Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,49 @@
|
|
| 1 |
-
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
-
import streamlit as st
|
| 4 |
-
import numpy as np
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from google.protobuf.struct_pb2 import Value
|
| 13 |
|
|
|
|
|
|
|
|
|
| 1 |
+
from unsloth import FastLanguageModel
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from transformers import TextStreamer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@st.cache_resource
|
| 8 |
+
def load_model():
|
| 9 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 10 |
+
model_name = "lora_model",
|
| 11 |
+
max_seq_length = 2048,
|
| 12 |
+
dtype = None,
|
| 13 |
+
load_in_4bit = True,
|
| 14 |
+
)
|
| 15 |
+
FastLanguageModel.for_inference(model)
|
| 16 |
+
return model, tokenizer
|
| 17 |
+
|
| 18 |
+
model, tokenizer = load_model()
|
| 19 |
+
|
| 20 |
+
st.title("Activity and Emission Prediction")
|
| 21 |
+
st.write("Match the potential use case with the corresponding activity and emission values based on provided context.")
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
| 25 |
+
|
| 26 |
+
### Instruction:
|
| 27 |
+
{}
|
| 28 |
+
|
| 29 |
+
### Input:
|
| 30 |
+
{}
|
| 31 |
+
|
| 32 |
+
### Response:
|
| 33 |
+
{}"""
|
| 34 |
|
| 35 |
+
instruction = st.text_input("Instruction", "Match the potential use case with the corresponding activity and emission values based on the provided context.")
|
| 36 |
+
input_text = st.text_area("Input", "Doğal Gaz Kullanımı, Gaz Faturası Yönetimi, Isınma Maliyetleri, Enerji Tasarrufu, Gaz Dağıtımı")
|
| 37 |
|
| 38 |
+
# Button to trigger model generation
|
| 39 |
+
if st.button("Generate Response"):
|
| 40 |
+
with st.spinner("Generating response..."):
|
| 41 |
+
# Prepare inputs for the model
|
| 42 |
+
formatted_prompt = alpaca_prompt.format(instruction, input_text, "")
|
| 43 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
| 44 |
|
| 45 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
| 46 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 47 |
|
| 48 |
+
st.write("### Response")
|
| 49 |
+
st.write(response_text)
|