Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import sys | |
| from functools import reduce | |
| from torch import nn | |
| import torch.distributed as dist | |
| def summary(model: nn.Module, file=sys.stdout): | |
| def repr(model): | |
| # We treat the extra repr like the sub-module, one item per line | |
| extra_lines = [] | |
| extra_repr = model.extra_repr() | |
| # empty string will be split into list [''] | |
| if extra_repr: | |
| extra_lines = extra_repr.split('\n') | |
| child_lines = [] | |
| total_params = 0 | |
| for key, module in model._modules.items(): | |
| mod_str, num_params = repr(module) | |
| mod_str = nn.modules.module._addindent(mod_str, 2) | |
| child_lines.append('(' + key + '): ' + mod_str) | |
| total_params += num_params | |
| lines = extra_lines + child_lines | |
| for name, p in model._parameters.items(): | |
| if hasattr(p, 'shape'): | |
| total_params += reduce(lambda x, y: x * y, p.shape) | |
| main_str = model._get_name() + '(' | |
| if lines: | |
| # simple one-liner info, which most builtin Modules will use | |
| if len(extra_lines) == 1 and not child_lines: | |
| main_str += extra_lines[0] | |
| else: | |
| main_str += '\n ' + '\n '.join(lines) + '\n' | |
| main_str += ')' | |
| if file is sys.stdout: | |
| main_str += ', \033[92m{:,}\033[0m params'.format(total_params) | |
| else: | |
| main_str += ', {:,} params'.format(total_params) | |
| return main_str, total_params | |
| string, count = repr(model) | |
| if file is not None: | |
| if isinstance(file, str): | |
| file = open(file, 'w') | |
| print(string, file=file) | |
| file.flush() | |
| return count | |
| def grad_norm(model: nn.Module): | |
| total_norm = 0 | |
| for p in model.parameters(): | |
| param_norm = p.grad.data.norm(2) | |
| total_norm += param_norm.item() ** 2 | |
| return total_norm ** 0.5 | |
| def distributed(): | |
| return dist.is_available() and dist.is_initialized() | |