File size: 6,470 Bytes
9bcfc22
 
 
 
 
 
 
67d7c14
 
9bcfc22
 
 
 
bf3e1ad
 
772c180
 
b638070
 
39b3ae6
9bcfc22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a285af
9bcfc22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a285af
 
9bcfc22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a285af
 
 
 
 
9bcfc22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a285af
9bcfc22
 
 
 
 
 
 
6a285af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
from bs4 import BeautifulSoup  # Optional: in case HTML prompt cleanup is needed

# Title and description
title = "NQZFaizal77 AI Small Space Warfare CLM Test"
description = "Casual Language Model Testing Interface For Small Space Warfare Finetuned Model"

# Local model paths
MODEL_PATHS = {
    "SwiftStrike Aero Space Warfare Intro 3POV": "nqzfaizal77ai/sa-145m-en-1bc-space-warfare-short-story-3pov-exp-intro",
    "SwiftStrike Aero Space Warfare 3POV": "nqzfaizal77ai/sa-145m-en-1bc-space-warfare-short-story-3pov-exp",
    "Halcyra Driftwing Space Warfare Intro 3POV" : "nqzfaizal77ai/hd-178m-en-1bc-space-warfare-short-story-3pov-exp-intro",
    "Halcyra Driftwing Space Warfare 3POV" : "nqzfaizal77ai/hd-178m-en-1bc-space-warfare-short-story-3pov-exp",
    "Noble Mind Space Warfare Intro 3POV" : "nqzfaizal77ai/nm-212m-en-1bc-space-warfare-short-story-3pov-exp-intro",
    "Noble Mind Space Warfare 3POV" : "nqzfaizal77ai/nm-212m-en-1bc-space-warfare-short-story-3pov-exp",
    "Mirabel Tempest Space Warfare Intro 3POV" : "nqzfaizal77ai/mt-230m-en-1bc-space-warfare-short-story-3pov-exp-intro",
    "Mirabel Tempest Space Warfare 3POV" : "nqzfaizal77ai/mt-230m-en-1bc-space-warfare-short-story-3pov-exp"
}
DEFAULT_MODEL = "SwiftStrike Aero Space Warfare Intro 3POV"

# Cache loaded models
loaded_models = {}
loaded_tokenizers = {}

# Global stop flag
stop_generation = False

def load_model(model_name):
    if model_name not in loaded_models:
        model_path = MODEL_PATHS[model_name]
        tokenizer = AutoTokenizer.from_pretrained(model_path)
        model = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype=torch.float32,
            device_map="auto",
            low_cpu_mem_usage=True
        )
        loaded_models[model_name] = model
        loaded_tokenizers[model_name] = tokenizer
    return loaded_models[model_name], loaded_tokenizers[model_name]

def truncate_to_last_words(text, n):
    paragraphs = text.split("\n\n")
    words = []
    para_indices = []

    for i, para in enumerate(paragraphs):
        for word in para.strip().split():
            words.append(word)
            para_indices.append(i)

    if len(words) <= n:
        return text

    selected_words = words[-n:]
    selected_indices = para_indices[-n:]

    reconstructed_paragraphs = {}
    for word, idx in zip(selected_words, selected_indices):
        if idx not in reconstructed_paragraphs:
            reconstructed_paragraphs[idx] = []
        reconstructed_paragraphs[idx].append(word)

    result = '\n\n'.join(
        ' '.join(reconstructed_paragraphs[i]) for i in sorted(reconstructed_paragraphs)
    )
    return result

def generate_text(model_name, input_text, decoding_method, max_length, use_last_words, num_last_words, repetition_penalty):
    global stop_generation
    stop_generation = False

    try:
        # Load model
        model, tokenizer = load_model(model_name)

        # Optional: clean HTML-like input
        if '<' in input_text and '>' in input_text:
            soup = BeautifulSoup(input_text, "html.parser")
            input_text = soup.get_text(separator="\n\n")

        if use_last_words:
            input_text = truncate_to_last_words(input_text, int(num_last_words))

        inputs = tokenizer(input_text, return_tensors="pt").to(model.device)

        generation_args = {
            "max_new_tokens": max_length,
            "pad_token_id": tokenizer.eos_token_id,
            "do_sample": decoding_method == "stochastic",
            "repetition_penalty": repetition_penalty
        }

        if decoding_method == "stochastic":
            generation_args.update({
                "top_k": 50,
                "top_p": 0.95,
                "temperature": 0.7
            })

        with torch.no_grad():
            if stop_generation:
                return "Generation stopped by user"
            output = model.generate(**inputs, **generation_args)

        return tokenizer.decode(output[0], skip_special_tokens=True)

    except Exception as e:
        return f"Error: {str(e)}"

def stop_generation_fn():
    global stop_generation
    stop_generation = True
    return "Generation cancelled."

# Build Gradio UI
with gr.Blocks(title=title) as demo:
    gr.Markdown(f"# {title}")
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_PATHS.keys()),
                value=DEFAULT_MODEL,
                label="Model"
            )

            decoding_method = gr.Radio(
                choices=["greedy", "stochastic"],
                value="greedy",
                label="Decoding Method"
            )

            max_length = gr.Slider(
                minimum=10, maximum=500, value=100, step=10,
                label="Max Tokens"
            )

            repetition_penalty = gr.Slider(
                minimum=1.0, maximum=2.0, value=1.2, step=0.1,
                label="Repetition Penalty (1.0=no penalty, higher=less repetition)"
            )

            use_last_words = gr.Checkbox(
                label="Use Last N Words",
                value=False
            )

            num_last_words = gr.Number(
                label="N Words",
                value=20,
                minimum=1,
                maximum=100,
                visible=False
            )

            with gr.Row():
                generate_btn = gr.Button("Generate", variant="primary")
                stop_btn = gr.Button("Stop")

        with gr.Column():
            input_text = gr.Textbox(
                label="Prompt",
                placeholder="Enter your prompt...",
                lines=5
            )

            output_text = gr.Textbox(
                label="Generated Output",
                lines=10,
                interactive=False
            )

    use_last_words.change(
        lambda checked: gr.update(visible=checked),
        inputs=use_last_words,
        outputs=num_last_words
    )

    generate_btn.click(
        fn=generate_text,
        inputs=[model_dropdown, input_text, decoding_method, max_length, use_last_words, num_last_words, repetition_penalty],
        outputs=output_text
    )

    stop_btn.click(fn=stop_generation_fn, outputs=output_text, queue=False)

# Launch
if __name__ == "__main__":
    demo.launch()