Spaces:
Sleeping
Sleeping
Update Gradio app with multiple files
Browse files- app.py +155 -263
- requirements.txt +27 -8
app.py
CHANGED
|
@@ -1,314 +1,206 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.graph_objects as go
|
|
|
|
| 4 |
from data_processor import DataProcessor
|
| 5 |
from sentiment_analyzer import SentimentAnalyzer
|
| 6 |
from model_handler import ModelHandler
|
| 7 |
from trading_logic import TradingLogic
|
| 8 |
-
import numpy as np
|
| 9 |
|
| 10 |
-
#
|
| 11 |
data_processor = DataProcessor()
|
| 12 |
sentiment_analyzer = SentimentAnalyzer()
|
| 13 |
model_handler = ModelHandler()
|
| 14 |
trading_logic = TradingLogic()
|
| 15 |
|
| 16 |
-
def
|
| 17 |
-
"""
|
| 18 |
try:
|
|
|
|
| 19 |
df = data_processor.get_gold_data(interval)
|
| 20 |
if df.empty:
|
| 21 |
-
return "No data available"
|
| 22 |
|
| 23 |
-
# Calculate indicators
|
| 24 |
df = data_processor.calculate_indicators(df)
|
| 25 |
|
| 26 |
# Create candlestick chart
|
| 27 |
-
|
| 28 |
-
go.Candlestick(
|
| 29 |
-
x=df.index,
|
| 30 |
-
open=df['Open'],
|
| 31 |
-
high=df['High'],
|
| 32 |
-
low=df['Low'],
|
| 33 |
-
close=df['Close'],
|
| 34 |
-
name='Gold Price'
|
| 35 |
-
)
|
| 36 |
-
])
|
| 37 |
-
|
| 38 |
-
# Add Bollinger Bands
|
| 39 |
-
fig.add_trace(go.Scatter(
|
| 40 |
-
x=df.index, y=df['BB_upper'],
|
| 41 |
-
line=dict(color='rgba(255,255,255,0.3)', width=1),
|
| 42 |
-
name='BB Upper', showlegend=False
|
| 43 |
-
))
|
| 44 |
-
fig.add_trace(go.Scatter(
|
| 45 |
-
x=df.index, y=df['BB_lower'],
|
| 46 |
-
line=dict(color='rgba(255,255,255,0.3)', width=1),
|
| 47 |
-
fill='tonexty', fillcolor='rgba(255,255,255,0.1)',
|
| 48 |
-
name='BB Lower', showlegend=False
|
| 49 |
-
))
|
| 50 |
-
|
| 51 |
-
# Add moving averages
|
| 52 |
-
fig.add_trace(go.Scatter(
|
| 53 |
-
x=df.index, y=df['SMA_20'],
|
| 54 |
-
line=dict(color='#FFD700', width=2),
|
| 55 |
-
name='SMA 20'
|
| 56 |
-
))
|
| 57 |
-
fig.add_trace(go.Scatter(
|
| 58 |
-
x=df.index, y=df['SMA_50'],
|
| 59 |
-
line=dict(color='#FFA500', width=2),
|
| 60 |
-
name='SMA 50'
|
| 61 |
-
))
|
| 62 |
-
|
| 63 |
-
fig.update_layout(
|
| 64 |
-
title=f'Gold Futures (GC=F) - {interval}',
|
| 65 |
-
yaxis_title='Price (USD)',
|
| 66 |
-
xaxis_title='Date',
|
| 67 |
-
template='plotly_dark',
|
| 68 |
-
height=500,
|
| 69 |
-
margin=dict(l=50, r=50, t=50, b=50),
|
| 70 |
-
xaxis_rangeslider_visible=False,
|
| 71 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
| 72 |
-
plot_bgcolor='rgba(0,0,0,0)',
|
| 73 |
-
font=dict(color='white')
|
| 74 |
-
)
|
| 75 |
|
| 76 |
# Generate predictions
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
current_price = df['Close'].iloc[-1]
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
)
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
)
|
| 89 |
|
| 90 |
# Create metrics display
|
| 91 |
metrics = {
|
| 92 |
-
"Current Price": f"${current_price
|
| 93 |
-
"Signal": signal.upper(),
|
| 94 |
"Confidence": f"{confidence:.1%}",
|
| 95 |
-
"Take Profit": f"${tp
|
| 96 |
-
"Stop Loss": f"${sl
|
| 97 |
"RSI": f"{df['RSI'].iloc[-1]:.1f}",
|
| 98 |
"MACD": f"{df['MACD'].iloc[-1]:.4f}",
|
| 99 |
-
"Volume": f"{df['
|
| 100 |
}
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
mode='lines+markers',
|
| 111 |
line=dict(color='#FFD700', width=3),
|
| 112 |
marker=dict(size=6),
|
| 113 |
-
name='
|
| 114 |
))
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
| 119 |
mode='lines',
|
| 120 |
-
line=dict(color='rgba(255,215,0,0.
|
| 121 |
showlegend=False
|
| 122 |
))
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
font=dict(color='white')
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
return fig, metrics, pred_fig
|
| 136 |
-
|
| 137 |
-
except Exception as e:
|
| 138 |
-
return str(e), None, None
|
| 139 |
-
|
| 140 |
-
def analyze_sentiment():
|
| 141 |
-
"""Analyze gold market sentiment"""
|
| 142 |
-
try:
|
| 143 |
-
sentiment_score, news_summary = sentiment_analyzer.analyze_gold_sentiment()
|
| 144 |
-
|
| 145 |
-
# Create sentiment gauge
|
| 146 |
-
fig = go.Figure(go.Indicator(
|
| 147 |
-
mode="gauge+number+delta",
|
| 148 |
-
value=sentiment_score,
|
| 149 |
-
domain={'x': [0, 1], 'y': [0, 1]},
|
| 150 |
-
title={'text': "Gold Market Sentiment"},
|
| 151 |
-
delta={'reference': 0},
|
| 152 |
-
gauge={
|
| 153 |
-
'axis': {'range': [-1, 1]},
|
| 154 |
-
'bar': {'color': "#FFD700"},
|
| 155 |
-
'steps': [
|
| 156 |
-
{'range': [-1, -0.5], 'color': "rgba(255,0,0,0.5)"},
|
| 157 |
-
{'range': [-0.5, 0.5], 'color': "rgba(255,255,255,0.3)"},
|
| 158 |
-
{'range': [0.5, 1], 'color': "rgba(0,255,0,0.5)"}
|
| 159 |
-
],
|
| 160 |
-
'threshold': {
|
| 161 |
-
'line': {'color': "white", 'width': 4},
|
| 162 |
-
'thickness': 0.75,
|
| 163 |
-
'value': 0
|
| 164 |
-
}
|
| 165 |
-
}
|
| 166 |
-
))
|
| 167 |
-
|
| 168 |
-
fig.update_layout(
|
| 169 |
-
template='plotly_dark',
|
| 170 |
-
height=300,
|
| 171 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
| 172 |
-
plot_bgcolor='rgba(0,0,0,0)',
|
| 173 |
-
font=dict(color='white')
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
return fig, news_summary
|
| 177 |
-
|
| 178 |
-
except Exception as e:
|
| 179 |
-
return str(e), None
|
| 180 |
-
|
| 181 |
-
def get_fundamentals():
|
| 182 |
-
"""Get fundamental analysis data"""
|
| 183 |
-
try:
|
| 184 |
-
fundamentals = data_processor.get_fundamental_data()
|
| 185 |
-
|
| 186 |
-
# Create fundamentals table
|
| 187 |
-
table_data = []
|
| 188 |
-
for key, value in fundamentals.items():
|
| 189 |
-
table_data.append([key, value])
|
| 190 |
-
|
| 191 |
-
df = pd.DataFrame(table_data, columns=['Metric', 'Value'])
|
| 192 |
-
|
| 193 |
-
# Create fundamentals gauge chart
|
| 194 |
-
fig = go.Figure(go.Indicator(
|
| 195 |
-
mode="gauge+number",
|
| 196 |
-
value=fundamentals.get('Gold Strength Index', 50),
|
| 197 |
-
title={'text': "Gold Strength Index"},
|
| 198 |
-
gauge={
|
| 199 |
-
'axis': {'range': [0, 100]},
|
| 200 |
-
'bar': {'color': "#FFD700"},
|
| 201 |
-
'steps': [
|
| 202 |
-
{'range': [0, 30], 'color': "rgba(255,0,0,0.5)"},
|
| 203 |
-
{'range': [30, 70], 'color': "rgba(255,255,255,0.3)"},
|
| 204 |
-
{'range': [70, 100], 'color': "rgba(0,255,0,0.5)"}
|
| 205 |
-
]
|
| 206 |
-
}
|
| 207 |
))
|
| 208 |
-
|
| 209 |
-
fig.update_layout(
|
| 210 |
-
template='plotly_dark',
|
| 211 |
-
height=300,
|
| 212 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
| 213 |
-
plot_bgcolor='rgba(0,0,0,0)',
|
| 214 |
-
font=dict(color='white')
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
return fig, df
|
| 218 |
-
|
| 219 |
-
except Exception as e:
|
| 220 |
-
return str(e), None
|
| 221 |
-
|
| 222 |
-
# Create Gradio interface
|
| 223 |
-
with gr.Blocks(
|
| 224 |
-
theme=gr.themes.Default(primary_hue="yellow", secondary_hue="yellow"),
|
| 225 |
-
title="Gold Trading Analysis & Prediction",
|
| 226 |
-
css="""
|
| 227 |
-
.gradio-container {background-color: #000000; color: #FFFFFF}
|
| 228 |
-
.gr-button-primary {background-color: #FFD700 !important; color: #000000 !important}
|
| 229 |
-
.gr-button-secondary {border-color: #FFD700 !important; color: #FFD700 !important}
|
| 230 |
-
.gr-tab button {color: #FFFFFF !important}
|
| 231 |
-
.gr-tab button.selected {background-color: #FFD700 !important; color: #000000 !important}
|
| 232 |
-
.gr-highlighted {background-color: #1a1a1a !important}
|
| 233 |
-
.anycoder-link {color: #FFD700 !important; text-decoration: none; font-weight: bold}
|
| 234 |
-
"""
|
| 235 |
-
) as demo:
|
| 236 |
-
|
| 237 |
-
# Header with anycoder link
|
| 238 |
-
gr.HTML("""
|
| 239 |
-
<div style="text-align: center; padding: 20px;">
|
| 240 |
-
<h1 style="color: #FFD700;">Gold Trading Analysis & Prediction</h1>
|
| 241 |
-
<p>Advanced AI-powered analysis for Gold Futures (GC=F)</p>
|
| 242 |
-
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" class="anycoder-link">Built with anycoder</a>
|
| 243 |
-
</div>
|
| 244 |
-
""")
|
| 245 |
-
|
| 246 |
-
with gr.Row():
|
| 247 |
-
interval_dropdown = gr.Dropdown(
|
| 248 |
-
choices=[
|
| 249 |
-
"5m", "15m", "30m", "1h", "4h", "1d", "1wk", "1mo", "3mo"
|
| 250 |
-
],
|
| 251 |
-
value="1d",
|
| 252 |
-
label="Time Interval",
|
| 253 |
-
info="Select analysis timeframe"
|
| 254 |
-
)
|
| 255 |
-
refresh_btn = gr.Button("🔄 Refresh Data", variant="primary")
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
with gr.Row():
|
| 268 |
-
sentiment_gauge = gr.Plot(label="Sentiment Score")
|
| 269 |
-
news_display = gr.HTML(label="Market News")
|
| 270 |
-
|
| 271 |
-
with gr.TabItem("📈 Fundamentals"):
|
| 272 |
-
with gr.Row():
|
| 273 |
-
fundamentals_gauge = gr.Plot(label="Strength Index")
|
| 274 |
-
fundamentals_table = gr.Dataframe(
|
| 275 |
-
headers=["Metric", "Value"],
|
| 276 |
-
label="Key Fundamentals",
|
| 277 |
-
interactive=False
|
| 278 |
-
)
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
fundamentals_gauge, fundamentals_table
|
| 295 |
-
]
|
| 296 |
)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
fn=update_all,
|
| 300 |
-
inputs=interval_dropdown,
|
| 301 |
-
outputs=[
|
| 302 |
-
chart_plot, metrics_output, pred_plot,
|
| 303 |
-
sentiment_gauge, news_display,
|
| 304 |
-
fundamentals_gauge, fundamentals_table
|
| 305 |
-
]
|
| 306 |
-
)
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
show_api=True
|
| 314 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
+
import numpy as np
|
| 5 |
from data_processor import DataProcessor
|
| 6 |
from sentiment_analyzer import SentimentAnalyzer
|
| 7 |
from model_handler import ModelHandler
|
| 8 |
from trading_logic import TradingLogic
|
|
|
|
| 9 |
|
| 10 |
+
# Initialize components
|
| 11 |
data_processor = DataProcessor()
|
| 12 |
sentiment_analyzer = SentimentAnalyzer()
|
| 13 |
model_handler = ModelHandler()
|
| 14 |
trading_logic = TradingLogic()
|
| 15 |
|
| 16 |
+
def update_analysis(interval):
|
| 17 |
+
"""Main analysis function that updates all components"""
|
| 18 |
try:
|
| 19 |
+
# Get market data
|
| 20 |
df = data_processor.get_gold_data(interval)
|
| 21 |
if df.empty:
|
| 22 |
+
return [gr.update(value="No data available")] * 7
|
| 23 |
|
| 24 |
+
# Calculate technical indicators
|
| 25 |
df = data_processor.calculate_indicators(df)
|
| 26 |
|
| 27 |
# Create candlestick chart
|
| 28 |
+
chart_fig = create_candlestick_chart(df, interval)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Generate predictions
|
| 31 |
+
pred_df = model_handler.predict(df)
|
| 32 |
+
pred_fig = create_prediction_chart(df, pred_df)
|
| 33 |
+
|
| 34 |
+
# Get trading signal
|
| 35 |
current_price = df['Close'].iloc[-1]
|
| 36 |
+
signal, confidence = trading_logic.generate_signal(pred_df, current_price, df)
|
| 37 |
+
tp, sl = trading_logic.calculate_tp_sl(current_price, df['ATR'].iloc[-1], signal)
|
| 38 |
|
| 39 |
+
# Analyze sentiment
|
| 40 |
+
sentiment_score, news_html = sentiment_analyzer.analyze_gold_sentiment()
|
| 41 |
+
sentiment_fig = create_sentiment_gauge(sentiment_score)
|
|
|
|
| 42 |
|
| 43 |
+
# Get fundamentals
|
| 44 |
+
fundamentals = data_processor.get_fundamental_data()
|
| 45 |
+
fundamentals_fig = create_fundamentals_gauge(fundamentals)
|
| 46 |
+
fundamentals_df = pd.DataFrame(list(fundamentals.items()), columns=['Metric', 'Value'])
|
| 47 |
|
| 48 |
# Create metrics display
|
| 49 |
metrics = {
|
| 50 |
+
"Current Price": f"${current_price:,.2f}",
|
| 51 |
+
"Trading Signal": signal.upper(),
|
| 52 |
"Confidence": f"{confidence:.1%}",
|
| 53 |
+
"Take Profit": f"${tp:,.2f}" if tp else "N/A",
|
| 54 |
+
"Stop Loss": f"${sl:,.2f}" if sl else "N/A",
|
| 55 |
"RSI": f"{df['RSI'].iloc[-1]:.1f}",
|
| 56 |
"MACD": f"{df['MACD'].iloc[-1]:.4f}",
|
| 57 |
+
"Volume Ratio": f"{df['Volume_ratio'].iloc[-1]:.2f}x"
|
| 58 |
}
|
| 59 |
|
| 60 |
+
return (
|
| 61 |
+
chart_fig,
|
| 62 |
+
metrics,
|
| 63 |
+
pred_fig,
|
| 64 |
+
sentiment_fig,
|
| 65 |
+
news_html,
|
| 66 |
+
fundamentals_fig,
|
| 67 |
+
fundamentals_df
|
| 68 |
)
|
| 69 |
|
| 70 |
+
except Exception as e:
|
| 71 |
+
error_msg = f"Error: {str(e)}"
|
| 72 |
+
return [gr.update(value=error_msg)] * 7
|
| 73 |
+
|
| 74 |
+
def create_candlestick_chart(df, interval):
|
| 75 |
+
"""Create interactive candlestick chart with indicators"""
|
| 76 |
+
fig = go.Figure()
|
| 77 |
+
|
| 78 |
+
# Candlestick
|
| 79 |
+
fig.add_trace(go.Candlestick(
|
| 80 |
+
x=df.index,
|
| 81 |
+
open=df['Open'],
|
| 82 |
+
high=df['High'],
|
| 83 |
+
low=df['Low'],
|
| 84 |
+
close=df['Close'],
|
| 85 |
+
name='Gold Price'
|
| 86 |
+
))
|
| 87 |
+
|
| 88 |
+
# Moving averages
|
| 89 |
+
fig.add_trace(go.Scatter(
|
| 90 |
+
x=df.index,
|
| 91 |
+
y=df['SMA_20'],
|
| 92 |
+
line=dict(color='#FFD700', width=2),
|
| 93 |
+
name='SMA 20'
|
| 94 |
+
))
|
| 95 |
+
|
| 96 |
+
fig.add_trace(go.Scatter(
|
| 97 |
+
x=df.index,
|
| 98 |
+
y=df['SMA_50'],
|
| 99 |
+
line=dict(color='#FFA500', width=2),
|
| 100 |
+
name='SMA 50'
|
| 101 |
+
))
|
| 102 |
+
|
| 103 |
+
fig.update_layout(
|
| 104 |
+
title=f'Gold Futures (GC=F) - {interval}',
|
| 105 |
+
yaxis_title='Price (USD)',
|
| 106 |
+
xaxis_title='Date/Time',
|
| 107 |
+
template='plotly_dark',
|
| 108 |
+
height=500,
|
| 109 |
+
margin=dict(l=50, r=50, t=50, b=50),
|
| 110 |
+
xaxis_rangeslider_visible=False,
|
| 111 |
+
paper_bgcolor='black',
|
| 112 |
+
plot_bgcolor='black',
|
| 113 |
+
font=dict(color='white')
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
return fig
|
| 117 |
+
|
| 118 |
+
def create_prediction_chart(df, pred_df):
|
| 119 |
+
"""Create prediction chart"""
|
| 120 |
+
fig = go.Figure()
|
| 121 |
+
|
| 122 |
+
# Historical price
|
| 123 |
+
fig.add_trace(go.Scatter(
|
| 124 |
+
x=df.index,
|
| 125 |
+
y=df['Close'],
|
| 126 |
+
mode='lines',
|
| 127 |
+
line=dict(color='#FFFFFF', width=2),
|
| 128 |
+
name='Historical'
|
| 129 |
+
))
|
| 130 |
+
|
| 131 |
+
# Predictions
|
| 132 |
+
if pred_df is not None and not pred_df.empty:
|
| 133 |
+
fig.add_trace(go.Scatter(
|
| 134 |
+
x=pred_df['date'],
|
| 135 |
+
y=pred_df['prediction'],
|
| 136 |
mode='lines+markers',
|
| 137 |
line=dict(color='#FFD700', width=3),
|
| 138 |
marker=dict(size=6),
|
| 139 |
+
name='Prediction'
|
| 140 |
))
|
| 141 |
|
| 142 |
+
# Confidence interval
|
| 143 |
+
fig.add_trace(go.Scatter(
|
| 144 |
+
x=pred_df['date'],
|
| 145 |
+
y=pred_df['upper_bound'],
|
| 146 |
mode='lines',
|
| 147 |
+
line=dict(color='rgba(255,215,0,0.2)', width=0),
|
| 148 |
showlegend=False
|
| 149 |
))
|
| 150 |
|
| 151 |
+
fig.add_trace(go.Scatter(
|
| 152 |
+
x=pred_df['date'],
|
| 153 |
+
y=pred_df['lower_bound'],
|
| 154 |
+
mode='lines',
|
| 155 |
+
line=dict(color='rgba(255,215,0,0.2)', width=0),
|
| 156 |
+
fill='tonexty',
|
| 157 |
+
fillcolor='rgba(255,215,0,0.1)',
|
| 158 |
+
name='Confidence Interval'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
fig.update_layout(
|
| 162 |
+
title='Price Prediction',
|
| 163 |
+
yaxis_title='Price (USD)',
|
| 164 |
+
xaxis_title='Date/Time',
|
| 165 |
+
template='plotly_dark',
|
| 166 |
+
height=300,
|
| 167 |
+
paper_bgcolor='black',
|
| 168 |
+
plot_bgcolor='black',
|
| 169 |
+
font=dict(color='white')
|
| 170 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
return fig
|
| 173 |
+
|
| 174 |
+
def create_sentiment_gauge(score):
|
| 175 |
+
"""Create sentiment gauge chart"""
|
| 176 |
+
fig = go.Figure(go.Indicator(
|
| 177 |
+
mode="gauge+number",
|
| 178 |
+
value=score,
|
| 179 |
+
domain={'x': [0, 1], 'y': [0, 1]},
|
| 180 |
+
title={'text': "Market Sentiment"},
|
| 181 |
+
gauge={
|
| 182 |
+
'axis': {'range': [-1, 1]},
|
| 183 |
+
'bar': {'color': "#FFD700"},
|
| 184 |
+
'steps': [
|
| 185 |
+
{'range': [-1, -0.5], 'color': "rgba(255,0,0,0.5)"},
|
| 186 |
+
{'range': [-0.5, 0.5], 'color': "rgba(255,255,255,0.3)"},
|
| 187 |
+
{'range': [0.5, 1], 'color': "rgba(0,255,0,0.5)"}
|
| 188 |
+
]
|
| 189 |
+
}
|
| 190 |
+
))
|
| 191 |
|
| 192 |
+
fig.update_layout(
|
| 193 |
+
template='plotly_dark',
|
| 194 |
+
height=300,
|
| 195 |
+
paper_bgcolor='black',
|
| 196 |
+
plot_bgcolor='black',
|
| 197 |
+
font=dict(color='white')
|
|
|
|
|
|
|
| 198 |
)
|
| 199 |
|
| 200 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
def create_fundamentals_gauge(fundamentals):
|
| 203 |
+
"""Create fundamentals gauge"""
|
| 204 |
+
value = fundamentals.get('Gold Strength Index', 50)
|
| 205 |
+
|
| 206 |
+
fig = go.Figure(go
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,11 +1,30 @@
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
-
yfinance
|
| 3 |
-
torch
|
| 4 |
-
transformers
|
| 5 |
pandas
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
scikit-learn
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
plotly
|
| 2 |
+
numpy
|
| 3 |
gradio
|
|
|
|
|
|
|
|
|
|
| 4 |
pandas
|
| 5 |
+
kaleido
|
| 6 |
+
requests
|
| 7 |
+
Pillow
|
| 8 |
+
matplotlib
|
| 9 |
+
openpyxl
|
| 10 |
+
xlrd
|
| 11 |
+
python-docx
|
| 12 |
+
PyPDF2
|
| 13 |
scikit-learn
|
| 14 |
+
scipy
|
| 15 |
+
joblib
|
| 16 |
+
git+https://github.com/huggingface/transformers
|
| 17 |
+
sentencepiece
|
| 18 |
+
torch
|
| 19 |
+
accelerate
|
| 20 |
+
tokenizers
|
| 21 |
+
datasets
|
| 22 |
+
yfinance
|
| 23 |
+
ta-lib
|
| 24 |
+
seaborn
|
| 25 |
+
scipy
|
| 26 |
+
joblib
|
| 27 |
+
tqdm
|
| 28 |
+
requests
|
| 29 |
+
urllib3
|
| 30 |
+
certifi
|