Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| """Training code for the detector model""" | |
| import argparse | |
| import os | |
| import subprocess | |
| import sys | |
| from itertools import count | |
| from multiprocessing import Process | |
| import torch | |
| import torch.distributed as dist | |
| from torch import nn | |
| from torch.nn.parallel import DistributedDataParallel | |
| from torch.optim import Adam | |
| from torch.utils.data import DataLoader, DistributedSampler, RandomSampler | |
| from tqdm import tqdm | |
| from transformers import * | |
| from .dataset import Corpus, EncodedDataset | |
| from .download import download | |
| from .utils import summary, distributed | |
| def setup_distributed(port=29500): | |
| if not dist.is_available() or not torch.cuda.is_available() or torch.cuda.device_count() <= 1: | |
| return 0, 1 | |
| if 'MPIR_CVAR_CH3_INTERFACE_HOSTNAME' in os.environ: | |
| from mpi4py import MPI | |
| mpi_rank = MPI.COMM_WORLD.Get_rank() | |
| mpi_size = MPI.COMM_WORLD.Get_size() | |
| os.environ["MASTER_ADDR"] = '127.0.0.1' | |
| os.environ["MASTER_PORT"] = str(port) | |
| dist.init_process_group(backend="nccl", world_size=mpi_size, rank=mpi_rank) | |
| return mpi_rank, mpi_size | |
| dist.init_process_group(backend="nccl", init_method="env://") | |
| return dist.get_rank(), dist.get_world_size() | |
| def load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size, | |
| max_sequence_length, random_sequence_length, epoch_size=None, token_dropout=None, seed=None): | |
| if fake_dataset == 'TWO': | |
| download(real_dataset, 'xl-1542M', 'xl-1542M-nucleus', data_dir=data_dir) | |
| elif fake_dataset == 'THREE': | |
| download(real_dataset, 'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus', data_dir=data_dir) | |
| else: | |
| download(real_dataset, fake_dataset, data_dir=data_dir) | |
| real_corpus = Corpus(real_dataset, data_dir=data_dir) | |
| if fake_dataset == "TWO": | |
| real_train, real_valid = real_corpus.train * 2, real_corpus.valid * 2 | |
| fake_corpora = [Corpus(name, data_dir=data_dir) for name in ['xl-1542M', 'xl-1542M-nucleus']] | |
| fake_train = sum([corpus.train for corpus in fake_corpora], []) | |
| fake_valid = sum([corpus.valid for corpus in fake_corpora], []) | |
| elif fake_dataset == "THREE": | |
| real_train, real_valid = real_corpus.train * 3, real_corpus.valid * 3 | |
| fake_corpora = [Corpus(name, data_dir=data_dir) for name in | |
| ['xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus']] | |
| fake_train = sum([corpus.train for corpus in fake_corpora], []) | |
| fake_valid = sum([corpus.valid for corpus in fake_corpora], []) | |
| else: | |
| fake_corpus = Corpus(fake_dataset, data_dir=data_dir) | |
| real_train, real_valid = real_corpus.train, real_corpus.valid | |
| fake_train, fake_valid = fake_corpus.train, fake_corpus.valid | |
| Sampler = DistributedSampler if distributed() and dist.get_world_size() > 1 else RandomSampler | |
| min_sequence_length = 10 if random_sequence_length else None | |
| train_dataset = EncodedDataset(real_train, fake_train, tokenizer, max_sequence_length, min_sequence_length, | |
| epoch_size, token_dropout, seed) | |
| train_loader = DataLoader(train_dataset, batch_size, sampler=Sampler(train_dataset), num_workers=0) | |
| validation_dataset = EncodedDataset(real_valid, fake_valid, tokenizer) | |
| validation_loader = DataLoader(validation_dataset, batch_size=1, sampler=Sampler(validation_dataset)) | |
| return train_loader, validation_loader | |
| def accuracy_sum(logits, labels): | |
| if list(logits.shape) == list(labels.shape) + [2]: | |
| # 2-d outputs | |
| classification = (logits[..., 0] < logits[..., 1]).long().flatten() | |
| else: | |
| classification = (logits > 0).long().flatten() | |
| assert classification.shape == labels.shape | |
| return (classification == labels).float().sum().item() | |
| def train(model: nn.Module, optimizer, device: str, loader: DataLoader, desc='Train'): | |
| model.train() | |
| train_accuracy = 0 | |
| train_epoch_size = 0 | |
| train_loss = 0 | |
| with tqdm(loader, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop: | |
| for texts, masks, labels in loop: | |
| texts, masks, labels = texts.to(device), masks.to(device), labels.to(device) | |
| batch_size = texts.shape[0] | |
| optimizer.zero_grad() | |
| loss, logits = model(texts, attention_mask=masks, labels=labels) | |
| loss.backward() | |
| optimizer.step() | |
| batch_accuracy = accuracy_sum(logits, labels) | |
| train_accuracy += batch_accuracy | |
| train_epoch_size += batch_size | |
| train_loss += loss.item() * batch_size | |
| loop.set_postfix(loss=loss.item(), acc=train_accuracy / train_epoch_size) | |
| return { | |
| "train/accuracy": train_accuracy, | |
| "train/epoch_size": train_epoch_size, | |
| "train/loss": train_loss | |
| } | |
| def validate(model: nn.Module, device: str, loader: DataLoader, votes=1, desc='Validation'): | |
| model.eval() | |
| validation_accuracy = 0 | |
| validation_epoch_size = 0 | |
| validation_loss = 0 | |
| records = [record for v in range(votes) for record in tqdm(loader, desc=f'Preloading data ... {v}', | |
| disable=dist.is_available() and dist.get_rank() > 0)] | |
| records = [[records[v * len(loader) + i] for v in range(votes)] for i in range(len(loader))] | |
| with tqdm(records, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop, torch.no_grad(): | |
| for example in loop: | |
| losses = [] | |
| logit_votes = [] | |
| for texts, masks, labels in example: | |
| texts, masks, labels = texts.to(device), masks.to(device), labels.to(device) | |
| batch_size = texts.shape[0] | |
| loss, logits = model(texts, attention_mask=masks, labels=labels) | |
| losses.append(loss) | |
| logit_votes.append(logits) | |
| loss = torch.stack(losses).mean(dim=0) | |
| logits = torch.stack(logit_votes).mean(dim=0) | |
| batch_accuracy = accuracy_sum(logits, labels) | |
| validation_accuracy += batch_accuracy | |
| validation_epoch_size += batch_size | |
| validation_loss += loss.item() * batch_size | |
| loop.set_postfix(loss=loss.item(), acc=validation_accuracy / validation_epoch_size) | |
| return { | |
| "validation/accuracy": validation_accuracy, | |
| "validation/epoch_size": validation_epoch_size, | |
| "validation/loss": validation_loss | |
| } | |
| def _all_reduce_dict(d, device): | |
| # wrap in tensor and use reduce to gpu0 tensor | |
| output_d = {} | |
| for (key, value) in sorted(d.items()): | |
| tensor_input = torch.tensor([[value]]).to(device) | |
| torch.distributed.all_reduce(tensor_input) | |
| output_d[key] = tensor_input.item() | |
| return output_d | |
| def run(max_epochs=None, | |
| device=None, | |
| batch_size=24, | |
| max_sequence_length=128, | |
| random_sequence_length=False, | |
| epoch_size=None, | |
| seed=None, | |
| data_dir='data', | |
| real_dataset='webtext', | |
| fake_dataset='xl-1542M-nucleus', | |
| token_dropout=None, | |
| large=False, | |
| learning_rate=2e-5, | |
| weight_decay=0, | |
| **kwargs): | |
| args = locals() | |
| rank, world_size = setup_distributed() | |
| if device is None: | |
| device = f'cuda:{rank}' if torch.cuda.is_available() else 'cpu' | |
| print('rank:', rank, 'world_size:', world_size, 'device:', device) | |
| import torch.distributed as dist | |
| if distributed() and rank > 0: | |
| dist.barrier() | |
| model_name = 'roberta-large' if large else 'roberta-base' | |
| tokenization_utils.logger.setLevel('ERROR') | |
| tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
| model = RobertaForSequenceClassification.from_pretrained(model_name).to(device) | |
| if rank == 0: | |
| summary(model) | |
| if distributed(): | |
| dist.barrier() | |
| if world_size > 1: | |
| model = DistributedDataParallel(model, [rank], output_device=rank, find_unused_parameters=True) | |
| train_loader, validation_loader = load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size, | |
| max_sequence_length, random_sequence_length, epoch_size, | |
| token_dropout, seed) | |
| optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) | |
| epoch_loop = count(1) if max_epochs is None else range(1, max_epochs + 1) | |
| logdir = os.environ.get("OPENAI_LOGDIR", "logs") | |
| os.makedirs(logdir, exist_ok=True) | |
| from torch.utils.tensorboard import SummaryWriter | |
| writer = SummaryWriter(logdir) if rank == 0 else None | |
| best_validation_accuracy = 0 | |
| for epoch in epoch_loop: | |
| if world_size > 1: | |
| train_loader.sampler.set_epoch(epoch) | |
| validation_loader.sampler.set_epoch(epoch) | |
| train_metrics = train(model, optimizer, device, train_loader, f'Epoch {epoch}') | |
| validation_metrics = validate(model, device, validation_loader) | |
| combined_metrics = _all_reduce_dict({**validation_metrics, **train_metrics}, device) | |
| combined_metrics["train/accuracy"] /= combined_metrics["train/epoch_size"] | |
| combined_metrics["train/loss"] /= combined_metrics["train/epoch_size"] | |
| combined_metrics["validation/accuracy"] /= combined_metrics["validation/epoch_size"] | |
| combined_metrics["validation/loss"] /= combined_metrics["validation/epoch_size"] | |
| if rank == 0: | |
| for key, value in combined_metrics.items(): | |
| writer.add_scalar(key, value, global_step=epoch) | |
| if combined_metrics["validation/accuracy"] > best_validation_accuracy: | |
| best_validation_accuracy = combined_metrics["validation/accuracy"] | |
| model_to_save = model.module if hasattr(model, 'module') else model | |
| torch.save(dict( | |
| epoch=epoch, | |
| model_state_dict=model_to_save.state_dict(), | |
| optimizer_state_dict=optimizer.state_dict(), | |
| args=args | |
| ), | |
| os.path.join(logdir, "best-model.pt") | |
| ) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--max-epochs', type=int, default=None) | |
| parser.add_argument('--device', type=str, default=None) | |
| parser.add_argument('--batch-size', type=int, default=24) | |
| parser.add_argument('--max-sequence-length', type=int, default=128) | |
| parser.add_argument('--random-sequence-length', action='store_true') | |
| parser.add_argument('--epoch-size', type=int, default=None) | |
| parser.add_argument('--seed', type=int, default=None) | |
| parser.add_argument('--data-dir', type=str, default='data') | |
| parser.add_argument('--real-dataset', type=str, default='webtext') | |
| parser.add_argument('--fake-dataset', type=str, default='xl-1542M-k40') | |
| parser.add_argument('--token-dropout', type=float, default=None) | |
| parser.add_argument('--large', action='store_true', help='use the roberta-large model instead of roberta-base') | |
| parser.add_argument('--learning-rate', type=float, default=2e-5) | |
| parser.add_argument('--weight-decay', type=float, default=0) | |
| args = parser.parse_args() | |
| nproc = int(subprocess.check_output([sys.executable, '-c', "import torch;" | |
| "print(torch.cuda.device_count() if torch.cuda.is_available() else 1)"])) | |
| if nproc > 1: | |
| print(f'Launching {nproc} processes ...', file=sys.stderr) | |
| os.environ["MASTER_ADDR"] = '127.0.0.1' | |
| os.environ["MASTER_PORT"] = str(29500) | |
| os.environ['WORLD_SIZE'] = str(nproc) | |
| os.environ['OMP_NUM_THREAD'] = str(1) | |
| subprocesses = [] | |
| for i in range(nproc): | |
| os.environ['RANK'] = str(i) | |
| os.environ['LOCAL_RANK'] = str(i) | |
| process = Process(target=run, kwargs=vars(args)) | |
| process.start() | |
| subprocesses.append(process) | |
| for process in subprocesses: | |
| process.join() | |
| else: | |
| run(**vars(args)) | |