Spaces:
Runtime error
Runtime error
| import spacy | |
| import wikipedia | |
| from wikipedia.exceptions import DisambiguationError | |
| from transformers import TFAutoModel, AutoTokenizer | |
| import numpy as np | |
| import pandas as pd | |
| import faiss | |
| try: | |
| nlp = spacy.load("en_core_web_sm") | |
| except: | |
| spacy.cli.download("en_core_web_sm") | |
| nlp = spacy.load("en_core_web_sm") | |
| wh_words = ['what', 'who', 'how', 'when', 'which'] | |
| def get_concepts(text): | |
| text = text.lower() | |
| doc = nlp(text) | |
| concepts = [] | |
| for chunk in doc.noun_chunks: | |
| if chunk.text not in wh_words: | |
| concepts.append(chunk.text) | |
| return concepts | |
| def get_passages(text, k=100): | |
| doc = nlp(text) | |
| passages = [] | |
| passage_len = 0 | |
| passage = "" | |
| sents = list(doc.sents) | |
| for i in range(len(sents)): | |
| sen = sents[i] | |
| passage_len+=len(sen) | |
| if passage_len >= k: | |
| passages.append(passage) | |
| passage = sen.text | |
| passage_len = len(sen) | |
| continue | |
| elif i==(len(sents)-1): | |
| passage+=" "+sen.text | |
| passages.append(passage) | |
| passage = "" | |
| passage_len = 0 | |
| continue | |
| passage+=" "+sen.text | |
| return passages | |
| def get_dicts_for_dpr(concepts, n_results=20, k=100): | |
| dicts = [] | |
| for concept in concepts: | |
| wikis = wikipedia.search(concept, results=n_results) | |
| print(concept, "No of Wikis: ",len(wikis)) | |
| for wiki in wikis: | |
| try: | |
| html_page = wikipedia.page(title = wiki, auto_suggest = False) | |
| except DisambiguationError: | |
| continue | |
| passages = get_passages(html_page.content, k=k) | |
| for passage in passages: | |
| i_dicts = {} | |
| i_dicts['text'] = passage | |
| i_dicts['title'] = wiki | |
| dicts.append(i_dicts) | |
| return dicts | |
| passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
| query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
| p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2") | |
| q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2") | |
| def get_title_text_combined(passage_dicts): | |
| res = [] | |
| for p in passage_dicts: | |
| res.append(tuple((p['title'], p['text']))) | |
| return res | |
| def extracted_passage_embeddings(processed_passages, max_length=156): | |
| passage_inputs = p_tokenizer.batch_encode_plus( | |
| processed_passages, | |
| add_special_tokens=True, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=max_length, | |
| return_token_type_ids=True | |
| ) | |
| passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']), | |
| np.array(passage_inputs['attention_mask']), | |
| np.array(passage_inputs['token_type_ids'])], | |
| batch_size=64, | |
| verbose=1) | |
| return passage_embeddings | |
| def extracted_query_embeddings(queries, max_length=64): | |
| query_inputs = q_tokenizer.batch_encode_plus( | |
| queries, | |
| add_special_tokens=True, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=max_length, | |
| return_token_type_ids=True | |
| ) | |
| query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']), | |
| np.array(query_inputs['attention_mask']), | |
| np.array(query_inputs['token_type_ids'])], | |
| batch_size=1, | |
| verbose=1) | |
| return query_embeddings | |
| def search(question): | |
| concepts = get_concepts(question) | |
| print("concepts: ",concepts) | |
| dicts = get_dicts_for_dpr(concepts, n_results=1) | |
| print("dicts len: ", len(dicts)) | |
| processed_passages = get_title_text_combined(dicts) | |
| passage_embeddings = extracted_passage_embeddings(processed_passages) | |
| query_embeddings = extracted_query_embeddings([question]) | |
| faiss_index = faiss.IndexFlatL2(128) | |
| faiss_index.add(passage_embeddings.pooler_output) | |
| prob, index = faiss_index.search(query_embeddings.pooler_output, k=10) | |
| return pd.DataFrame([dicts[i] for i in index[0]]) | |
| import gradio as gr | |
| inp = gr.inputs.Textbox(lines=2, default="Who is aamir khan?", label="Question") | |
| out = gr.outputs.Dataframe(label="Answers") | |
| gr.Interface(fn=search, inputs=inp, outputs=out).launch() |