 |
+
padding: 0.5rem 0;
|
| 402 |
+
font-size: 1.5rem;
|
| 403 |
+
color: #4F4F4F;
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
/* Description styling */
|
| 407 |
+
.description {
|
| 408 |
+
text-align: center;
|
| 409 |
+
color: #666666;
|
| 410 |
+
padding: 0.5rem 0;
|
| 411 |
+
font-size: 1.1rem;
|
| 412 |
+
line-height: 1.6;
|
| 413 |
+
margin-bottom: 1rem;
|
| 414 |
+
}
|
| 415 |
+
|
| 416 |
+
/* Answer container styling */
|
| 417 |
+
.stMarkdown {
|
| 418 |
+
max-width: 100%;
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
/* Streamlit default overrides */
|
| 422 |
+
.st-emotion-cache-16idsys p {
|
| 423 |
+
font-size: 1.1rem;
|
| 424 |
+
line-height: 1.6;
|
| 425 |
+
}
|
| 426 |
+
|
| 427 |
+
/* Container for main content */
|
| 428 |
+
.main-content {
|
| 429 |
+
max-width: 1200px;
|
| 430 |
+
margin: 0 auto;
|
| 431 |
+
padding: 0 1rem;
|
| 432 |
+
}
|
| 433 |
+
</style>
|
| 434 |
+
""", unsafe_allow_html=True)
|
| 435 |
+
|
| 436 |
+
# Header section with improved styling
|
| 437 |
+
st.markdown("<h1 class='main-title'>π The Sport Chatbot</h1>", unsafe_allow_html=True)
|
| 438 |
+
st.markdown("<h3 class='sub-title'>Using ESPN API</h3>", unsafe_allow_html=True)
|
| 439 |
+
st.markdown("""
|
| 440 |
+
<p class='description'>
|
| 441 |
+
Hey there! π I can help you with information on Ice Hockey, Baseball, American Football, Soccer, and Basketball.
|
| 442 |
+
With access to the ESPN API, I'm up to date with the latest details for these sports up until October 2024.
|
| 443 |
+
</p>
|
| 444 |
+
<p class='description'>
|
| 445 |
+
Got any general questions? Feel free to askβI'll do my best to provide answers based on the information I've been trained on!
|
| 446 |
+
</p>
|
| 447 |
+
""", unsafe_allow_html=True)
|
| 448 |
+
|
| 449 |
+
# Add some spacing
|
| 450 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
# Initialize the pipeline
|
| 454 |
+
try:
|
| 455 |
+
with st.spinner("Loading resources..."):
|
| 456 |
+
rag = initialize_rag_pipeline()
|
| 457 |
+
except Exception as e:
|
| 458 |
+
print(f"Initialization error: {str(e)}")
|
| 459 |
+
st.error("Unable to initialize the system. Please check if all required files are present.")
|
| 460 |
+
st.stop()
|
| 461 |
+
|
| 462 |
+
# Create columns for layout with golden ratio
|
| 463 |
+
col1, col2, col3 = st.columns([1, 6, 1])
|
| 464 |
+
|
| 465 |
+
with col2:
|
| 466 |
+
# Query input with label styling
|
| 467 |
+
query = st.text_input("What would you like to know about sports?")
|
| 468 |
+
|
| 469 |
+
# Centered button
|
| 470 |
+
if st.button("Get Answer"):
|
| 471 |
+
if query:
|
| 472 |
+
response_placeholder = st.empty()
|
| 473 |
+
try:
|
| 474 |
+
response = rag.process_query(query, response_placeholder)
|
| 475 |
+
print(f"Generated response: {response}")
|
| 476 |
+
except Exception as e:
|
| 477 |
+
print(f"Query processing error: {str(e)}")
|
| 478 |
+
response_placeholder.warning("Unable to process your question. Please try again.")
|
| 479 |
+
else:
|
| 480 |
+
st.warning("Please enter a question!")
|
| 481 |
+
|
| 482 |
+
# Footer with improved styling
|
| 483 |
+
st.markdown("<br><br>", unsafe_allow_html=True)
|
| 484 |
+
st.markdown("---")
|
| 485 |
+
st.markdown("""
|
| 486 |
+
<p style='text-align: center; color: #666666; padding: 1rem 0;'>
|
| 487 |
+
Powered by ESPN Data & Mistral AI π
|
| 488 |
+
</p>
|
| 489 |
+
""", unsafe_allow_html=True)
|
| 490 |
+
|
| 491 |
+
if __name__ == "__main__":
|
| 492 |
+
main()
|