Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,14 +7,20 @@ from huggingface_hub import hf_hub_download
|
|
| 7 |
from llama_cpp import Llama
|
| 8 |
|
| 9 |
# ---------- Minimal fixed config (fast on CPU) ----------
|
| 10 |
-
REPO_ID = "bartowski/Llama-3.2-1B-Instruct-GGUF" #
|
| 11 |
FILENAME = "Llama-3.2-1B-Instruct-Q4_K_M.gguf"
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
N_THREADS = min(4, os.cpu_count() or 2)
|
| 15 |
-
N_BATCH = 8
|
| 16 |
N_CTX = 2048
|
| 17 |
-
MAX_TOKENS = 16
|
| 18 |
|
| 19 |
TEMPERATURE = 0.7
|
| 20 |
TOP_P = 0.9
|
|
@@ -23,36 +29,44 @@ STOP = ["</s>", "<|eot_id|>"]
|
|
| 23 |
# ---------- App ----------
|
| 24 |
app = FastAPI(title="Simple Llama Server (1B fast)")
|
| 25 |
model = None
|
|
|
|
| 26 |
|
| 27 |
class PromptRequest(BaseModel):
|
| 28 |
prompt: str
|
| 29 |
|
| 30 |
@app.on_event("startup")
|
| 31 |
def load_model():
|
| 32 |
-
global model
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
t0 = time.time()
|
| 41 |
model = Llama(
|
| 42 |
-
model_path=
|
| 43 |
chat_format="llama-3",
|
| 44 |
n_ctx=N_CTX,
|
| 45 |
n_threads=N_THREADS,
|
| 46 |
n_batch=N_BATCH,
|
| 47 |
-
use_mmap=True,
|
| 48 |
-
n_gpu_layers=0,
|
| 49 |
verbose=False,
|
| 50 |
)
|
| 51 |
-
print(f"[startup]
|
| 52 |
|
| 53 |
@app.get("/health")
|
| 54 |
def health():
|
| 55 |
-
return {"ok": model is not None}
|
| 56 |
|
| 57 |
@app.post("/generate")
|
| 58 |
def generate(req: PromptRequest):
|
|
@@ -71,6 +85,4 @@ def generate(req: PromptRequest):
|
|
| 71 |
stop=STOP,
|
| 72 |
)
|
| 73 |
text = out["choices"][0]["message"]["content"]
|
| 74 |
-
|
| 75 |
-
print(f"[infer] tokens={MAX_TOKENS} took {dt:.2f}s, prompt_len_chars={len(prompt)}")
|
| 76 |
-
return JSONResponse({"response": text, "timing_sec": round(dt, 2)})
|
|
|
|
| 7 |
from llama_cpp import Llama
|
| 8 |
|
| 9 |
# ---------- Minimal fixed config (fast on CPU) ----------
|
| 10 |
+
REPO_ID = "bartowski/Llama-3.2-1B-Instruct-GGUF" # 1B = much faster on CPU
|
| 11 |
FILENAME = "Llama-3.2-1B-Instruct-Q4_K_M.gguf"
|
| 12 |
+
|
| 13 |
+
# Build-time prefetch location (Dockerfile step put model here)
|
| 14 |
+
BUILD_DIR = "/app/models"
|
| 15 |
+
MODEL_PATH = os.path.join(BUILD_DIR, FILENAME)
|
| 16 |
+
|
| 17 |
+
# Writable runtime cache if the prebuilt file isn't present
|
| 18 |
+
RUNTIME_CACHE = "/tmp/hf_cache"
|
| 19 |
|
| 20 |
N_THREADS = min(4, os.cpu_count() or 2)
|
| 21 |
+
N_BATCH = 8
|
| 22 |
N_CTX = 2048
|
| 23 |
+
MAX_TOKENS = 16
|
| 24 |
|
| 25 |
TEMPERATURE = 0.7
|
| 26 |
TOP_P = 0.9
|
|
|
|
| 29 |
# ---------- App ----------
|
| 30 |
app = FastAPI(title="Simple Llama Server (1B fast)")
|
| 31 |
model = None
|
| 32 |
+
effective_model_path = None
|
| 33 |
|
| 34 |
class PromptRequest(BaseModel):
|
| 35 |
prompt: str
|
| 36 |
|
| 37 |
@app.on_event("startup")
|
| 38 |
def load_model():
|
| 39 |
+
global model, effective_model_path
|
| 40 |
+
|
| 41 |
+
# 1) If the model exists from the Docker build, use it directly (no writes)
|
| 42 |
+
if os.path.isfile(MODEL_PATH):
|
| 43 |
+
effective_model_path = MODEL_PATH
|
| 44 |
+
else:
|
| 45 |
+
# 2) Otherwise, download to a writable temp cache (NOT under /app)
|
| 46 |
+
os.makedirs(RUNTIME_CACHE, exist_ok=True)
|
| 47 |
+
effective_model_path = hf_hub_download(
|
| 48 |
+
repo_id=REPO_ID,
|
| 49 |
+
filename=FILENAME,
|
| 50 |
+
cache_dir=RUNTIME_CACHE,
|
| 51 |
+
local_dir_use_symlinks=False,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
t0 = time.time()
|
| 55 |
model = Llama(
|
| 56 |
+
model_path=effective_model_path,
|
| 57 |
chat_format="llama-3",
|
| 58 |
n_ctx=N_CTX,
|
| 59 |
n_threads=N_THREADS,
|
| 60 |
n_batch=N_BATCH,
|
| 61 |
+
use_mmap=True, # faster load
|
| 62 |
+
n_gpu_layers=0, # CPU only
|
| 63 |
verbose=False,
|
| 64 |
)
|
| 65 |
+
print(f"[startup] loaded {effective_model_path} in {time.time()-t0:.2f}s")
|
| 66 |
|
| 67 |
@app.get("/health")
|
| 68 |
def health():
|
| 69 |
+
return {"ok": model is not None, "model_path": effective_model_path}
|
| 70 |
|
| 71 |
@app.post("/generate")
|
| 72 |
def generate(req: PromptRequest):
|
|
|
|
| 85 |
stop=STOP,
|
| 86 |
)
|
| 87 |
text = out["choices"][0]["message"]["content"]
|
| 88 |
+
return JSONResponse({"response": text, "timing_sec": round(time.time()-t0, 2)})
|
|
|
|
|
|