Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from functools import partial | |
| from msst_utils import prefer_target_instrument | |
| class STFT: | |
| def __init__(self, config): | |
| self.n_fft = config.n_fft | |
| self.hop_length = config.hop_length | |
| self.window = torch.hann_window(window_length=self.n_fft, periodic=True) | |
| self.dim_f = config.dim_f | |
| def __call__(self, x): | |
| window = self.window.to(x.device) | |
| batch_dims = x.shape[:-2] | |
| c, t = x.shape[-2:] | |
| x = x.reshape([-1, t]) | |
| x = torch.stft( | |
| x, | |
| n_fft=self.n_fft, | |
| hop_length=self.hop_length, | |
| window=window, | |
| center=True, | |
| return_complex=True | |
| ) | |
| x = torch.view_as_real(x) | |
| x = x.permute([0, 3, 1, 2]) | |
| x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]]) | |
| return x[..., :self.dim_f, :] | |
| def inverse(self, x): | |
| window = self.window.to(x.device) | |
| batch_dims = x.shape[:-3] | |
| c, f, t = x.shape[-3:] | |
| n = self.n_fft // 2 + 1 | |
| f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device) | |
| x = torch.cat([x, f_pad], -2) | |
| x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t]) | |
| x = x.permute([0, 2, 3, 1]) | |
| x = x[..., 0] + x[..., 1] * 1.j | |
| x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop_length, window=window, center=True) | |
| x = x.reshape([*batch_dims, 2, -1]) | |
| return x | |
| def get_norm(norm_type): | |
| def norm(c, norm_type): | |
| if norm_type == 'BatchNorm': | |
| return nn.BatchNorm2d(c) | |
| elif norm_type == 'InstanceNorm': | |
| return nn.InstanceNorm2d(c, affine=True) | |
| elif 'GroupNorm' in norm_type: | |
| g = int(norm_type.replace('GroupNorm', '')) | |
| return nn.GroupNorm(num_groups=g, num_channels=c) | |
| else: | |
| return nn.Identity() | |
| return partial(norm, norm_type=norm_type) | |
| def get_act(act_type): | |
| if act_type == 'gelu': | |
| return nn.GELU() | |
| elif act_type == 'relu': | |
| return nn.ReLU() | |
| elif act_type[:3] == 'elu': | |
| alpha = float(act_type.replace('elu', '')) | |
| return nn.ELU(alpha) | |
| else: | |
| raise Exception | |
| class Upscale(nn.Module): | |
| def __init__(self, in_c, out_c, scale, norm, act): | |
| super().__init__() | |
| self.conv = nn.Sequential( | |
| norm(in_c), | |
| act, | |
| nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) | |
| ) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class Downscale(nn.Module): | |
| def __init__(self, in_c, out_c, scale, norm, act): | |
| super().__init__() | |
| self.conv = nn.Sequential( | |
| norm(in_c), | |
| act, | |
| nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) | |
| ) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class TFC_TDF(nn.Module): | |
| def __init__(self, in_c, c, l, f, bn, norm, act): | |
| super().__init__() | |
| self.blocks = nn.ModuleList() | |
| for i in range(l): | |
| block = nn.Module() | |
| block.tfc1 = nn.Sequential( | |
| norm(in_c), | |
| act, | |
| nn.Conv2d(in_c, c, 3, 1, 1, bias=False), | |
| ) | |
| block.tdf = nn.Sequential( | |
| norm(c), | |
| act, | |
| nn.Linear(f, f // bn, bias=False), | |
| norm(c), | |
| act, | |
| nn.Linear(f // bn, f, bias=False), | |
| ) | |
| block.tfc2 = nn.Sequential( | |
| norm(c), | |
| act, | |
| nn.Conv2d(c, c, 3, 1, 1, bias=False), | |
| ) | |
| block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False) | |
| self.blocks.append(block) | |
| in_c = c | |
| def forward(self, x): | |
| for block in self.blocks: | |
| s = block.shortcut(x) | |
| x = block.tfc1(x) | |
| x = x + block.tdf(x) | |
| x = block.tfc2(x) | |
| x = x + s | |
| return x | |
| class TFC_TDF_net(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| norm = get_norm(norm_type=config.model.norm) | |
| act = get_act(act_type=config.model.act) | |
| self.num_target_instruments = len(prefer_target_instrument(config)) | |
| self.num_subbands = config.model.num_subbands | |
| dim_c = self.num_subbands * config.audio.num_channels * 2 | |
| n = config.model.num_scales | |
| scale = config.model.scale | |
| l = config.model.num_blocks_per_scale | |
| c = config.model.num_channels | |
| g = config.model.growth | |
| bn = config.model.bottleneck_factor | |
| f = config.audio.dim_f // self.num_subbands | |
| self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False) | |
| self.encoder_blocks = nn.ModuleList() | |
| for i in range(n): | |
| block = nn.Module() | |
| block.tfc_tdf = TFC_TDF(c, c, l, f, bn, norm, act) | |
| block.downscale = Downscale(c, c + g, scale, norm, act) | |
| f = f // scale[1] | |
| c += g | |
| self.encoder_blocks.append(block) | |
| self.bottleneck_block = TFC_TDF(c, c, l, f, bn, norm, act) | |
| self.decoder_blocks = nn.ModuleList() | |
| for i in range(n): | |
| block = nn.Module() | |
| block.upscale = Upscale(c, c - g, scale, norm, act) | |
| f = f * scale[1] | |
| c -= g | |
| block.tfc_tdf = TFC_TDF(2 * c, c, l, f, bn, norm, act) | |
| self.decoder_blocks.append(block) | |
| self.final_conv = nn.Sequential( | |
| nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False), | |
| act, | |
| nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False) | |
| ) | |
| self.stft = STFT(config.audio) | |
| def cac2cws(self, x): | |
| k = self.num_subbands | |
| b, c, f, t = x.shape | |
| x = x.reshape(b, c, k, f // k, t) | |
| x = x.reshape(b, c * k, f // k, t) | |
| return x | |
| def cws2cac(self, x): | |
| k = self.num_subbands | |
| b, c, f, t = x.shape | |
| x = x.reshape(b, c // k, k, f, t) | |
| x = x.reshape(b, c // k, f * k, t) | |
| return x | |
| def forward(self, x): | |
| x = self.stft(x) | |
| mix = x = self.cac2cws(x) | |
| first_conv_out = x = self.first_conv(x) | |
| x = x.transpose(-1, -2) | |
| encoder_outputs = [] | |
| for block in self.encoder_blocks: | |
| x = block.tfc_tdf(x) | |
| encoder_outputs.append(x) | |
| x = block.downscale(x) | |
| x = self.bottleneck_block(x) | |
| for block in self.decoder_blocks: | |
| x = block.upscale(x) | |
| x = torch.cat([x, encoder_outputs.pop()], 1) | |
| x = block.tfc_tdf(x) | |
| x = x.transpose(-1, -2) | |
| x = x * first_conv_out # reduce artifacts | |
| x = self.final_conv(torch.cat([mix, x], 1)) | |
| x = self.cws2cac(x) | |
| if self.num_target_instruments > 1: | |
| b, c, f, t = x.shape | |
| x = x.reshape(b, self.num_target_instruments, -1, f, t) | |
| x = self.stft.inverse(x) | |
| return x | |