Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os | |
| import sys | |
| from http.server import HTTPServer, SimpleHTTPRequestHandler | |
| from multiprocessing import Process | |
| import subprocess | |
| from transformers import RobertaForSequenceClassification, RobertaTokenizer | |
| import json | |
| import fire | |
| import torch | |
| from urllib.parse import urlparse, unquote | |
| model: RobertaForSequenceClassification = None | |
| tokenizer: RobertaTokenizer = None | |
| device: str = None | |
| def log(*args): | |
| print(f"[{os.environ.get('RANK', '')}]", *args, file=sys.stderr) | |
| class RequestHandler(SimpleHTTPRequestHandler): | |
| def do_GET(self): | |
| query = unquote(urlparse(self.path).query) | |
| if not query: | |
| self.begin_content('text/html') | |
| html = os.path.join(os.path.dirname(__file__), 'index.html') | |
| self.wfile.write(open(html).read().encode()) | |
| return | |
| self.begin_content('application/json;charset=UTF-8') | |
| tokens = tokenizer.encode(query) | |
| all_tokens = len(tokens) | |
| tokens = tokens[:tokenizer.max_len - 2] | |
| used_tokens = len(tokens) | |
| tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0) | |
| mask = torch.ones_like(tokens) | |
| with torch.no_grad(): | |
| logits = model(tokens.to(device), attention_mask=mask.to(device))[0] | |
| probs = logits.softmax(dim=-1) | |
| fake, real = probs.detach().cpu().flatten().numpy().tolist() | |
| self.wfile.write(json.dumps(dict( | |
| all_tokens=all_tokens, | |
| used_tokens=used_tokens, | |
| real_probability=real, | |
| fake_probability=fake | |
| )).encode()) | |
| def begin_content(self, content_type): | |
| self.send_response(200) | |
| self.send_header('Content-Type', content_type) | |
| self.send_header('Access-Control-Allow-Origin', '*') | |
| self.end_headers() | |
| def log_message(self, format, *args): | |
| log(format % args) | |
| def serve_forever(server, model, tokenizer, device): | |
| log('Process has started; loading the model ...') | |
| globals()['model'] = model.to(device) | |
| globals()['tokenizer'] = tokenizer | |
| globals()['device'] = device | |
| log('Ready to serve') | |
| server.serve_forever() | |
| def main(checkpoint, port=8080, device='cuda' if torch.cuda.is_available() else 'cpu'): | |
| if checkpoint.startswith('gs://'): | |
| print(f'Downloading {checkpoint}', file=sys.stderr) | |
| subprocess.check_output(['gsutil', 'cp', checkpoint, '.']) | |
| checkpoint = os.path.basename(checkpoint) | |
| assert os.path.isfile(checkpoint) | |
| print(f'Loading checkpoint from {checkpoint}') | |
| data = torch.load(checkpoint, map_location='cpu') | |
| model_name = 'roberta-large' if data['args']['large'] else 'roberta-base' | |
| model = RobertaForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
| model.load_state_dict(data['model_state_dict']) | |
| model.eval() | |
| print(f'Starting HTTP server on port {port}', file=sys.stderr) | |
| server = HTTPServer(('0.0.0.0', port), RequestHandler) | |
| # avoid calling CUDA API before forking; doing so in a subprocess is fine. | |
| num_workers = int(subprocess.check_output(['python', '-c', 'import torch; print(torch.cuda.device_count())'])) | |
| if num_workers <= 1: | |
| serve_forever(server, model, tokenizer, device) | |
| else: | |
| print(f'Launching {num_workers} worker processes...') | |
| subprocesses = [] | |
| for i in range(num_workers): | |
| os.environ['RANK'] = f'{i}' | |
| os.environ['CUDA_VISIBLE_DEVICES'] = f'{i}' | |
| process = Process(target=serve_forever, args=(server, model, tokenizer, device)) | |
| process.start() | |
| subprocesses.append(process) | |
| del os.environ['RANK'] | |
| del os.environ['CUDA_VISIBLE_DEVICES'] | |
| for process in subprocesses: | |
| process.join() | |
| if __name__ == '__main__': | |
| fire.Fire(main) | |