File size: 13,119 Bytes
7458986
 
 
 
 
 
 
8ce0053
7458986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d7d95e
7458986
 
 
 
 
 
 
 
3d7d95e
7458986
 
 
 
 
 
 
 
 
72779a3
 
 
 
 
 
 
 
 
e8bdf75
 
3d7d95e
 
7458986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d7d95e
7458986
 
3d7d95e
7458986
 
 
 
 
 
7f84e9b
7458986
7f84e9b
3d7d95e
7458986
 
 
 
 
 
 
 
 
 
 
 
 
 
326ddbe
7458986
326ddbe
7f84e9b
326ddbe
7458986
326ddbe
7f84e9b
 
 
3d7d95e
 
7458986
3d7d95e
 
 
 
7f84e9b
7458986
 
7f84e9b
7458986
8e72523
 
 
 
 
 
 
 
 
7f84e9b
8e72523
 
 
 
7458986
7f84e9b
c930ac9
7f84e9b
 
c930ac9
 
 
7f84e9b
7458986
 
8b0d75b
7f84e9b
8b0d75b
7f84e9b
 
 
 
 
 
 
 
 
 
8dcd0a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import yfinance as yf
import pandas as pd
import numpy as np
import torch
from datetime import datetime, timedelta
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import spaces

def get_indonesian_stocks():
    return {
        "BBCA.JK": "Bank Central Asia",
        "BBRI.JK": "Bank BRI",
        "BBNI.JK": "Bank BNI",
        "BMRI.JK": "Bank Mandiri",
        "TLKM.JK": "Telkom Indonesia",
        "UNVR.JK": "Unilever Indonesia",
        "ASII.JK": "Astra International",
        "INDF.JK": "Indofood Sukses Makmur",
        "KLBF.JK": "Kalbe Farma",
        "HMSP.JK": "HM Sampoerna",
        "GGRM.JK": "Gudang Garam",
        "ADRO.JK": "Adaro Energy",
        "PGAS.JK": "Perusahaan Gas Negara",
        "JSMR.JK": "Jasa Marga",
        "WIKA.JK": "Wijaya Karya",
        "PTBA.JK": "Tambang Batubara Bukit Asam",
        "ANTM.JK": "Aneka Tambang",
        "SMGR.JK": "Semen Indonesia",
        "INTP.JK": "Indocement Tunggal Prakasa",
        "ITMG.JK": "Indo Tambangraya Megah"
    }

def calculate_technical_indicators(data):
    indicators = {}
    def calculate_rsi(prices, period=14):
        delta = prices.diff()
        gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
        loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
        rs = gain / loss
        rsi = 100 - (100 / (1 + rs))
        return rsi
    indicators['rsi'] = {'current': calculate_rsi(data['Close']).iloc[-1], 'values': calculate_rsi(data['Close'])}
    def calculate_macd(prices, fast=12, slow=26, signal=9):
        exp1 = prices.ewm(span=fast).mean()
        exp2 = prices.ewm(span=slow).mean()
        macd = exp1 - exp2
        signal_line = macd.ewm(span=signal).mean()
        histogram = macd - signal_line
        return macd, signal_line, histogram
    macd, signal_line, histogram = calculate_macd(data['Close'])
    indicators['macd'] = {'macd': macd.iloc[-1], 'signal': signal_line.iloc[-1], 'histogram': histogram.iloc[-1], 'signal_text': 'BUY' if histogram.iloc[-1] > 0 else 'SELL', 'macd_values': macd, 'signal_values': signal_line}
    def calculate_bollinger_bands(prices, period=20, std_dev=2):
        sma = prices.rolling(window=period).mean()
        std = prices.rolling(window=period).std()
        upper_band = sma + (std * std_dev)
        lower_band = sma - (std * std_dev)
        return upper_band, sma, lower_band
    upper, middle, lower = calculate_bollinger_bands(data['Close'])
    current_price = data['Close'].iloc[-1]
    bb_position = (current_price - lower.iloc[-1]) / (upper.iloc[-1] - lower.iloc[-1])
    indicators['bollinger'] = {
        'upper': upper.iloc[-1],
        'middle': middle.iloc[-1],
        'lower': lower.iloc[-1],
        'upper_values': upper,
        'middle_values': middle,
        'lower_values': lower,
        'position': 'UPPER' if bb_position > 0.8 else 'LOWER' if bb_position < 0.2 else 'MIDDLE'
    }
    sma_20_series = data['Close'].rolling(20).mean()
    sma_50_series = data['Close'].rolling(50).mean()
    indicators['moving_averages'] = {'sma_20': sma_20_series.iloc[-1], 'sma_50': sma_50_series.iloc[-1], 'sma_200': data['Close'].rolling(200).mean().iloc[-1], 'ema_12': data['Close'].ewm(span=12).mean().iloc[-1], 'ema_26': data['Close'].ewm(span=26).mean().iloc[-1], 'sma_20_values': sma_20_series, 'sma_50_values': sma_50_series}
    indicators['volume'] = {'current': data['Volume'].iloc[-1], 'avg_20': data['Volume'].rolling(20).mean().iloc[-1], 'ratio': data['Volume'].iloc[-1] / data['Volume'].rolling(20).mean().iloc[-1]}
    return indicators

def generate_trading_signals(data, indicators):
    signals = {}
    current_price = data['Close'].iloc[-1]
    buy_signals = 0
    sell_signals = 0
    signal_details = []
    rsi = indicators['rsi']['current']
    if rsi < 30:
        buy_signals += 1
        signal_details.append(f"βœ… RSI ({rsi:.1f}) - Oversold - BUY signal")
    elif rsi > 70:
        sell_signals += 1
        signal_details.append(f"❌ RSI ({rsi:.1f}) - Overbought - SELL signal")
    else:
        signal_details.append(f"βšͺ RSI ({rsi:.1f}) - Neutral")
    macd_hist = indicators['macd']['histogram']
    if macd_hist > 0:
        buy_signals += 1
        signal_details.append(f"βœ… MACD Histogram ({macd_hist:.4f}) - Positive - BUY signal")
    else:
        sell_signals += 1
        signal_details.append(f"❌ MACD Histogram ({macd_hist:.4f}) - Negative - SELL signal")
    bb_position = indicators['bollinger']['position']
    if bb_position == 'LOWER':
        buy_signals += 1
        signal_details.append(f"βœ… Bollinger Bands - Near lower band - BUY signal")
    elif bb_position == 'UPPER':
        sell_signals += 1
        signal_details.append(f"❌ Bollinger Bands - Near upper band - SELL signal")
    else:
        signal_details.append("βšͺ Bollinger Bands - Middle position")
    sma_20 = indicators['moving_averages']['sma_20']
    sma_50 = indicators['moving_averages']['sma_50']
    if current_price > sma_20 > sma_50:
        buy_signals += 1
        signal_details.append(f"βœ… Price above MA(20,50) - Bullish - BUY signal")
    elif current_price < sma_20 < sma_50:
        sell_signals += 1
        signal_details.append(f"❌ Price below MA(20,50) - Bearish - SELL signal")
    else:
        signal_details.append("βšͺ Moving Averages - Mixed signals")
    volume_ratio = indicators['volume']['ratio']
    if volume_ratio > 1.5:
        buy_signals += 0.5
        signal_details.append(f"βœ… High volume ({volume_ratio:.1f}x avg) - Strengthens BUY signal")
    elif volume_ratio < 0.5:
        sell_signals += 0.5
        signal_details.append(f"❌ Low volume ({volume_ratio:.1f}x avg) - Weakens SELL signal")
    else:
        signal_details.append(f"βšͺ Normal volume ({volume_ratio:.1f}x avg)")
    total_signals = buy_signals + sell_signals
    signal_strength = (buy_signals / max(total_signals, 1)) * 100
    overall_signal = "BUY" if buy_signals > sell_signals else "SELL" if sell_signals > buy_signals else "HOLD"
    recent_high = data['High'].tail(20).max()
    recent_low = data['Low'].tail(20).min()
    signals = {'overall': overall_signal, 'strength': signal_strength, 'details': '\n'.join(signal_details), 'support': recent_low, 'resistance': recent_high, 'stop_loss': recent_low * 0.95 if overall_signal == "BUY" else recent_high * 1.05}
    return signals

def get_fundamental_data(stock):
    try:
        info = stock.info
        history = stock.history(period="1d")
        fundamental_info = {'name': info.get('longName', 'N/A'), 'current_price': history['Close'].iloc[-1] if not history.empty else 0, 'market_cap': info.get('marketCap', 0), 'pe_ratio': info.get('forwardPE', 0), 'dividend_yield': info.get('dividendYield', 0) * 100 if info.get('dividendYield') else 0, 'volume': history['Volume'].iloc[-1] if not history.empty else 0, 'info': f"Sector: {info.get('sector', 'N/A')}\nIndustry: {info.get('industry', 'N/A')}\nMarket Cap: {info.get('marketCap', 0)}\n52 Week High: {info.get('fiftyTwoWeekHigh', 'N/A')}\n52 Week Low: {info.get('fiftyTwoWeekLow', 'N/A')}\nBeta: {info.get('beta', 'N/A')}\nEPS: {info.get('forwardEps', 'N/A')}\nBook Value: {info.get('bookValue', 'N/A')}\nPrice to Book: {info.get('priceToBook', 'N/A')}"}
        return fundamental_info
    except:
        return {'name': 'N/A', 'current_price': 0, 'market_cap': 0, 'pe_ratio': 0, 'dividend_yield': 0, 'volume': 0, 'info': 'Unable to fetch fundamental data'}

def format_large_number(num):
    if num >= 1e12:
        return f"{num/1e12:.2f}T"
    elif num >= 1e9:
        return f"{num/1e9:.2f}B"
    elif num >= 1e6:
        return f"{num/1e6:.2f}M"
    elif num >= 1e3:
        return f"{num/1e3:.2f}K"
    else:
        return f"{num:.2f}"

@spaces.GPU(duration=120)
def predict_prices(data, model=None, tokenizer=None, prediction_days=30):
    try:
        prices = data['Close'].values.astype(np.float32)
        from chronos import BaseChronosPipeline
        pipeline = BaseChronosPipeline.from_pretrained("amazon/chronos-bolt-base", device_map="auto")
        with torch.no_grad():
            forecast = pipeline.predict(context=torch.tensor(prices), prediction_length=prediction_days)
        forecast_np = forecast.squeeze().cpu().numpy() if isinstance(forecast, torch.Tensor) else np.array(forecast)
        if forecast_np.ndim > 1:
            mean_forecast = forecast_np.mean(axis=tuple(range(forecast_np.ndim - 1)))
        else:
            mean_forecast = forecast_np
        last_price = prices[-1]
        predicted_high = float(np.max(mean_forecast))
        predicted_low = float(np.min(mean_forecast))
        predicted_mean = float(np.mean(mean_forecast))
        change_pct = ((predicted_mean - last_price) / last_price) * 100 if last_price != 0 else 0
        return {'values': mean_forecast, 'dates': pd.date_range(start=data.index[-1] + timedelta(days=1), periods=len(mean_forecast), freq='D'), 'high_30d': predicted_high, 'low_30d': predicted_low, 'mean_30d': predicted_mean, 'change_pct': change_pct, 'summary': f"AI Model: Amazon Chronos-Bolt (Base)\nPredicted High: {predicted_high:.2f}\nPredicted Low: {predicted_low:.2f}\nExpected Change: {change_pct:.2f}%"}
    except Exception as e:
        print(f"Error in prediction: {e}")
        return {'values': [], 'dates': [], 'high_30d': 0, 'low_30d': 0, 'mean_30d': 0, 'change_pct': 0, 'summary': f'Model error: {e}'}

def create_prediction_chart(data, predictions):
    if not len(predictions['values']):
        return go.Figure()
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=data.index[-60:], y=data['Close'].values[-60:], name='Historical Price', line=dict(color='blue', width=2)))
    fig.add_trace(go.Scatter(x=predictions['dates'], y=predictions['values'], name='AI Prediction', line=dict(color='red', width=2, dash='dash')))
    pred_std = np.std(predictions['values'])
    upper_band = predictions['values'] + (pred_std * 1.96)
    lower_band = predictions['values'] - (pred_std * 1.96)
    fig.add_trace(go.Scatter(x=predictions['dates'], y=upper_band, name='Upper Band', line=dict(color='lightcoral', width=1)))
    fig.add_trace(go.Scatter(x=predictions['dates'], y=lower_band, name='Lower Band', line=dict(color='lightcoral', width=1), fill='tonexty', fillcolor='rgba(255,182,193,0.2)'))
    fig.update_layout(title=f'Price Prediction - Next {len(predictions["dates"])} Days', xaxis_title='Date', yaxis_title='Price (IDR)', hovermode='x unified', height=500)
    return fig

def create_price_chart(data, indicators):
    fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.05)
    fig.add_trace(go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'], name='Price'), row=1, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange')), row=1, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue')), row=1, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['macd_values'], name='MACD', line=dict(color='blue')), row=3, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['macd']['signal_values'], name='Signal', line=dict(color='red')), row=3, col=1)
    fig.update_layout(title='Technical Analysis Dashboard', height=900, showlegend=True)
    return fig

def create_technical_chart(data, indicators):
    fig = make_subplots(rows=2, cols=2, subplot_titles=('Bollinger Bands', 'Volume', 'Price vs MA', 'RSI Analysis'))
    fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='black')), row=1, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['upper_values'], name='Upper Band', line=dict(color='red')), row=1, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['bollinger']['lower_values'], name='Lower Band', line=dict(color='green'), fill='tonexty', fillcolor='rgba(0,255,0,0.1)'), row=1, col=1)
    fig.add_trace(go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'), row=1, col=2)
    fig.add_trace(go.Scatter(x=data.index, y=data['Close'], name='Price', line=dict(color='gray')), row=2, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_20_values'], name='SMA 20', line=dict(color='orange', dash='dash')), row=2, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['moving_averages']['sma_50_values'], name='SMA 50', line=dict(color='blue', dash='dash')), row=2, col=1)
    fig.add_trace(go.Scatter(x=data.index, y=indicators['rsi']['values'], name='RSI', line=dict(color='purple')), row=2, col=2)
    fig.add_hline(y=70, line_dash="dash", line_color="red", row=2, col=2)
    fig.add_hline(y=30, line_dash="dash", line_color="green", row=2, col=2)
    fig.update_layout(title='Technical Indicators Overview', height=800, showlegend=False, hovermode='x unified')
    return fig