Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,20 +10,24 @@ from pydantic import BaseModel, Field
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from llama_cpp import Llama
|
| 12 |
|
| 13 |
-
# ---------------- Config
|
| 14 |
REPO_ID = os.getenv("REPO_ID", "bartowski/Llama-3.2-3B-Instruct-GGUF")
|
| 15 |
FILENAME = os.getenv("FILENAME", "Llama-3.2-3B-Instruct-Q4_K_M.gguf")
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
N_CTX = int(os.getenv("N_CTX", "2048"))
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
MAX_TOKENS = int(os.getenv("MAX_TOKENS", "
|
| 27 |
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
|
| 28 |
TOP_P = float(os.getenv("TOP_P", "0.9"))
|
| 29 |
STOP_TOKENS = os.getenv("STOP_TOKENS", "</s>,<|eot_id|>").split(",")
|
|
@@ -31,17 +35,14 @@ STOP_TOKENS = os.getenv("STOP_TOKENS", "</s>,<|eot_id|>").split(",")
|
|
| 31 |
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT", "").strip()
|
| 32 |
CTX_SAFETY = int(os.getenv("CTX_SAFETY", "128"))
|
| 33 |
|
| 34 |
-
# ---------------- App
|
| 35 |
app = FastAPI(title="Llama 3.2 3B Instruct (llama.cpp) API - Prompt Only")
|
| 36 |
_model: Optional[Llama] = None
|
| 37 |
_model_lock = threading.Lock()
|
|
|
|
| 38 |
_effective_cache_dir: Optional[str] = None
|
| 39 |
|
| 40 |
def _select_writable_cache_dir(preferred: str) -> str:
|
| 41 |
-
"""
|
| 42 |
-
Pick the first writable directory from a list of candidates.
|
| 43 |
-
Tries to mkdir and write a tiny file to confirm writability.
|
| 44 |
-
"""
|
| 45 |
candidates = [
|
| 46 |
preferred,
|
| 47 |
os.path.join(os.path.expanduser("~"), ".cache", "hf_models"),
|
|
@@ -50,24 +51,26 @@ def _select_writable_cache_dir(preferred: str) -> str:
|
|
| 50 |
for d in candidates:
|
| 51 |
try:
|
| 52 |
os.makedirs(d, exist_ok=True)
|
| 53 |
-
|
| 54 |
-
with open(
|
| 55 |
f.write("ok")
|
| 56 |
-
os.remove(
|
| 57 |
return d
|
| 58 |
except Exception:
|
| 59 |
continue
|
| 60 |
-
raise RuntimeError("No writable cache directory found
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
# pick a writable cache dir (handles /data permission issues)
|
| 69 |
if _effective_cache_dir is None:
|
| 70 |
-
_effective_cache_dir = _select_writable_cache_dir(
|
| 71 |
|
| 72 |
local_path = hf_hub_download(
|
| 73 |
repo_id=REPO_ID,
|
|
@@ -75,21 +78,33 @@ def get_model() -> Llama:
|
|
| 75 |
cache_dir=_effective_cache_dir,
|
| 76 |
local_dir_use_symlinks=False,
|
| 77 |
)
|
|
|
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
_model = Llama(
|
| 80 |
-
model_path=
|
| 81 |
chat_format="llama-3",
|
| 82 |
n_ctx=N_CTX,
|
| 83 |
n_threads=N_THREADS,
|
| 84 |
n_batch=N_BATCH,
|
|
|
|
|
|
|
| 85 |
verbose=False,
|
| 86 |
)
|
| 87 |
return _model
|
| 88 |
|
| 89 |
@app.on_event("startup")
|
| 90 |
def _warm_start():
|
| 91 |
-
#
|
| 92 |
-
get_model()
|
| 93 |
|
| 94 |
# ---------------- Schemas ----------------
|
| 95 |
class GenerateRequest(BaseModel):
|
|
@@ -116,28 +131,17 @@ def _fit_prompt_to_context(model: Llama, prompt: str) -> str:
|
|
| 116 |
def health():
|
| 117 |
try:
|
| 118 |
_ = get_model()
|
| 119 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
except Exception as e:
|
| 121 |
return {"ok": False, "error": str(e)}
|
| 122 |
|
| 123 |
-
@app.get("/config")
|
| 124 |
-
def config():
|
| 125 |
-
return {
|
| 126 |
-
"repo_id": REPO_ID,
|
| 127 |
-
"filename": FILENAME,
|
| 128 |
-
"preferred_cache_dir": CACHE_DIR,
|
| 129 |
-
"effective_cache_dir": _effective_cache_dir,
|
| 130 |
-
"n_threads": N_THREADS,
|
| 131 |
-
"n_batch": N_BATCH,
|
| 132 |
-
"n_ctx": N_CTX,
|
| 133 |
-
"max_tokens": MAX_TOKENS,
|
| 134 |
-
"temperature": TEMPERATURE,
|
| 135 |
-
"top_p": TOP_P,
|
| 136 |
-
"stop_tokens": STOP_TOKENS,
|
| 137 |
-
"ctx_safety": CTX_SAFETY,
|
| 138 |
-
"has_system_prompt": bool(SYSTEM_PROMPT),
|
| 139 |
-
}
|
| 140 |
-
|
| 141 |
@app.get("/warmup")
|
| 142 |
def warmup():
|
| 143 |
model = get_model()
|
|
@@ -159,7 +163,7 @@ def warmup():
|
|
| 159 |
def generate(req: GenerateRequest):
|
| 160 |
"""
|
| 161 |
Non-streaming chat completion.
|
| 162 |
-
Accepts ONLY a prompt string; all other params are fixed
|
| 163 |
"""
|
| 164 |
try:
|
| 165 |
if not req.prompt or not req.prompt.strip():
|
|
@@ -203,6 +207,7 @@ def generate(req: GenerateRequest):
|
|
| 203 |
"n_threads": N_THREADS,
|
| 204 |
},
|
| 205 |
"prompt_truncated": (fitted_prompt != user_prompt),
|
|
|
|
| 206 |
"effective_cache_dir": _effective_cache_dir,
|
| 207 |
})
|
| 208 |
|
|
|
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
from llama_cpp import Llama
|
| 12 |
|
| 13 |
+
# ---------------- Config ----------------
|
| 14 |
REPO_ID = os.getenv("REPO_ID", "bartowski/Llama-3.2-3B-Instruct-GGUF")
|
| 15 |
FILENAME = os.getenv("FILENAME", "Llama-3.2-3B-Instruct-Q4_K_M.gguf")
|
| 16 |
|
| 17 |
+
# BUILD-TIME PREFETCH LOCATION (your Dockerfile downloads here)
|
| 18 |
+
BUILD_CACHE_DIR = "/app/models"
|
| 19 |
+
BUILD_MODEL_PATH = os.path.join(BUILD_CACHE_DIR, FILENAME)
|
| 20 |
|
| 21 |
+
# Preferred runtime cache (only used if model not found above)
|
| 22 |
+
PREFERRED_CACHE_DIR = os.getenv("CACHE_DIR", "/app/models")
|
| 23 |
+
|
| 24 |
+
# Inference knobs (conservative for small CPU Spaces)
|
| 25 |
+
N_THREADS = min(4, (os.cpu_count() or 2))
|
| 26 |
+
N_BATCH = int(os.getenv("N_BATCH", "16")) # safer than 32/64 on tiny CPUs
|
| 27 |
N_CTX = int(os.getenv("N_CTX", "2048"))
|
| 28 |
|
| 29 |
+
# Sampling (keep short for latency)
|
| 30 |
+
MAX_TOKENS = int(os.getenv("MAX_TOKENS", "48")) # tighter → faster
|
| 31 |
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
|
| 32 |
TOP_P = float(os.getenv("TOP_P", "0.9"))
|
| 33 |
STOP_TOKENS = os.getenv("STOP_TOKENS", "</s>,<|eot_id|>").split(",")
|
|
|
|
| 35 |
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT", "").strip()
|
| 36 |
CTX_SAFETY = int(os.getenv("CTX_SAFETY", "128"))
|
| 37 |
|
| 38 |
+
# ---------------- App ----------------
|
| 39 |
app = FastAPI(title="Llama 3.2 3B Instruct (llama.cpp) API - Prompt Only")
|
| 40 |
_model: Optional[Llama] = None
|
| 41 |
_model_lock = threading.Lock()
|
| 42 |
+
_effective_model_path: Optional[str] = None
|
| 43 |
_effective_cache_dir: Optional[str] = None
|
| 44 |
|
| 45 |
def _select_writable_cache_dir(preferred: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
candidates = [
|
| 47 |
preferred,
|
| 48 |
os.path.join(os.path.expanduser("~"), ".cache", "hf_models"),
|
|
|
|
| 51 |
for d in candidates:
|
| 52 |
try:
|
| 53 |
os.makedirs(d, exist_ok=True)
|
| 54 |
+
test_file = os.path.join(d, ".w")
|
| 55 |
+
with open(test_file, "w") as f:
|
| 56 |
f.write("ok")
|
| 57 |
+
os.remove(test_file)
|
| 58 |
return d
|
| 59 |
except Exception:
|
| 60 |
continue
|
| 61 |
+
raise RuntimeError("No writable cache directory found")
|
| 62 |
|
| 63 |
+
def _resolve_model_path() -> str:
|
| 64 |
+
"""
|
| 65 |
+
1) If the model file exists at build path (/app/models/...), use it (fast path).
|
| 66 |
+
2) Else, download into first writable cache dir and return that path.
|
| 67 |
+
"""
|
| 68 |
+
global _effective_cache_dir
|
| 69 |
+
if os.path.isfile(BUILD_MODEL_PATH):
|
| 70 |
+
return BUILD_MODEL_PATH
|
| 71 |
|
|
|
|
| 72 |
if _effective_cache_dir is None:
|
| 73 |
+
_effective_cache_dir = _select_writable_cache_dir(PREFERRED_CACHE_DIR)
|
| 74 |
|
| 75 |
local_path = hf_hub_download(
|
| 76 |
repo_id=REPO_ID,
|
|
|
|
| 78 |
cache_dir=_effective_cache_dir,
|
| 79 |
local_dir_use_symlinks=False,
|
| 80 |
)
|
| 81 |
+
return local_path
|
| 82 |
|
| 83 |
+
# ---------------- Model loader ----------------
|
| 84 |
+
def get_model() -> Llama:
|
| 85 |
+
global _model, _effective_model_path
|
| 86 |
+
if _model is not None:
|
| 87 |
+
return _model
|
| 88 |
+
|
| 89 |
+
# Resolve path without failing on /data permission
|
| 90 |
+
_effective_model_path = _resolve_model_path()
|
| 91 |
+
|
| 92 |
+
# llama.cpp init (CPU-friendly)
|
| 93 |
_model = Llama(
|
| 94 |
+
model_path=_effective_model_path,
|
| 95 |
chat_format="llama-3",
|
| 96 |
n_ctx=N_CTX,
|
| 97 |
n_threads=N_THREADS,
|
| 98 |
n_batch=N_BATCH,
|
| 99 |
+
use_mmap=True, # faster load on CPU
|
| 100 |
+
n_gpu_layers=0, # ensure pure CPU
|
| 101 |
verbose=False,
|
| 102 |
)
|
| 103 |
return _model
|
| 104 |
|
| 105 |
@app.on_event("startup")
|
| 106 |
def _warm_start():
|
| 107 |
+
get_model() # force load at startup so first request is predictable
|
|
|
|
| 108 |
|
| 109 |
# ---------------- Schemas ----------------
|
| 110 |
class GenerateRequest(BaseModel):
|
|
|
|
| 131 |
def health():
|
| 132 |
try:
|
| 133 |
_ = get_model()
|
| 134 |
+
return {
|
| 135 |
+
"ok": True,
|
| 136 |
+
"model_path": _effective_model_path,
|
| 137 |
+
"cache_dir": _effective_cache_dir,
|
| 138 |
+
"n_threads": N_THREADS,
|
| 139 |
+
"n_batch": N_BATCH,
|
| 140 |
+
"n_ctx": N_CTX
|
| 141 |
+
}
|
| 142 |
except Exception as e:
|
| 143 |
return {"ok": False, "error": str(e)}
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
@app.get("/warmup")
|
| 146 |
def warmup():
|
| 147 |
model = get_model()
|
|
|
|
| 163 |
def generate(req: GenerateRequest):
|
| 164 |
"""
|
| 165 |
Non-streaming chat completion.
|
| 166 |
+
Accepts ONLY a prompt string; all other params are fixed here.
|
| 167 |
"""
|
| 168 |
try:
|
| 169 |
if not req.prompt or not req.prompt.strip():
|
|
|
|
| 207 |
"n_threads": N_THREADS,
|
| 208 |
},
|
| 209 |
"prompt_truncated": (fitted_prompt != user_prompt),
|
| 210 |
+
"effective_model_path": _effective_model_path,
|
| 211 |
"effective_cache_dir": _effective_cache_dir,
|
| 212 |
})
|
| 213 |
|