Spaces:
Sleeping
Sleeping
Update model_handler.py
Browse files- model_handler.py +5 -7
model_handler.py
CHANGED
|
@@ -1,22 +1,21 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
-
# PENTING:
|
| 4 |
from chronos import BaseChronosPipeline
|
| 5 |
|
| 6 |
class ModelHandler:
|
| 7 |
def __init__(self):
|
| 8 |
self.model_name = "amazon/chronos-2"
|
| 9 |
self.pipeline = None
|
| 10 |
-
# Penentuan device
|
| 11 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
self.load_model()
|
| 13 |
|
| 14 |
def load_model(self):
|
| 15 |
-
"""Load Chronos-2 model using the BaseChronosPipeline"""
|
| 16 |
try:
|
| 17 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 18 |
|
| 19 |
-
#
|
| 20 |
self.pipeline = BaseChronosPipeline.from_pretrained(
|
| 21 |
self.model_name,
|
| 22 |
device_map=self.device,
|
|
@@ -31,7 +30,6 @@ class ModelHandler:
|
|
| 31 |
def predict(self, data, horizon=10):
|
| 32 |
"""Generate predictions using Chronos-2 or fallback."""
|
| 33 |
try:
|
| 34 |
-
# Memastikan data valid
|
| 35 |
if data is None or not isinstance(data, dict) or 'original' not in data or len(data['original']) < 20:
|
| 36 |
return np.array([0] * horizon)
|
| 37 |
|
|
@@ -51,11 +49,11 @@ class ModelHandler:
|
|
| 51 |
return np.array(predictions)
|
| 52 |
|
| 53 |
# --- Chronos-2 Inference ---
|
| 54 |
-
# NOTE: BaseChronosPipeline.predict mengembalikan array of arrays (sampel)
|
| 55 |
predictions_samples = self.pipeline.predict(
|
| 56 |
data['original'],
|
| 57 |
prediction_length=horizon,
|
| 58 |
-
num_samples
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
# Mengambil nilai rata-rata (mean) dari semua sampel
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import torch
|
| 3 |
+
# PENTING: Class ini adalah satu-satunya cara yang benar untuk memuat Chronos-2
|
| 4 |
from chronos import BaseChronosPipeline
|
| 5 |
|
| 6 |
class ModelHandler:
|
| 7 |
def __init__(self):
|
| 8 |
self.model_name = "amazon/chronos-2"
|
| 9 |
self.pipeline = None
|
|
|
|
| 10 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
self.load_model()
|
| 12 |
|
| 13 |
def load_model(self):
|
| 14 |
+
"""Load Chronos-2 model using the official BaseChronosPipeline"""
|
| 15 |
try:
|
| 16 |
print(f"Loading {self.model_name} on {self.device}...")
|
| 17 |
|
| 18 |
+
# Pemuatan otomatis oleh pipeline (sudah terbukti berhasil di langkah sebelumnya)
|
| 19 |
self.pipeline = BaseChronosPipeline.from_pretrained(
|
| 20 |
self.model_name,
|
| 21 |
device_map=self.device,
|
|
|
|
| 30 |
def predict(self, data, horizon=10):
|
| 31 |
"""Generate predictions using Chronos-2 or fallback."""
|
| 32 |
try:
|
|
|
|
| 33 |
if data is None or not isinstance(data, dict) or 'original' not in data or len(data['original']) < 20:
|
| 34 |
return np.array([0] * horizon)
|
| 35 |
|
|
|
|
| 49 |
return np.array(predictions)
|
| 50 |
|
| 51 |
# --- Chronos-2 Inference ---
|
|
|
|
| 52 |
predictions_samples = self.pipeline.predict(
|
| 53 |
data['original'],
|
| 54 |
prediction_length=horizon,
|
| 55 |
+
# KOREKSI: Mengganti 'num_samples' menjadi 'n_samples'
|
| 56 |
+
n_samples=20
|
| 57 |
)
|
| 58 |
|
| 59 |
# Mengambil nilai rata-rata (mean) dari semua sampel
|