File size: 13,478 Bytes
0158942 803eeba 0158942 1a46192 0158942 1a46192 0158942 1a46192 0158942 1a46192 0158942 1a46192 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 8867144 18882ad 8867144 18882ad 0158942 18882ad 8867144 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 134a5b8 18882ad 134a5b8 0158942 18882ad 134a5b8 0158942 18882ad 0158942 18882ad 8867144 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 18882ad 0158942 134a5b8 18882ad 0158942 134a5b8 0158942 18882ad 0158942 18882ad 0158942 134a5b8 0158942 18882ad 0158942 1a46192 803eeba 1a46192 803eeba 0158942 1a46192 0158942 803eeba 0158942 1a46192 0158942 18882ad e06fbb5 0158942 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# -*- coding: utf-8 -*-
"""
Ultra-FineWeb Classifier - Hugging Face Space Demo
A lightweight fastText-based classifier for filtering high-quality web data.
"""
import os
import re
import unicodedata
from typing import Tuple
import gradio as gr
from huggingface_hub import hf_hub_download
# Lazy loading for heavy dependencies
_tokenizer = None
_fasttext_models = {}
MODEL_REPO = "openbmb/Ultra-FineWeb-classifier"
def get_tokenizer():
"""Lazy load tokenizer."""
global _tokenizer
if _tokenizer is None:
from transformers import AutoTokenizer
# Download tokenizer files from the model repo
tokenizer_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="local_tokenizer/tokenizer.json",
local_dir="./model_cache",
)
tokenizer_dir = os.path.dirname(tokenizer_path)
# Download other tokenizer files
for filename in [
"local_tokenizer/tokenizer_config.json",
"local_tokenizer/special_tokens_map.json",
]:
hf_hub_download(
repo_id=MODEL_REPO,
filename=filename,
local_dir="./model_cache",
)
_tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir)
return _tokenizer
def get_fasttext_model(language: str):
"""Lazy load fastText model for specific language."""
global _fasttext_models
if language not in _fasttext_models:
import fasttext
model_filename = f"classifiers/ultra_fineweb_{language}.bin"
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=model_filename,
local_dir="./model_cache",
)
_fasttext_models[language] = fasttext.load_model(model_path)
return _fasttext_models[language]
def fasttext_preprocess(content: str, tokenizer) -> str:
"""
Preprocess content for fastText inference.
Steps:
1. Remove multiple newlines
2. Lowercase
3. Remove diacritics
4. Word segmentation using tokenizer
5. Handle escape characters
"""
# 1. Remove multiple newlines
content = re.sub(r'\n{3,}', '\n\n', content)
# 2. Lowercase
content = content.lower()
# 3. Remove diacritics
content = ''.join(
c for c in unicodedata.normalize('NFKD', content)
if unicodedata.category(c) != 'Mn'
)
# 4. Word segmentation
token_ids = tokenizer.encode(content, add_special_tokens=False)
single_text_list = []
for token_id in token_ids:
curr_text = tokenizer.decode([token_id])
single_text_list.append(curr_text)
content = ' '.join(single_text_list)
# 5. Handle escape characters
content = re.sub(r'\n', '\\\\n', content)
content = re.sub(r'\r', '\\\\r', content)
content = re.sub(r'\t', '\\\\t', content)
content = re.sub(r' +', ' ', content)
content = content.strip()
return content
def fasttext_infer(norm_content: str, fasttext_model) -> Tuple[str, float]:
"""
Run fastText inference.
Returns:
Tuple of (label, score) where score is the probability of being high-quality.
"""
pred_label, pred_prob = fasttext_model.predict(norm_content)
pred_label = pred_label[0]
score = min(pred_prob.tolist()[0], 1.0)
# Convert to positive score (probability of being high-quality)
if pred_label == "__label__neg":
score = 1 - score
return pred_label, score
def classify_text(content: str, language: str) -> Tuple[str, str]:
"""
Main classification function.
Args:
content: Text to classify
language: Language code ("en" or "zh")
Returns:
Tuple of (pred_label, score_display)
"""
if not content or not content.strip():
return "N/A", "N/A"
try:
# Get tokenizer and model
tokenizer = get_tokenizer()
fasttext_model = get_fasttext_model(language)
# Preprocess
norm_content = fasttext_preprocess(content, tokenizer)
# Inference
pred_label, score = fasttext_infer(norm_content, fasttext_model)
score_display = f"{score:.6f}"
return pred_label, score_display
except Exception as e:
return "Error", str(e)
# Example texts
EXAMPLE_EN = """Machine learning is a subset of artificial intelligence that enables systems to learn and improve from experience without being explicitly programmed. It focuses on developing computer programs that can access data and use it to learn for themselves.
The process begins with observations or data, such as examples, direct experience, or instruction, in order to look for patterns in data and make better decisions in the future based on the examples that we provide."""
EXAMPLE_ZH = """机器学习是人工智能的一个子集,它使系统能够从经验中学习和改进,而无需显式编程。它专注于开发能够访问数据并使用数据自行学习的计算机程序。
这个过程从观察或数据开始,例如示例、直接经验或指令,以便在数据中寻找模式,并根据我们提供的示例在未来做出更好的决策。"""
# Custom CSS
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
:root {
--bg: #f5f7fb;
--card: #ffffff;
--text: #0f172a;
--muted: #6b7280;
--border: #e5e7eb;
--primary: #5b5ce2;
--primary-600: #4f46e5;
--shadow: 0 10px 30px rgba(15, 23, 42, 0.08);
}
.gradio-container {
font-family: 'Inter', system-ui, -apple-system, sans-serif !important;
background: var(--bg) !important;
min-height: 100vh;
padding: 16px !important;
--button-primary-background-fill: var(--primary);
--button-primary-background-fill-hover: var(--primary-600);
--button-primary-border-color: var(--primary);
--button-primary-border-color-hover: var(--primary-600);
--button-primary-text-color: #ffffff;
--button-primary-text-color-hover: #ffffff;
--button-primary-shadow: none;
--button-primary-shadow-hover: none;
--button-primary-shadow-active: none;
--button-secondary-background-fill: #ffffff;
--button-secondary-background-fill-hover: #f8fafc;
--button-secondary-border-color: #cbd5e1;
--button-secondary-border-color-hover: #94a3b8;
--button-secondary-text-color: #475569;
--button-secondary-text-color-hover: #0f172a;
--button-secondary-shadow: none;
--button-secondary-shadow-hover: none;
--button-secondary-shadow-active: none;
--checkbox-border-width: 1px;
--checkbox-border-color: #cbd5e1;
--checkbox-border-color-hover: #a5b4fc;
--checkbox-border-color-focus: #818cf8;
--checkbox-border-color-selected: var(--primary);
--checkbox-background-color: #ffffff;
--checkbox-background-color-hover: #eef2ff;
--checkbox-background-color-focus: #e0e7ff;
--checkbox-background-color-selected: var(--primary);
--checkbox-shadow: none;
}
.main-title {
color: var(--primary) !important;
font-weight: 700 !important;
font-size: 2.2rem !important;
text-align: center !important;
margin-bottom: 0.25rem !important;
letter-spacing: -0.01em !important;
}
.subtitle {
text-align: center !important;
color: var(--muted) !important;
font-size: 1rem !important;
margin-bottom: 2rem !important;
font-weight: 400 !important;
}
.gr-box {
border-radius: 16px !important;
border: 1px solid var(--border) !important;
background: var(--card) !important;
box-shadow: var(--shadow) !important;
}
.section-header {
color: var(--text) !important;
font-weight: 600 !important;
font-size: 1rem !important;
line-height: 1.1 !important;
margin-bottom: 0.4rem !important;
}
.gr-input, .gr-textarea, .gr-textbox {
background: #f9fafb !important;
border: 1px solid var(--border) !important;
border-radius: 10px !important;
color: var(--text) !important;
font-size: 0.95rem !important;
}
.gr-input:focus, .gr-textarea:focus, .gr-textbox:focus {
border-color: #c7d2fe !important;
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.15) !important;
}
.gr-button-primary {
background: var(--primary) !important;
border: none !important;
font-weight: 600 !important;
font-size: 1rem !important;
padding: 12px 20px !important;
border-radius: 10px !important;
color: #ffffff !important;
transition: background 0.2s ease !important;
}
.gr-button-primary:hover {
background: var(--primary-600) !important;
}
button.primary {
background: var(--primary) !important;
border-color: var(--primary) !important;
}
button.primary:hover {
background: var(--primary-600) !important;
border-color: var(--primary-600) !important;
}
.gr-button-secondary {
background: #ffffff !important;
border: 1px solid #cbd5e1 !important;
color: #475569 !important;
font-weight: 500 !important;
border-radius: 10px !important;
}
.example-buttons {
display: flex !important;
gap: 12px !important;
}
.example-buttons > * {
flex: 1 1 0 !important;
}
.example-btn button {
width: 100% !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
background: #ffffff !important;
border: 2px solid #cbd5e1 !important;
color: #334155 !important;
font-weight: 600 !important;
border-radius: 10px !important;
padding: 10px 14px !important;
box-shadow: 0 1px 2px rgba(15, 23, 42, 0.06) !important;
}
.example-btn button:hover {
background: #f8fafc !important;
border-color: #94a3b8 !important;
}
label {
color: var(--muted) !important;
font-weight: 500 !important;
}
input[type="radio"] {
accent-color: var(--primary) !important;
}
.gr-markdown {
color: var(--text) !important;
}
.gr-markdown strong {
color: var(--primary-600) !important;
}
.app-footer {
text-align: center;
margin-top: 2rem;
padding: 1.25rem;
color: var(--muted);
font-size: 0.9rem;
border-top: 1px solid var(--border);
}
.app-footer a {
color: var(--primary-600);
text-decoration: none;
}
/* Loading logo tint (Gradio/HF) */
gradio-app img[src*="logo"],
gradio-app img[src*="gradio"],
gradio-app img[alt*="logo" i],
gradio-app svg[aria-label*="logo" i],
gradio-app svg[role="img"] {
filter: hue-rotate(235deg) saturate(1.4) brightness(0.95);
}
footer {
display: none !important;
}
"""
# Build Gradio interface
with gr.Blocks(title="UltraFineWeb-L2-Selector", css=custom_css) as demo:
gr.HTML('<h1 class="main-title">UltraFineWeb-L2-Selector</h1>')
gr.HTML('<p class="subtitle">Lightweight fastText-based classifier for high-quality web data filtering</p>')
with gr.Row():
with gr.Column(scale=1):
gr.HTML('<div class="section-header">Input</div>')
language = gr.Radio(
choices=[("English", "en"), ("中文", "zh")],
value="en",
label="Language / 语言",
info="Select the language of your content",
)
content_input = gr.Textbox(
label="Content to Classify",
placeholder="Paste your text content here...",
lines=12,
max_lines=20,
value=EXAMPLE_EN,
)
with gr.Row():
classify_btn = gr.Button("Classify", variant="primary", size="lg")
clear_btn = gr.Button("Clear", variant="secondary", size="lg")
# Example texts section removed per request.
with gr.Column(scale=1):
gr.HTML('<div class="section-header">Output</div>')
label_output = gr.Textbox(
label="Predicted Label",
interactive=False,
)
score_output = gr.Textbox(
label="Score",
interactive=False,
)
# Event handlers
classify_btn.click(
fn=classify_text,
inputs=[content_input, language],
outputs=[label_output, score_output],
)
def clear_all():
return "", "en", "", ""
clear_btn.click(
fn=clear_all,
outputs=[content_input, language, label_output, score_output],
)
# Auto-update example when language changes
def update_example_on_language_change(lang):
if lang == "zh":
return EXAMPLE_ZH
return EXAMPLE_EN
language.change(
fn=update_example_on_language_change,
inputs=[language],
outputs=[content_input],
)
# Footer
gr.HTML("""
<div class="app-footer">
<p><strong>Ultra-FineWeb Classifier</strong> - Part of the <a href="https://huggingface.co/openbmb/Ultra-FineWeb-classifier" target="_blank">Ultra-FineWeb</a> Project</p>
<p>Based on fastText for efficient web data quality classification. Supports English and Chinese.</p>
<p><a href="https://arxiv.org/abs/2505.05427" target="_blank">Technical Report</a> | <a href="https://huggingface.co/datasets/openbmb/Ultra-FineWeb" target="_blank">Dataset</a></p>
</div>
""")
if __name__ == "__main__":
demo.launch()
|