omniverse1's picture
Update app.py
6d4f83e verified
raw
history blame
14.5 kB
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mplfinance as mpf
from data_processor import DataProcessor
from sentiment_analyzer import SentimentAnalyzer
from model_handler import ModelHandler
from trading_logic import TradingLogic
import io
import base64
import plotly.graph_objects as go
# Global instances
data_processor = DataProcessor()
sentiment_analyzer = SentimentAnalyzer()
model_handler = ModelHandler()
trading_logic = TradingLogic()
# Asset mapping
asset_map = {
"Gold Futures (GC=F)": "GC=F",
"Bitcoin USD (BTC-USD)": "BTC-USD"
}
def create_chart_analysis(interval, asset_name):
"""Create chart with technical indicators using mplfinance"""
try:
ticker = asset_map[asset_name]
df = data_processor.get_asset_data(ticker, interval)
if df.empty:
# Return error plot instead of string
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
fig.patch.set_facecolor('white')
ax.text(0.5, 0.5, f'No data available for {asset_name}\nPlease try a different interval',
ha='center', va='center', transform=ax.transAxes, fontsize=14, color='red')
ax.set_title('Data Error', color='black')
ax.axis('off')
pred_fig = plt.figure(figsize=(10, 4), facecolor='white')
pred_fig.patch.set_facecolor('white')
return fig, {}, pred_fig
# Calculate indicators
df = data_processor.calculate_indicators(df)
# Create main candlestick chart with mplfinance
# Prepare additional plots for indicators
ap = []
# Add moving averages (last 100 data points)
if 'SMA_20' in df.columns:
ap.append(mpf.make_addplot(df['SMA_20'].iloc[-100:], color='#FFA500', width=1.5, label='SMA 20'))
if 'SMA_50' in df.columns:
ap.append(mpf.make_addplot(df['SMA_50'].iloc[-100:], color='#FF4500', width=1.5, label='SMA 50'))
# Add Bollinger Bands
if 'BB_upper' in df.columns and 'BB_lower' in df.columns:
ap.append(mpf.make_addplot(df['BB_upper'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Upper'))
ap.append(mpf.make_addplot(df['BB_lower'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Lower'))
# Create figure
try:
fig, axes = mpf.plot(
df[-100:], # Show last 100 candles
type='candle',
style='yahoo',
title=f'{asset_name} - {interval}',
ylabel='Price (USD)',
volume=True,
addplot=ap,
figsize=(12, 8),
returnfig=True,
warn_too_much_data=200,
tight_layout=True
)
# Adjust layout
fig.patch.set_facecolor('white')
if axes:
axes[0].set_facecolor('white')
axes[0].grid(True, alpha=0.3)
except Exception as plot_error:
print(f"Mplfinance plot error: {plot_error}")
fig, axes = plt.subplots(figsize=(12, 8), facecolor='white')
fig.patch.set_facecolor('white')
axes.text(0.5, 0.5, f'Chart Plot Error: {str(plot_error)}', ha='center', va='center',
transform=axes.transAxes, fontsize=14, color='red')
axes.set_title('Plot Generation Error', color='black')
axes.axis('off')
# Prepare data for Chronos
prepared_data = data_processor.prepare_for_chronos(df)
# Generate predictions
predictions = model_handler.predict(prepared_data, horizon=10)
current_price = df['Close'].iloc[-1]
# Get signal
signal, confidence = trading_logic.generate_signal(
predictions, current_price, df
)
# Calculate TP/SL
tp, sl = trading_logic.calculate_tp_sl(
current_price, df['ATR'].iloc[-1] if 'ATR' in df.columns else 10, signal
)
# Create metrics display
metrics = {
"Current Price": f"${current_price:,.2f}",
"Signal": signal.upper(),
"Confidence": f"{confidence:.1%}",
"Take Profit": f"${tp:,.2f}" if tp else "N/A",
"Stop Loss": f"${sl:,.2f}" if sl else "N/A",
"RSI": f"{df['RSI'].iloc[-1]:.1f}" if 'RSI' in df.columns else "N/A",
"MACD": f"{df['MACD'].iloc[-1]:.4f}" if 'MACD' in df.columns else "N/A",
"Volume": f"{df['Volume'].iloc[-1]:,.0f}" if 'Volume' in df.columns else "N/A"
}
# Create prediction chart using matplotlib
pred_fig, ax = plt.subplots(figsize=(10, 4), facecolor='white')
pred_fig.patch.set_facecolor('white')
# Plot historical prices (last 30 points)
hist_data = df['Close'].iloc[-30:]
hist_dates = df.index[-30:]
ax.plot(hist_dates, hist_data, color='#4169E1', linewidth=2, label='Historical')
# Plot predictions
if predictions.any() and len(predictions) > 0:
future_dates = pd.date_range(
start=df.index[-1], periods=len(predictions), freq='D'
)
ax.plot(future_dates, predictions, color='#FF6600', linewidth=2,
marker='o', markersize=4, label='Predictions')
# Connect historical to prediction
ax.plot([hist_dates[-1], future_dates[0]],
[hist_data.iloc[-1], predictions[0]],
color='#FF6600', linewidth=1, linestyle='--')
ax.set_title('Price Prediction (Next 10 Periods)', fontsize=12, color='black')
ax.set_xlabel('Date', color='black')
ax.set_ylabel('Price (USD)', color='black')
ax.legend()
ax.grid(True, alpha=0.3)
ax.tick_params(colors='black')
return fig, metrics, pred_fig
except Exception as e:
# Return error plot instead of string
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
fig.patch.set_facecolor('white')
ax.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
transform=ax.transAxes, fontsize=14, color='red')
ax.set_title('Chart Generation Error', color='black')
ax.axis('off')
pred_fig = plt.figure(figsize=(10, 4), facecolor='white')
pred_fig.patch.set_facecolor('white')
return fig, {}, pred_fig
def analyze_sentiment(asset_name):
"""Analyze market sentiment for selected asset"""
try:
ticker = asset_map[asset_name]
# FIX: Menggunakan fungsi yang benar dari sentiment_analyzer.py
sentiment_score, news_summary = sentiment_analyzer.analyze_market_sentiment(ticker)
# --- Implementasi Plotly Gauge (sesuai referensi pengguna) ---
fig = go.Figure(go.Indicator(
mode="gauge+number+delta",
value=sentiment_score,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': f"{ticker} Market Sentiment (Simulated)"},
delta={'reference': 0},
gauge={
'axis': {'range': [-1, 1]},
'bar': {'color': "#FFD700"},
'steps': [
{'range': [-1, -0.5], 'color': "rgba(255,0,0,0.5)"}, # Merah (Bearish)
{'range': [-0.5, 0.5], 'color': "rgba(100,100,100,0.3)"}, # Abu-abu (Neutral)
{'range': [0.5, 1], 'color': "rgba(0,255,0,0.5)"} # Hijau (Bullish)
],
'threshold': {
'line': {'color': "black", 'width': 4},
'thickness': 0.75,
'value': 0
}
}
))
fig.update_layout(
template='plotly_white',
height=300,
paper_bgcolor='white',
plot_bgcolor='white',
font=dict(color='black')
)
return fig, news_summary
except Exception as e:
# Return error plot (menggunakan Matplotlib untuk error fallback)
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
fig.patch.set_facecolor('white')
ax.text(0.5, 0.5, f'Sentiment Error: {str(e)}', ha='center', va='center',
transform=ax.transAxes, fontsize=12, color='red')
ax.axis('off')
return fig, f"<p>Error analyzing sentiment: {str(e)}</p>"
def get_fundamentals(asset_name):
"""Get fundamental analysis data"""
try:
ticker = asset_map[asset_name]
fundamentals = data_processor.get_fundamental_data(ticker)
# Create fundamentals table
table_data = []
for key, value in fundamentals.items():
table_data.append([key, value])
df = pd.DataFrame(table_data, columns=['Metric', 'Value'])
# Create fundamentals gauge chart
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
fig.patch.set_facecolor('white')
strength_index = fundamentals.get('Strength Index', 50)
# Create horizontal bar gauge
ax.barh([0], [strength_index], height=0.3, color='gold', alpha=0.7)
ax.set_xlim(0, 100)
ax.set_ylim(-0.5, 0.5)
ax.set_title(f'{asset_name} Strength Index', color='black')
ax.set_xlabel('Index Value', color='black')
ax.text(strength_index, 0, f'{strength_index:.1f}',
ha='left', va='center', fontsize=12, color='black', weight='bold')
ax.grid(True, alpha=0.3)
ax.tick_params(colors='black')
return fig, df
except Exception as e:
# Return error plot
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
fig.patch.set_facecolor('white')
ax.text(0.5, 0.5, f'Fundamentals Error: {str(e)}', ha='center', va='center',
transform=ax.transAxes, fontsize=12, color='red')
ax.axis('off')
return fig, pd.DataFrame()
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue"),
title="Trading Analysis & Prediction",
css="""
.gradio-container {background-color: #FFFFFF !important; color: #000000 !important}
.gr-button-primary {background-color: #4169E1 !important; color: #FFFFFF !important}
.gr-button-secondary {border-color: #4169E1 !important; color: #4169E1 !important}
.gr-tab button {color: #000000 !important}
.gr-tab button.selected {background-color: #4169E1 !important; color: #FFFFFF !important}
.gr-highlighted {background-color: #F0F0F0 !important}
.anycoder-link {color: #4169E1 !important; text-decoration: none; font-weight: bold}
.gr-json {background-color: #FFFFFF !important; color: #000000 !important}
.gr-json label {color: #000000 !important}
.gr-textbox, .gr-dropdown, .gr-number {background-color: #FFFFFF !important; color: #000000 !important}
"""
) as demo:
# Header with anycoder link
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1 style="color: #4169E1;">Trading Analysis & Prediction</h1>
<p>Advanced AI-powered analysis for Gold and Bitcoin</p>
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" class="anycoder-link">Built with anycoder</a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
asset_dropdown = gr.Dropdown(
choices=list(asset_map.keys()),
value="Gold Futures (GC=F)",
label="Select Asset",
info="Choose trading pair"
)
with gr.Column(scale=1):
interval_dropdown = gr.Dropdown(
choices=[
"5m", "15m", "30m", "1h", "1d", "1wk", "1mo", "3mo"
],
value="1d",
label="Time Interval",
info="Select analysis timeframe"
)
with gr.Column(scale=1):
refresh_btn = gr.Button("Refresh Data", variant="primary")
with gr.Tabs():
with gr.TabItem("Chart Analysis"):
with gr.Row():
with gr.Column(scale=2):
chart_plot = gr.Plot(label="Price Chart")
with gr.Column(scale=1):
metrics_output = gr.JSON(label="Trading Metrics")
with gr.Row():
pred_plot = gr.Plot(label="Price Predictions")
with gr.TabItem("Sentiment Analysis"):
with gr.Row():
sentiment_gauge = gr.Plot(label="Sentiment Score")
news_display = gr.HTML(label="Market News")
with gr.TabItem("Fundamentals"):
with gr.Row():
with gr.Column(scale=1):
fundamentals_gauge = gr.Plot(label="Strength Index")
with gr.Column(scale=1):
fundamentals_table = gr.Dataframe(
headers=["Metric", "Value"],
label="Key Fundamentals",
interactive=False
)
# Event handlers
def update_all(interval, asset):
chart, metrics, pred = create_chart_analysis(interval, asset)
sentiment, news = analyze_sentiment(asset)
fund_gauge, fund_table = get_fundamentals(asset)
return chart, metrics, pred, sentiment, news, fund_gauge, fund_table
refresh_btn.click(
fn=update_all,
inputs=[interval_dropdown, asset_dropdown],
outputs=[
chart_plot, metrics_output, pred_plot,
sentiment_gauge, news_display,
fundamentals_gauge, fundamentals_table
]
)
demo.load(
fn=update_all,
inputs=[interval_dropdown, asset_dropdown],
outputs=[
chart_plot, metrics_output, pred_plot,
sentiment_gauge, news_display,
fundamentals_gauge, fundamentals_table
]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True
)