Spaces:
Sleeping
Sleeping
Update model_handler.py
Browse files- model_handler.py +37 -46
model_handler.py
CHANGED
|
@@ -1,62 +1,44 @@
|
|
| 1 |
-
import torch
|
| 2 |
import numpy as np
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
import os
|
| 7 |
|
| 8 |
class ModelHandler:
|
| 9 |
def __init__(self):
|
| 10 |
-
|
| 11 |
-
self.
|
| 12 |
-
self.
|
| 13 |
-
|
|
|
|
| 14 |
self.load_model()
|
| 15 |
|
| 16 |
def load_model(self):
|
| 17 |
-
"""Load Chronos model optimized for CPU"""
|
| 18 |
try:
|
| 19 |
-
print(f"Loading {self.model_name}...")
|
| 20 |
-
|
| 21 |
-
# Download config
|
| 22 |
-
config_path = hf_hub_download(
|
| 23 |
-
repo_id=self.model_name,
|
| 24 |
-
filename="config.json"
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
with open(config_path, 'r') as f:
|
| 28 |
-
config = json.load(f)
|
| 29 |
-
|
| 30 |
-
# Initialize tokenizer
|
| 31 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
)
|
| 38 |
-
|
| 39 |
-
# Load model state dict
|
| 40 |
-
from safetensors.torch import load_file
|
| 41 |
-
state_dict = load_file(model_path)
|
| 42 |
-
|
| 43 |
-
# Create model from config (simplified for CPU)
|
| 44 |
-
# In production, would load full model architecture
|
| 45 |
-
print("Model loaded successfully (optimized for CPU)")
|
| 46 |
|
| 47 |
except Exception as e:
|
| 48 |
-
print(f"Error loading model: {e}")
|
| 49 |
print("Using fallback prediction method")
|
| 50 |
-
self.
|
| 51 |
|
| 52 |
def predict(self, data, horizon=10):
|
| 53 |
-
"""Generate predictions using Chronos or fallback"""
|
| 54 |
try:
|
| 55 |
-
|
|
|
|
| 56 |
return np.array([0] * horizon)
|
| 57 |
|
| 58 |
-
if self.
|
| 59 |
-
# Fallback
|
|
|
|
| 60 |
values = data['original']
|
| 61 |
recent_trend = np.polyfit(range(len(values[-20:])), values[-20:], 1)[0]
|
| 62 |
|
|
@@ -64,18 +46,27 @@ class ModelHandler:
|
|
| 64 |
last_value = values[-1]
|
| 65 |
|
| 66 |
for i in range(horizon):
|
| 67 |
-
# Add trend with some noise
|
| 68 |
next_value = last_value + recent_trend * (i + 1)
|
| 69 |
-
# Add realistic market noise
|
| 70 |
noise = np.random.normal(0, data['std'] * 0.1)
|
| 71 |
predictions.append(next_value + noise)
|
| 72 |
|
| 73 |
return np.array(predictions)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
#
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
print(f"Prediction error: {e}")
|
|
|
|
| 81 |
return np.array([0] * horizon)
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
# Menggunakan ChronosPipeline untuk pemuatan dan inferensi yang efisien
|
| 4 |
+
from chronos import ChronosPipeline
|
|
|
|
| 5 |
|
| 6 |
class ModelHandler:
|
| 7 |
def __init__(self):
|
| 8 |
+
# Mengganti model lama dengan Chronos-2 yang lebih canggih
|
| 9 |
+
self.model_name = "amazon/chronos-2"
|
| 10 |
+
self.pipeline = None
|
| 11 |
+
# Penentuan device: "cuda" jika ada GPU, jika tidak "cpu"
|
| 12 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
self.load_model()
|
| 14 |
|
| 15 |
def load_model(self):
|
| 16 |
+
"""Load Chronos-2 model optimized for CPU/GPU"""
|
| 17 |
try:
|
| 18 |
+
print(f"Loading {self.model_name} on {self.device}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# ChronosPipeline menangani semua proses tokenisasi dan pemuatan arsitektur
|
| 21 |
+
self.pipeline = ChronosPipeline.from_pretrained(
|
| 22 |
+
self.model_name,
|
| 23 |
+
device_map=self.device,
|
| 24 |
)
|
| 25 |
+
print("Chronos-2 pipeline loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
except Exception as e:
|
| 28 |
+
print(f"Error loading Chronos-2 model: {e}")
|
| 29 |
print("Using fallback prediction method")
|
| 30 |
+
self.pipeline = None
|
| 31 |
|
| 32 |
def predict(self, data, horizon=10):
|
| 33 |
+
"""Generate predictions using Chronos-2 or fallback"""
|
| 34 |
try:
|
| 35 |
+
# Menggunakan data['original'] yang merupakan harga aktual riil
|
| 36 |
+
if data is None or len(data['original']) < 20:
|
| 37 |
return np.array([0] * horizon)
|
| 38 |
|
| 39 |
+
if self.pipeline is None:
|
| 40 |
+
# --- Fallback Logic ---
|
| 41 |
+
# Logic ekstrapolasi tren lama tetap dipertahankan jika model Deep Learning gagal dimuat
|
| 42 |
values = data['original']
|
| 43 |
recent_trend = np.polyfit(range(len(values[-20:])), values[-20:], 1)[0]
|
| 44 |
|
|
|
|
| 46 |
last_value = values[-1]
|
| 47 |
|
| 48 |
for i in range(horizon):
|
|
|
|
| 49 |
next_value = last_value + recent_trend * (i + 1)
|
|
|
|
| 50 |
noise = np.random.normal(0, data['std'] * 0.1)
|
| 51 |
predictions.append(next_value + noise)
|
| 52 |
|
| 53 |
return np.array(predictions)
|
| 54 |
|
| 55 |
+
# --- Chronos-2 Inference ---
|
| 56 |
+
# Input: numpy array dari harga Close historis yang riil
|
| 57 |
+
predictions_samples = self.pipeline.predict(
|
| 58 |
+
data['original'],
|
| 59 |
+
prediction_length=horizon,
|
| 60 |
+
# Mengambil 20 sampel prediksi untuk mendapatkan prediksi probablistik
|
| 61 |
+
num_samples=20
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Untuk chart (garis tunggal), ambil nilai rata-rata (mean) dari semua sampel.
|
| 65 |
+
mean_predictions = np.mean(predictions_samples, axis=0)
|
| 66 |
+
|
| 67 |
+
return mean_predictions
|
| 68 |
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Prediction error: {e}")
|
| 71 |
+
# Mengembalikan array nol jika ada error saat inferensi Chronos
|
| 72 |
return np.array([0] * horizon)
|