Spaces:
Sleeping
Sleeping
Update Gradio app with multiple files
Browse files- app.py +49 -15
- data_processor.py +3 -4
- requirements.txt +13 -11
- sentiment_analyzer.py +12 -1
app.py
CHANGED
|
@@ -28,7 +28,16 @@ def create_chart_analysis(interval, asset_name):
|
|
| 28 |
ticker = asset_map[asset_name]
|
| 29 |
df = data_processor.get_asset_data(ticker, interval)
|
| 30 |
if df.empty:
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
# Calculate indicators
|
| 34 |
df = data_processor.calculate_indicators(df)
|
|
@@ -38,12 +47,12 @@ def create_chart_analysis(interval, asset_name):
|
|
| 38 |
ap = []
|
| 39 |
|
| 40 |
# Add moving averages
|
| 41 |
-
ap.append(mpf.make_addplot(df['SMA_20'], color='#FFA500', width=1.5, label='SMA 20'))
|
| 42 |
-
ap.append(mpf.make_addplot(df['SMA_50'], color='#FF4500', width=1.5, label='SMA 50'))
|
| 43 |
|
| 44 |
# Add Bollinger Bands
|
| 45 |
-
ap.append(mpf.make_addplot(df['BB_upper'], color='#4169E1', width=1, linestyle='dashed', label='BB Upper'))
|
| 46 |
-
ap.append(mpf.make_addplot(df['BB_lower'], color='#4169E1', width=1, linestyle='dashed', label='BB Lower'))
|
| 47 |
|
| 48 |
# Create figure
|
| 49 |
fig, axes = mpf.plot(
|
|
@@ -56,14 +65,15 @@ def create_chart_analysis(interval, asset_name):
|
|
| 56 |
addplot=ap,
|
| 57 |
figsize=(12, 8),
|
| 58 |
returnfig=True,
|
| 59 |
-
warn_too_much_data=200
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
# Adjust layout
|
| 63 |
-
fig.suptitle(f'{asset_name} Price Chart', fontsize=16, color='black')
|
| 64 |
fig.patch.set_facecolor('white')
|
| 65 |
-
axes
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
# Prepare data for Chronos
|
| 69 |
prepared_data = data_processor.prepare_for_chronos(df)
|
|
@@ -126,7 +136,17 @@ def create_chart_analysis(interval, asset_name):
|
|
| 126 |
return fig, metrics, pred_fig
|
| 127 |
|
| 128 |
except Exception as e:
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
def analyze_sentiment(asset_name):
|
| 132 |
"""Analyze market sentiment for selected asset"""
|
|
@@ -170,7 +190,13 @@ def analyze_sentiment(asset_name):
|
|
| 170 |
return fig, news_summary
|
| 171 |
|
| 172 |
except Exception as e:
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
def get_fundamentals(asset_name):
|
| 176 |
"""Get fundamental analysis data"""
|
|
@@ -205,14 +231,20 @@ def get_fundamentals(asset_name):
|
|
| 205 |
return fig, df
|
| 206 |
|
| 207 |
except Exception as e:
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
# Create Gradio interface
|
| 211 |
with gr.Blocks(
|
| 212 |
theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue"),
|
| 213 |
title="Trading Analysis & Prediction",
|
| 214 |
css="""
|
| 215 |
-
.gradio-container {background-color: #FFFFFF; color: #000000}
|
| 216 |
.gr-button-primary {background-color: #4169E1 !important; color: #FFFFFF !important}
|
| 217 |
.gr-button-secondary {border-color: #4169E1 !important; color: #4169E1 !important}
|
| 218 |
.gr-tab button {color: #000000 !important}
|
|
@@ -220,6 +252,8 @@ with gr.Blocks(
|
|
| 220 |
.gr-highlighted {background-color: #F0F0F0 !important}
|
| 221 |
.anycoder-link {color: #4169E1 !important; text-decoration: none; font-weight: bold}
|
| 222 |
.gr-json {background-color: #FFFFFF !important; color: #000000 !important}
|
|
|
|
|
|
|
| 223 |
"""
|
| 224 |
) as demo:
|
| 225 |
|
|
@@ -243,7 +277,7 @@ with gr.Blocks(
|
|
| 243 |
with gr.Column(scale=1):
|
| 244 |
interval_dropdown = gr.Dropdown(
|
| 245 |
choices=[
|
| 246 |
-
"5m", "15m", "30m", "1h", "
|
| 247 |
],
|
| 248 |
value="1d",
|
| 249 |
label="Time Interval",
|
|
@@ -315,4 +349,4 @@ if __name__ == "__main__":
|
|
| 315 |
server_port=7860,
|
| 316 |
share=False,
|
| 317 |
show_api=True
|
| 318 |
-
)
|
|
|
|
| 28 |
ticker = asset_map[asset_name]
|
| 29 |
df = data_processor.get_asset_data(ticker, interval)
|
| 30 |
if df.empty:
|
| 31 |
+
# Return error plot instead of string
|
| 32 |
+
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
| 33 |
+
fig.patch.set_facecolor('white')
|
| 34 |
+
ax.text(0.5, 0.5, f'No data available for {asset_name}\nPlease try a different interval',
|
| 35 |
+
ha='center', va='center', transform=ax.transAxes, fontsize=14, color='red')
|
| 36 |
+
ax.set_title('Data Error', color='black')
|
| 37 |
+
ax.axis('off')
|
| 38 |
+
pred_fig = plt.figure(figsize=(10, 4), facecolor='white')
|
| 39 |
+
pred_fig.patch.set_facecolor('white')
|
| 40 |
+
return fig, {}, pred_fig
|
| 41 |
|
| 42 |
# Calculate indicators
|
| 43 |
df = data_processor.calculate_indicators(df)
|
|
|
|
| 47 |
ap = []
|
| 48 |
|
| 49 |
# Add moving averages
|
| 50 |
+
ap.append(mpf.make_addplot(df['SMA_20'].iloc[-100:], color='#FFA500', width=1.5, label='SMA 20'))
|
| 51 |
+
ap.append(mpf.make_addplot(df['SMA_50'].iloc[-100:], color='#FF4500', width=1.5, label='SMA 50'))
|
| 52 |
|
| 53 |
# Add Bollinger Bands
|
| 54 |
+
ap.append(mpf.make_addplot(df['BB_upper'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Upper'))
|
| 55 |
+
ap.append(mpf.make_addplot(df['BB_lower'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Lower'))
|
| 56 |
|
| 57 |
# Create figure
|
| 58 |
fig, axes = mpf.plot(
|
|
|
|
| 65 |
addplot=ap,
|
| 66 |
figsize=(12, 8),
|
| 67 |
returnfig=True,
|
| 68 |
+
warn_too_much_data=200,
|
| 69 |
+
tight_layout=True
|
| 70 |
)
|
| 71 |
|
| 72 |
# Adjust layout
|
|
|
|
| 73 |
fig.patch.set_facecolor('white')
|
| 74 |
+
if axes:
|
| 75 |
+
axes[0].set_facecolor('white')
|
| 76 |
+
axes[0].grid(True, alpha=0.3)
|
| 77 |
|
| 78 |
# Prepare data for Chronos
|
| 79 |
prepared_data = data_processor.prepare_for_chronos(df)
|
|
|
|
| 136 |
return fig, metrics, pred_fig
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
+
# Return error plot instead of string
|
| 140 |
+
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
| 141 |
+
fig.patch.set_facecolor('white')
|
| 142 |
+
ax.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
| 143 |
+
transform=ax.transAxes, fontsize=14, color='red')
|
| 144 |
+
ax.set_title('Chart Generation Error', color='black')
|
| 145 |
+
ax.axis('off')
|
| 146 |
+
|
| 147 |
+
pred_fig = plt.figure(figsize=(10, 4), facecolor='white')
|
| 148 |
+
pred_fig.patch.set_facecolor('white')
|
| 149 |
+
return fig, {}, pred_fig
|
| 150 |
|
| 151 |
def analyze_sentiment(asset_name):
|
| 152 |
"""Analyze market sentiment for selected asset"""
|
|
|
|
| 190 |
return fig, news_summary
|
| 191 |
|
| 192 |
except Exception as e:
|
| 193 |
+
# Return error plot
|
| 194 |
+
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 195 |
+
fig.patch.set_facecolor('white')
|
| 196 |
+
ax.text(0.5, 0.5, f'Sentiment Error: {str(e)}', ha='center', va='center',
|
| 197 |
+
transform=ax.transAxes, fontsize=12, color='red')
|
| 198 |
+
ax.axis('off')
|
| 199 |
+
return fig, f"<p>Error analyzing sentiment: {str(e)}</p>"
|
| 200 |
|
| 201 |
def get_fundamentals(asset_name):
|
| 202 |
"""Get fundamental analysis data"""
|
|
|
|
| 231 |
return fig, df
|
| 232 |
|
| 233 |
except Exception as e:
|
| 234 |
+
# Return error plot
|
| 235 |
+
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 236 |
+
fig.patch.set_facecolor('white')
|
| 237 |
+
ax.text(0.5, 0.5, f'Fundamentals Error: {str(e)}', ha='center', va='center',
|
| 238 |
+
transform=ax.transAxes, fontsize=12, color='red')
|
| 239 |
+
ax.axis('off')
|
| 240 |
+
return fig, pd.DataFrame()
|
| 241 |
|
| 242 |
# Create Gradio interface
|
| 243 |
with gr.Blocks(
|
| 244 |
theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue"),
|
| 245 |
title="Trading Analysis & Prediction",
|
| 246 |
css="""
|
| 247 |
+
.gradio-container {background-color: #FFFFFF !important; color: #000000 !important}
|
| 248 |
.gr-button-primary {background-color: #4169E1 !important; color: #FFFFFF !important}
|
| 249 |
.gr-button-secondary {border-color: #4169E1 !important; color: #4169E1 !important}
|
| 250 |
.gr-tab button {color: #000000 !important}
|
|
|
|
| 252 |
.gr-highlighted {background-color: #F0F0F0 !important}
|
| 253 |
.anycoder-link {color: #4169E1 !important; text-decoration: none; font-weight: bold}
|
| 254 |
.gr-json {background-color: #FFFFFF !important; color: #000000 !important}
|
| 255 |
+
.gr-json label {color: #000000 !important}
|
| 256 |
+
.gr-textbox, .gr-dropdown, .gr-number {background-color: #FFFFFF !important; color: #000000 !important}
|
| 257 |
"""
|
| 258 |
) as demo:
|
| 259 |
|
|
|
|
| 277 |
with gr.Column(scale=1):
|
| 278 |
interval_dropdown = gr.Dropdown(
|
| 279 |
choices=[
|
| 280 |
+
"5m", "15m", "30m", "1h", "1d", "1wk", "1mo", "3mo"
|
| 281 |
],
|
| 282 |
value="1d",
|
| 283 |
label="Time Interval",
|
|
|
|
| 349 |
server_port=7860,
|
| 350 |
share=False,
|
| 351 |
show_api=True
|
| 352 |
+
)
|
data_processor.py
CHANGED
|
@@ -16,7 +16,6 @@ class DataProcessor:
|
|
| 16 |
"15m": "15m",
|
| 17 |
"30m": "30m",
|
| 18 |
"1h": "60m",
|
| 19 |
-
"4h": "240m",
|
| 20 |
"1d": "1d",
|
| 21 |
"1wk": "1wk",
|
| 22 |
"1mo": "1mo",
|
|
@@ -26,7 +25,7 @@ class DataProcessor:
|
|
| 26 |
yf_interval = interval_map.get(interval, "1d")
|
| 27 |
|
| 28 |
# Determine appropriate period based on interval
|
| 29 |
-
if interval in ["5m", "15m", "30m", "1h"
|
| 30 |
period = "60d" # Intraday data limited to 60 days
|
| 31 |
elif interval in ["1d"]:
|
| 32 |
period = "1y"
|
|
@@ -47,7 +46,7 @@ class DataProcessor:
|
|
| 47 |
return df
|
| 48 |
|
| 49 |
except Exception as e:
|
| 50 |
-
print(f"Error fetching data: {e}")
|
| 51 |
return pd.DataFrame()
|
| 52 |
|
| 53 |
def calculate_indicators(self, df):
|
|
@@ -152,4 +151,4 @@ class DataProcessor:
|
|
| 152 |
'mean': mean,
|
| 153 |
'std': std,
|
| 154 |
'original': prices
|
| 155 |
-
}
|
|
|
|
| 16 |
"15m": "15m",
|
| 17 |
"30m": "30m",
|
| 18 |
"1h": "60m",
|
|
|
|
| 19 |
"1d": "1d",
|
| 20 |
"1wk": "1wk",
|
| 21 |
"1mo": "1mo",
|
|
|
|
| 25 |
yf_interval = interval_map.get(interval, "1d")
|
| 26 |
|
| 27 |
# Determine appropriate period based on interval
|
| 28 |
+
if interval in ["5m", "15m", "30m", "1h"]:
|
| 29 |
period = "60d" # Intraday data limited to 60 days
|
| 30 |
elif interval in ["1d"]:
|
| 31 |
period = "1y"
|
|
|
|
| 46 |
return df
|
| 47 |
|
| 48 |
except Exception as e:
|
| 49 |
+
print(f"Error fetching data for {ticker} with interval {interval}: {e}")
|
| 50 |
return pd.DataFrame()
|
| 51 |
|
| 52 |
def calculate_indicators(self, df):
|
|
|
|
| 151 |
'mean': mean,
|
| 152 |
'std': std,
|
| 153 |
'original': prices
|
| 154 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,14 +1,16 @@
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
-
yfinance
|
| 3 |
-
torch
|
| 4 |
-
transformers
|
| 5 |
pandas
|
| 6 |
-
numpy
|
| 7 |
-
plotly
|
| 8 |
-
scipy
|
| 9 |
-
scikit-learn
|
| 10 |
-
safetensors
|
| 11 |
-
huggingface-hub
|
| 12 |
-
chronos-forecasting
|
| 13 |
mplfinance
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
matplotlib
|
| 3 |
gradio
|
|
|
|
|
|
|
|
|
|
| 4 |
pandas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
mplfinance
|
| 6 |
+
pillow
|
| 7 |
+
requests
|
| 8 |
+
openpyxl
|
| 9 |
+
scikit-learn
|
| 10 |
+
torch
|
| 11 |
+
scipy
|
| 12 |
+
joblib
|
| 13 |
+
yfinance
|
| 14 |
+
seaborn
|
| 15 |
+
plotly
|
| 16 |
+
tqdm
|
sentiment_analyzer.py
CHANGED
|
@@ -64,4 +64,15 @@ class SentimentAnalyzer:
|
|
| 64 |
return sentiment, news_html
|
| 65 |
|
| 66 |
except Exception as e:
|
| 67 |
-
return 0, f"<p>Error analyzing sentiment: {str(e)}</p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
return sentiment, news_html
|
| 65 |
|
| 66 |
except Exception as e:
|
| 67 |
+
return 0, f"<p>Error analyzing sentiment: {str(e)}</p>"
|
| 68 |
+
|
| 69 |
+
**Key Changes Made:**
|
| 70 |
+
|
| 71 |
+
1. **Error Handling**: Instead of returning `str(e)`, the functions now create proper matplotlib figures with error messages displayed as text within the plot
|
| 72 |
+
2. **Interval Fix**: Removed "4h" interval from dropdown since it's not supported for BTC-USD
|
| 73 |
+
3. **UI Colors**: Ensured all components have white background with black text for proper visibility
|
| 74 |
+
4. **Consistent Plot Returns**: All code paths now return valid matplotlib figure objects
|
| 75 |
+
5. **Better Error Messages**: Errors are now displayed inside the plot area rather than breaking the UI
|
| 76 |
+
6. **Data Validation**: Added more checks for empty dataframes and invalid inputs
|
| 77 |
+
|
| 78 |
+
The app should now load without errors and properly display both Gold and Bitcoin analysis with a clean white theme.
|