Spaces:
Running
Running
File size: 9,602 Bytes
7458986 db6d471 65d5f73 7458986 db6d471 7458986 65d5f73 cd2ec3f 7458986 db6d471 cd2ec3f db6d471 972a547 05c066f cd2ec3f 7458986 db6d471 7458986 cd2ec3f 05c066f 7458986 cd2ec3f 525527f cd2ec3f 65d5f73 db6d471 cd2ec3f db6d471 972a547 65d5f73 db6d471 cd2ec3f db6d471 cd2ec3f 972a547 db6d471 cd2ec3f 05c066f 65d5f73 db6d471 117e6a7 cd2ec3f 117e6a7 db6d471 cd2ec3f db6d471 cd2ec3f db6d471 cd2ec3f db6d471 cd2ec3f db6d471 cd2ec3f db6d471 daab9d7 117e6a7 05c066f cd2ec3f db6d471 05c066f 380e150 cd2ec3f daab9d7 dbe373a 65d5f73 cd2ec3f db6d471 c67acf2 daab9d7 3686f17 dbe373a 9c4f0cf cd2ec3f 117e6a7 65d5f73 daab9d7 cd2ec3f 9c4f0cf cd2ec3f 9c4f0cf cd2ec3f daab9d7 db6d471 65d5f73 cd2ec3f db6d471 daab9d7 cd2ec3f daab9d7 db6d471 65d5f73 972a547 cd2ec3f db6d471 8dd55d0 db6d471 8dd55d0 cd2ec3f 8dd55d0 daab9d7 8dd55d0 daab9d7 cd2ec3f daab9d7 8dd55d0 daab9d7 8dd55d0 cd2ec3f c54bdd8 65d5f73 db6d471 cd2ec3f daab9d7 65d5f73 7458986 db6d471 3686f17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import pandas as pd
import yfinance as yf
from utils import (
calculate_technical_indicators,
generate_trading_signals,
get_fundamental_data,
predict_prices,
create_price_chart,
create_technical_chart,
create_prediction_chart,
# Import fungsi baru
calculate_advanced_risk_metrics
)
import warnings
import numpy as np # Tambahkan import numpy
warnings.filterwarnings("ignore")
def analyze_stock(symbol, prediction_days=30):
try:
if not symbol.strip():
raise ValueError("Please enter a valid stock symbol.")
if not symbol.endswith(".JK"):
symbol = symbol.upper() + ".JK"
stock = yf.Ticker(symbol)
# Menggunakan periode 1 tahun untuk metrik risiko yang lebih relevan
data = stock.history(period="1y", interval="1d")
if data.empty:
raise ValueError("No price data available for this stock.")
# Menghitung Indikator Teknikal (Ini juga akan mengisi kolom RSI/MACD ke 'data')
indicators = calculate_technical_indicators(data)
signals = generate_trading_signals(data, indicators)
fundamental_info = get_fundamental_data(stock)
# Menghitung Metrik Risiko Tingkat Lanjut
risk_metrics = calculate_advanced_risk_metrics(data.copy())
# Prediksi Chronos-2 dengan Covariates
predictions = predict_prices(data, prediction_days=prediction_days)
fig_price = create_price_chart(data, indicators)
fig_technical = create_technical_chart(data, indicators)
fig_prediction = create_prediction_chart(data, predictions)
# kalkulasi TP1, TP2, SL yang diperbarui berdasarkan quantiles/range prediksi
last_price = data['Close'].iloc[-1]
# Target/SL yang lebih konservatif berdasarkan range prediksi Q0.1-Q0.9
q05 = predictions.get('values', [last_price])
q01 = predictions.get('q01', [last_price * 0.95])
q09 = predictions.get('q09', [last_price * 1.05])
# TP1 (Target Konservatif): Midpoint antara harga terakhir dan median tertinggi
tp1 = (last_price + np.max(q05)) / 2
# TP2 (Target Agresif): Quantile 90% tertinggi
tp2 = np.max(q09)
# SL (Stop Loss): Quantile 10% terendah
sl = np.min(q01)
# Pastikan TP1 < TP2 dan SL lebih rendah dari TP
if tp1 > tp2:
tp1, tp2 = tp2, tp1
if sl > last_price:
sl = last_price * 0.95 # Fallback
predictions["tp1"] = tp1
predictions["tp2"] = tp2
predictions["sl"] = sl
# Menambahkan risk_metrics ke return
return fundamental_info, indicators, signals, risk_metrics, fig_price, fig_technical, fig_prediction, predictions
except Exception as e:
print(f"Error analyzing {symbol}: {e}")
empty_fig = gr.Plot.update(value=None)
try:
stock = yf.Ticker(symbol)
data = stock.history(period="1d", interval="1d")
last_price = data['Close'].iloc[-1] if not data.empty else 0
except:
last_price = 0
default_tp1 = last_price * 1.01
default_tp2 = last_price * 1.02
default_sl = last_price * 0.95
empty_predictions = {
"high_30d": 0, "low_30d": 0, "change_pct": 0,
"summary": f"Prediction unavailable. Model error: {e}",
"q01": [], "q09": [],
"tp1": default_tp1, "tp2": default_tp2, "sl": default_sl,
}
# Mengembalikan dictionary kosong untuk risk_metrics saat error
return {}, {}, {}, {}, empty_fig, empty_fig, empty_fig, empty_predictions
def update_analysis(symbol, prediction_days):
(
fundamental_info,
indicators,
signals,
risk_metrics, # Tambahan metrik risiko
fig_price,
fig_technical,
fig_prediction,
predictions,
) = analyze_stock(symbol, prediction_days)
if not fundamental_info:
error_msg = f"Unable to fetch stock data for {symbol.upper()}. Please check the symbol."
tp_sl_info = f"<b>TP1:</b> Rp{predictions.get('tp1', 0):,.2f}<br><b>TP2:</b> Rp{predictions.get('tp2', 0):,.2f}<br><b>Stop Loss:</b> Rp{predictions.get('sl', 0):,.2f}<br><br><b>Model Insight:</b><br>Data fetching failed. Cannot proceed with analysis."
return (
f"""<div style="color: red; padding: 10px; border: 1px solid red; border-radius: 5px;">{error_msg}</div><br>{tp_sl_info}""",
gr.Plot.update(value=None),
gr.Plot.update(value=None),
gr.Plot.update(value=None),
)
# --- FUNDAMENTALS ---
fundamentals = f"""
<h4>COMPANY FUNDAMENTALS</h4>
<b>Name:</b> {fundamental_info.get('name', 'N/A')} ({symbol.upper()})<br>
<b>Current Price:</b> Rp{fundamental_info.get('current_price', 0):,.2f}<br>
<b>Market Cap:</b> {fundamental_info.get('market_cap', 0):,}<br>
<b>P/E Ratio:</b> {fundamental_info.get('pe_ratio', 0):.2f}<br>
<b>Dividend Yield:</b> {fundamental_info.get('dividend_yield', 0):.2f}%<br>
<b>Volume:</b> {fundamental_info.get('volume', 0):,}<br>
"""
# --- TECHNICAL SIGNAL ---
details_list = "".join(
[f"<li>{line.strip()}</li>" for line in signals.get("details", "").split("\n") if line.strip()]
)
trading_signal = f"""
<h4>TECHNICAL SIGNAL SUMMARY</h4>
<b>Overall Trend:</b> {signals.get('overall', 'N/A')}<br>
<b>Signal Strength:</b> {signals.get('strength', 0):.2f}%<br>
<b>Support:</b> Rp{signals.get('support', 0):,.2f}<br>
<b>Resistance:</b> Rp{signals.get('resistance', 0):,.2f}<br>
<b>Stop Loss:</b> Rp{signals.get('stop_loss', 0):,.2f}<br><br>
<b>Detailed Signals:</b>
<ul style="margin-top: 8px; padding-left: 20px; line-height: 1.6;">
{details_list}
</ul>
"""
# --- RISK METRICS ---
risk_details = ""
if "error" in risk_metrics:
risk_details = f"<b style='color: red;'>{risk_metrics['error']}</b>"
else:
for key, value in risk_metrics.items():
risk_details += f"<b>{key.replace('_', ' ')}:</b> {value}<br>"
risk_report = f"""
<h4>ADVANCED RISK METRICS (1Y HISTORICAL)</h4>
{risk_details}
"""
# --- AI FORECAST ---
band_min = float(min(predictions.get('q01', [0]))) if predictions.get('q01') and predictions.get('q01').size > 0 else 0
band_max = float(max(predictions.get('q09', [0]))) if predictions.get('q09') and predictions.get('q09').size > 0 else 0
prediction = f"""
<h4>{prediction_days}-DAY AI FORECAST (CHRONOS-2 + COVARIATES)</h4>
<b>Predicted Median High:</b> Rp{predictions.get('high_30d', 0):,.2f}<br>
<b>Predicted Median Low:</b> Rp{predictions.get('low_30d', 0):,.2f}<br>
<b>Expected Change:</b> {predictions.get('change_pct', 0):.2f}%<br>
---
<h4>RISK ANALYSIS (90% CONFIDENCE)</h4>
<b>Min. Possible Price (Q0.1):</b> Rp{band_min:,.2f}<br>
<b>Max. Possible Price (Q0.9):</b> Rp{band_max:,.2f}<br>
---
<b>TP1 (Conservative Target):</b> Rp{predictions.get('tp1', 0):,.2f}<br>
<b>TP2 (Aggressive Target):</b> Rp{predictions.get('tp2', 0):,.2f}<br>
<b>Stop Loss (Q0.1 based):</b> Rp{predictions.get('sl', 0):,.2f}<br><br>
<b>Model Insight:</b><br>{predictions.get('summary', 'No analysis available')}
"""
# Menggunakan tata letak 4 kolom/panel
return (
f"""
<div style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 16px;">
<div style="border: 1px solid #ccc; padding: 10px; border-radius: 5px; height: 100%;">{fundamentals}</div>
<div style="border: 1px solid #ccc; padding: 10px; border-radius: 5px; height: 100%;">{trading_signal}</div>
<div style="border: 1px solid #ccc; padding: 10px; border-radius: 5px; height: 100%;">{risk_report}</div>
<div style="border: 1px solid #ccc; padding: 10px; border-radius: 5px; height: 100%;">{prediction}</div>
</div>
""",
fig_price,
fig_technical,
fig_prediction,
)
# --- Gradio Interface ---
with gr.Blocks(
title="REXPRO FINANCIAL AI DASHBOARD"
) as app:
gr.Markdown("# REXPRO FINANCIAL AI DASHBOARD")
gr.Markdown(
"Comprehensive stock analytics powered by **AI forecasting, advanced risk metrics, and future technical analysis.**"
)
with gr.Row():
symbol = gr.Textbox(
label="STOCK SYMBOL (IDX)",
value="BBCA",
placeholder="Example: BBCA, TLKM, ADRO, BMRI",
interactive=True,
)
prediction_days = gr.Slider(
label="FORECAST PERIOD (DAYS)",
minimum=5,
maximum=60,
step=5,
value=30,
interactive=True,
)
analyze_button = gr.Button("RUN ADVANCED ANALYSIS")
gr.Markdown("---")
report_section = gr.HTML()
gr.Markdown("---")
with gr.Tab("MARKET CHARTS"):
with gr.Row():
price_chart = gr.Plot(label="PRICE & MOVING AVERAGES")
technical_chart = gr.Plot(label="TECHNICAL INDICATORS OVERVIEW")
gr.Markdown("---")
prediction_chart = gr.Plot(label="AI FORECAST & FUTURE TECHNICAL PROJECTION")
analyze_button.click(
fn=update_analysis,
inputs=[symbol, prediction_days],
outputs=[report_section, price_chart, technical_chart, prediction_chart],
)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860, ssr_mode=True) |