Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from collections import deque | |
| from .separation import SeparationNet | |
| import typing as tp | |
| import math | |
| class Swish(nn.Module): | |
| def forward(self, x): | |
| return x * x.sigmoid() | |
| class ConvolutionModule(nn.Module): | |
| """ | |
| Convolution Module in SD block. | |
| Args: | |
| channels (int): input/output channels. | |
| depth (int): number of layers in the residual branch. Each layer has its own | |
| compress (float): amount of channel compression. | |
| kernel (int): kernel size for the convolutions. | |
| """ | |
| def __init__(self, channels, depth=2, compress=4, kernel=3): | |
| super().__init__() | |
| assert kernel % 2 == 1 | |
| self.depth = abs(depth) | |
| hidden_size = int(channels / compress) | |
| norm = lambda d: nn.GroupNorm(1, d) | |
| self.layers = nn.ModuleList([]) | |
| for _ in range(self.depth): | |
| padding = (kernel // 2) | |
| mods = [ | |
| norm(channels), | |
| nn.Conv1d(channels, hidden_size * 2, kernel, padding=padding), | |
| nn.GLU(1), | |
| nn.Conv1d(hidden_size, hidden_size, kernel, padding=padding, groups=hidden_size), | |
| norm(hidden_size), | |
| Swish(), | |
| nn.Conv1d(hidden_size, channels, 1), | |
| ] | |
| layer = nn.Sequential(*mods) | |
| self.layers.append(layer) | |
| def forward(self, x): | |
| for layer in self.layers: | |
| x = x + layer(x) | |
| return x | |
| class FusionLayer(nn.Module): | |
| """ | |
| A FusionLayer within the decoder. | |
| Args: | |
| - channels (int): Number of input channels. | |
| - kernel_size (int, optional): Kernel size for the convolutional layer, defaults to 3. | |
| - stride (int, optional): Stride for the convolutional layer, defaults to 1. | |
| - padding (int, optional): Padding for the convolutional layer, defaults to 1. | |
| """ | |
| def __init__(self, channels, kernel_size=3, stride=1, padding=1): | |
| super(FusionLayer, self).__init__() | |
| self.conv = nn.Conv2d(channels * 2, channels * 2, kernel_size, stride=stride, padding=padding) | |
| def forward(self, x, skip=None): | |
| if skip is not None: | |
| x += skip | |
| x = x.repeat(1, 2, 1, 1) | |
| x = self.conv(x) | |
| x = F.glu(x, dim=1) | |
| return x | |
| class SDlayer(nn.Module): | |
| """ | |
| Implements a Sparse Down-sample Layer for processing different frequency bands separately. | |
| Args: | |
| - channels_in (int): Input channel count. | |
| - channels_out (int): Output channel count. | |
| - band_configs (dict): A dictionary containing configuration for each frequency band. | |
| Keys are 'low', 'mid', 'high' for each band, and values are | |
| dictionaries with keys 'SR', 'stride', and 'kernel' for proportion, | |
| stride, and kernel size, respectively. | |
| """ | |
| def __init__(self, channels_in, channels_out, band_configs): | |
| super(SDlayer, self).__init__() | |
| # Initializing convolutional layers for each band | |
| self.convs = nn.ModuleList() | |
| self.strides = [] | |
| self.kernels = [] | |
| for config in band_configs.values(): | |
| self.convs.append( | |
| nn.Conv2d(channels_in, channels_out, (config['kernel'], 1), (config['stride'], 1), (0, 0))) | |
| self.strides.append(config['stride']) | |
| self.kernels.append(config['kernel']) | |
| # Saving rate proportions for determining splits | |
| self.SR_low = band_configs['low']['SR'] | |
| self.SR_mid = band_configs['mid']['SR'] | |
| def forward(self, x): | |
| B, C, Fr, T = x.shape | |
| # Define splitting points based on sampling rates | |
| splits = [ | |
| (0, math.ceil(Fr * self.SR_low)), | |
| (math.ceil(Fr * self.SR_low), math.ceil(Fr * (self.SR_low + self.SR_mid))), | |
| (math.ceil(Fr * (self.SR_low + self.SR_mid)), Fr) | |
| ] | |
| # Processing each band with the corresponding convolution | |
| outputs = [] | |
| original_lengths = [] | |
| for conv, stride, kernel, (start, end) in zip(self.convs, self.strides, self.kernels, splits): | |
| extracted = x[:, :, start:end, :] | |
| original_lengths.append(end - start) | |
| current_length = extracted.shape[2] | |
| # padding | |
| if stride == 1: | |
| total_padding = kernel - stride | |
| else: | |
| total_padding = (stride - current_length % stride) % stride | |
| pad_left = total_padding // 2 | |
| pad_right = total_padding - pad_left | |
| padded = F.pad(extracted, (0, 0, pad_left, pad_right)) | |
| output = conv(padded) | |
| outputs.append(output) | |
| return outputs, original_lengths | |
| class SUlayer(nn.Module): | |
| """ | |
| Implements a Sparse Up-sample Layer in decoder. | |
| Args: | |
| - channels_in: The number of input channels. | |
| - channels_out: The number of output channels. | |
| - convtr_configs: Dictionary containing the configurations for transposed convolutions. | |
| """ | |
| def __init__(self, channels_in, channels_out, band_configs): | |
| super(SUlayer, self).__init__() | |
| # Initializing convolutional layers for each band | |
| self.convtrs = nn.ModuleList([ | |
| nn.ConvTranspose2d(channels_in, channels_out, [config['kernel'], 1], [config['stride'], 1]) | |
| for _, config in band_configs.items() | |
| ]) | |
| def forward(self, x, lengths, origin_lengths): | |
| B, C, Fr, T = x.shape | |
| # Define splitting points based on input lengths | |
| splits = [ | |
| (0, lengths[0]), | |
| (lengths[0], lengths[0] + lengths[1]), | |
| (lengths[0] + lengths[1], None) | |
| ] | |
| # Processing each band with the corresponding convolution | |
| outputs = [] | |
| for idx, (convtr, (start, end)) in enumerate(zip(self.convtrs, splits)): | |
| out = convtr(x[:, :, start:end, :]) | |
| # Calculate the distance to trim the output symmetrically to original length | |
| current_Fr_length = out.shape[2] | |
| dist = abs(origin_lengths[idx] - current_Fr_length) // 2 | |
| # Trim the output to the original length symmetrically | |
| trimmed_out = out[:, :, dist:dist + origin_lengths[idx], :] | |
| outputs.append(trimmed_out) | |
| # Concatenate trimmed outputs along the frequency dimension to return the final tensor | |
| x = torch.cat(outputs, dim=2) | |
| return x | |
| class SDblock(nn.Module): | |
| """ | |
| Implements a simplified Sparse Down-sample block in encoder. | |
| Args: | |
| - channels_in (int): Number of input channels. | |
| - channels_out (int): Number of output channels. | |
| - band_config (dict): Configuration for the SDlayer specifying band splits and convolutions. | |
| - conv_config (dict): Configuration for convolution modules applied to each band. | |
| - depths (list of int): List specifying the convolution depths for low, mid, and high frequency bands. | |
| """ | |
| def __init__(self, channels_in, channels_out, band_configs={}, conv_config={}, depths=[3, 2, 1], kernel_size=3): | |
| super(SDblock, self).__init__() | |
| self.SDlayer = SDlayer(channels_in, channels_out, band_configs) | |
| # Dynamically create convolution modules for each band based on depths | |
| self.conv_modules = nn.ModuleList([ | |
| ConvolutionModule(channels_out, depth, **conv_config) for depth in depths | |
| ]) | |
| # Set the kernel_size to an odd number. | |
| self.globalconv = nn.Conv2d(channels_out, channels_out, kernel_size, 1, (kernel_size - 1) // 2) | |
| def forward(self, x): | |
| bands, original_lengths = self.SDlayer(x) | |
| # B, C, f, T = band.shape | |
| bands = [ | |
| F.gelu( | |
| conv(band.permute(0, 2, 1, 3).reshape(-1, band.shape[1], band.shape[3])) | |
| .view(band.shape[0], band.shape[2], band.shape[1], band.shape[3]) | |
| .permute(0, 2, 1, 3) | |
| ) | |
| for conv, band in zip(self.conv_modules, bands) | |
| ] | |
| lengths = [band.size(-2) for band in bands] | |
| full_band = torch.cat(bands, dim=2) | |
| skip = full_band | |
| output = self.globalconv(full_band) | |
| return output, skip, lengths, original_lengths | |
| class SCNet(nn.Module): | |
| """ | |
| The implementation of SCNet: Sparse Compression Network for Music Source Separation. Paper: https://arxiv.org/abs/2401.13276.pdf | |
| Args: | |
| - sources (List[str]): List of sources to be separated. | |
| - audio_channels (int): Number of audio channels. | |
| - nfft (int): Number of FFTs to determine the frequency dimension of the input. | |
| - hop_size (int): Hop size for the STFT. | |
| - win_size (int): Window size for STFT. | |
| - normalized (bool): Whether to normalize the STFT. | |
| - dims (List[int]): List of channel dimensions for each block. | |
| - band_SR (List[float]): The proportion of each frequency band. | |
| - band_stride (List[int]): The down-sampling ratio of each frequency band. | |
| - band_kernel (List[int]): The kernel sizes for down-sampling convolution in each frequency band | |
| - conv_depths (List[int]): List specifying the number of convolution modules in each SD block. | |
| - compress (int): Compression factor for convolution module. | |
| - conv_kernel (int): Kernel size for convolution layer in convolution module. | |
| - num_dplayer (int): Number of dual-path layers. | |
| - expand (int): Expansion factor in the dual-path RNN, default is 1. | |
| """ | |
| def __init__(self, | |
| sources=['drums', 'bass', 'other', 'vocals'], | |
| audio_channels=2, | |
| # Main structure | |
| dims=[4, 32, 64, 128], # dims = [4, 64, 128, 256] in SCNet-large | |
| # STFT | |
| nfft=4096, | |
| hop_size=1024, | |
| win_size=4096, | |
| normalized=True, | |
| # SD/SU layer | |
| band_SR=[0.175, 0.392, 0.433], | |
| band_stride=[1, 4, 16], | |
| band_kernel=[3, 4, 16], | |
| # Convolution Module | |
| conv_depths=[3, 2, 1], | |
| compress=4, | |
| conv_kernel=3, | |
| # Dual-path RNN | |
| num_dplayer=6, | |
| expand=1, | |
| ): | |
| super().__init__() | |
| self.sources = sources | |
| self.audio_channels = audio_channels | |
| self.dims = dims | |
| band_keys = ['low', 'mid', 'high'] | |
| self.band_configs = {band_keys[i]: {'SR': band_SR[i], 'stride': band_stride[i], 'kernel': band_kernel[i]} for i | |
| in range(len(band_keys))} | |
| self.hop_length = hop_size | |
| self.conv_config = { | |
| 'compress': compress, | |
| 'kernel': conv_kernel, | |
| } | |
| self.stft_config = { | |
| 'n_fft': nfft, | |
| 'hop_length': hop_size, | |
| 'win_length': win_size, | |
| 'center': True, | |
| 'normalized': normalized | |
| } | |
| self.encoder = nn.ModuleList() | |
| self.decoder = nn.ModuleList() | |
| for index in range(len(dims) - 1): | |
| enc = SDblock( | |
| channels_in=dims[index], | |
| channels_out=dims[index + 1], | |
| band_configs=self.band_configs, | |
| conv_config=self.conv_config, | |
| depths=conv_depths | |
| ) | |
| self.encoder.append(enc) | |
| dec = nn.Sequential( | |
| FusionLayer(channels=dims[index + 1]), | |
| SUlayer( | |
| channels_in=dims[index + 1], | |
| channels_out=dims[index] if index != 0 else dims[index] * len(sources), | |
| band_configs=self.band_configs, | |
| ) | |
| ) | |
| self.decoder.insert(0, dec) | |
| self.separation_net = SeparationNet( | |
| channels=dims[-1], | |
| expand=expand, | |
| num_layers=num_dplayer, | |
| ) | |
| def forward(self, x): | |
| # B, C, L = x.shape | |
| B = x.shape[0] | |
| # In the initial padding, ensure that the number of frames after the STFT (the length of the T dimension) is even, | |
| # so that the RFFT operation can be used in the separation network. | |
| padding = self.hop_length - x.shape[-1] % self.hop_length | |
| if (x.shape[-1] + padding) // self.hop_length % 2 == 0: | |
| padding += self.hop_length | |
| x = F.pad(x, (0, padding)) | |
| # STFT | |
| L = x.shape[-1] | |
| x = x.reshape(-1, L) | |
| x = torch.stft(x, **self.stft_config, return_complex=True) | |
| x = torch.view_as_real(x) | |
| x = x.permute(0, 3, 1, 2).reshape(x.shape[0] // self.audio_channels, x.shape[3] * self.audio_channels, | |
| x.shape[1], x.shape[2]) | |
| B, C, Fr, T = x.shape | |
| save_skip = deque() | |
| save_lengths = deque() | |
| save_original_lengths = deque() | |
| # encoder | |
| for sd_layer in self.encoder: | |
| x, skip, lengths, original_lengths = sd_layer(x) | |
| save_skip.append(skip) | |
| save_lengths.append(lengths) | |
| save_original_lengths.append(original_lengths) | |
| # separation | |
| x = self.separation_net(x) | |
| # decoder | |
| for fusion_layer, su_layer in self.decoder: | |
| x = fusion_layer(x, save_skip.pop()) | |
| x = su_layer(x, save_lengths.pop(), save_original_lengths.pop()) | |
| # output | |
| n = self.dims[0] | |
| x = x.view(B, n, -1, Fr, T) | |
| x = x.reshape(-1, 2, Fr, T).permute(0, 2, 3, 1) | |
| x = torch.view_as_complex(x.contiguous()) | |
| x = torch.istft(x, **self.stft_config) | |
| x = x.reshape(B, len(self.sources), self.audio_channels, -1) | |
| x = x[:, :, :, :-padding] | |
| return x | |