Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| import spaces | |
| from typing import Optional, Tuple | |
| from pathlib import Path | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| if os.environ.get("HF_REPO_ID", "").strip() == "": | |
| os.environ["HF_REPO_ID"] = "openbmb/VoxCPM1.5" | |
| # Global model cache for ZeroGPU | |
| _asr_model = None | |
| _voxcpm_model = None | |
| _default_local_model_dir = "./models/VoxCPM1.5" | |
| def _resolve_model_dir() -> str: | |
| """ | |
| Resolve model directory: | |
| 1) Use local checkpoint directory if exists | |
| 2) If HF_REPO_ID env is set, download into models/{repo} | |
| 3) Fallback to 'models' | |
| """ | |
| if os.path.isdir(_default_local_model_dir): | |
| return _default_local_model_dir | |
| repo_id = os.environ.get("HF_REPO_ID", "").strip() | |
| if len(repo_id) > 0: | |
| target_dir = os.path.join("models", repo_id.replace("/", "__")) | |
| if not os.path.isdir(target_dir): | |
| try: | |
| from huggingface_hub import snapshot_download | |
| os.makedirs(target_dir, exist_ok=True) | |
| print(f"Downloading model from HF repo '{repo_id}' to '{target_dir}' ...") | |
| snapshot_download(repo_id=repo_id, local_dir=target_dir, local_dir_use_symlinks=False) | |
| except Exception as e: | |
| print(f"Warning: HF download failed: {e}. Falling back to 'models'.") | |
| return "models" | |
| return target_dir | |
| return "models" | |
| def get_asr_model(): | |
| """Lazy load ASR model.""" | |
| global _asr_model | |
| if _asr_model is None: | |
| from funasr import AutoModel | |
| print("Loading ASR model...") | |
| _asr_model = AutoModel( | |
| model="iic/SenseVoiceSmall", | |
| disable_update=True, | |
| log_level='INFO', | |
| device="cuda:0", | |
| ) | |
| print("ASR model loaded.") | |
| return _asr_model | |
| def get_voxcpm_model(): | |
| """Lazy load VoxCPM model.""" | |
| global _voxcpm_model | |
| if _voxcpm_model is None: | |
| import voxcpm | |
| print("Loading VoxCPM model...") | |
| model_dir = _resolve_model_dir() | |
| print(f"Using model dir: {model_dir}") | |
| _voxcpm_model = voxcpm.VoxCPM(voxcpm_model_path=model_dir) | |
| print("VoxCPM model loaded.") | |
| return _voxcpm_model | |
| def prompt_wav_recognition(prompt_wav: Optional[str]) -> str: | |
| """Use ASR to recognize prompt audio text.""" | |
| if prompt_wav is None or not prompt_wav.strip(): | |
| return "" | |
| asr_model = get_asr_model() | |
| res = asr_model.generate(input=prompt_wav, language="auto", use_itn=True) | |
| text = res[0]["text"].split('|>')[-1] | |
| return text | |
| def generate_tts_audio( | |
| text_input: str, | |
| prompt_wav_path_input: Optional[str] = None, | |
| prompt_text_input: Optional[str] = None, | |
| cfg_value_input: float = 2.0, | |
| inference_timesteps_input: int = 10, | |
| do_normalize: bool = True, | |
| denoise: bool = True, | |
| ) -> Tuple[int, np.ndarray]: | |
| """ | |
| Generate speech from text using VoxCPM; optional reference audio for voice style guidance. | |
| Returns (sample_rate, waveform_numpy) | |
| """ | |
| voxcpm_model = get_voxcpm_model() | |
| text = (text_input or "").strip() | |
| if len(text) == 0: | |
| raise ValueError("Please input text to synthesize.") | |
| prompt_wav_path = prompt_wav_path_input if prompt_wav_path_input else None | |
| prompt_text = prompt_text_input if prompt_text_input else None | |
| print(f"Generating audio for text: '{text[:60]}...'") | |
| wav = voxcpm_model.generate( | |
| text=text, | |
| prompt_text=prompt_text, | |
| prompt_wav_path=prompt_wav_path, | |
| cfg_value=float(cfg_value_input), | |
| inference_timesteps=int(inference_timesteps_input), | |
| normalize=do_normalize, | |
| denoise=denoise, | |
| ) | |
| return (voxcpm_model.tts_model.sample_rate, wav) | |
| # ---------- UI Builders ---------- | |
| def create_demo_interface(): | |
| """Build the Gradio UI for VoxCPM demo.""" | |
| # static assets (logo path) | |
| try: | |
| gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"]) | |
| except Exception: | |
| pass | |
| with gr.Blocks( | |
| theme=gr.themes.Soft( | |
| primary_hue="blue", | |
| secondary_hue="gray", | |
| neutral_hue="slate", | |
| font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"] | |
| ), | |
| css=""" | |
| .logo-container { | |
| text-align: center; | |
| margin: 0.5rem 0 1rem 0; | |
| } | |
| .logo-container img { | |
| height: 80px; | |
| width: auto; | |
| max-width: 200px; | |
| display: inline-block; | |
| } | |
| /* Bold accordion labels */ | |
| #acc_quick details > summary, | |
| #acc_tips details > summary { | |
| font-weight: 600 !important; | |
| font-size: 1.1em !important; | |
| } | |
| /* Bold labels for specific checkboxes */ | |
| #chk_denoise label, | |
| #chk_denoise span, | |
| #chk_normalize label, | |
| #chk_normalize span { | |
| font-weight: 600; | |
| } | |
| """ | |
| ) as interface: | |
| # Header logo | |
| gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/voxcpm-logo.png" alt="VoxCPM Logo"></div>') | |
| # Quick Start | |
| with gr.Accordion("📋 Quick Start Guide |快速入门", open=False, elem_id="acc_quick"): | |
| gr.Markdown(""" | |
| ### How to Use |使用说明 | |
| 1. **(Optional) Provide a Voice Prompt** - Upload or record an audio clip to provide the desired voice characteristics for synthesis. | |
| **(可选)提供参考声音** - 上传或录制一段音频,为声音合成提供音色、语调和情感等个性化特征 | |
| 2. **(Optional) Enter prompt text** - If you provided a voice prompt, enter the corresponding transcript here (auto-recognition available). | |
| **(可选项)输入参考文本** - 如果提供了参考语音,请输入其对应的文本内容(支持自动识别)。 | |
| 3. **Enter target text** - Type the text you want the model to speak. | |
| **输入目标文本** - 输入您希望模型朗读的文字内容。 | |
| 4. **Generate Speech** - Click the "Generate" button to create your audio. | |
| **生成语音** - 点击"生成"按钮,即可为您创造出音频。 | |
| """) | |
| # Pro Tips | |
| with gr.Accordion("💡 Pro Tips |使用建议", open=False, elem_id="acc_tips"): | |
| gr.Markdown(""" | |
| ### Prompt Speech Enhancement|参考语音降噪 | |
| - **Enable** to remove background noise for a clean voice, with an external ZipEnhancer component. However, this will limit the audio sampling rate to 16kHz, restricting the cloning quality ceiling. | |
| **启用**:通过 ZipEnhancer 组件消除背景噪音,但会将音频采样率限制在16kHz,限制克隆上限。 | |
| - **Disable** to preserve the original audio's all information, including background atmosphere, and support audio cloning up to 44.1kHz sampling rate. | |
| **禁用**:保留原始音频的全部信息,包括背景环境声,最高支持44.1kHz的音频复刻。 | |
| ### Text Normalization|文本正则化 | |
| - **Enable** to process general text with an external WeTextProcessing component. | |
| **启用**:使用 WeTextProcessing 组件,可支持常见文本的正则化处理。 | |
| - **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input (For Chinese, phonemes are converted using pinyin, {ni3}{hao3}; For English, phonemes are converted using CMUDict, {HH AH0 L OW1}), try it! | |
| **禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如中文转拼音:{ni3}{hao3};英文转CMUDict:{HH AH0 L OW1})和公式符号合成,尝试一下! | |
| ### CFG Value|CFG 值 | |
| - **Lower CFG** if the voice prompt sounds strained or expressive, or instability occurs with long text input. | |
| **调低**:如果提示语音听起来不自然或过于夸张,或者长文本输入出现稳定性问题。 | |
| - **Higher CFG** for better adherence to the prompt speech style or input text, or instability occurs with too short text input. | |
| **调高**:为更好地贴合提示音频的风格或输入文本, 或者极短文本输入出现稳定性问题。 | |
| ### Inference Timesteps|推理时间步 | |
| - **Lower** for faster synthesis speed. | |
| **调低**:合成速度更快。 | |
| - **Higher** for better synthesis quality. | |
| **调高**:合成质量更佳。 | |
| """) | |
| # Main controls | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_wav = gr.Audio( | |
| sources=["upload", 'microphone'], | |
| type="filepath", | |
| label="Prompt Speech (Optional, or let VoxCPM improvise)", | |
| value="./examples/example.wav", | |
| ) | |
| DoDenoisePromptAudio = gr.Checkbox( | |
| value=False, | |
| label="Prompt Speech Enhancement", | |
| elem_id="chk_denoise", | |
| info="We use ZipEnhancer model to denoise the prompt audio." | |
| ) | |
| with gr.Row(): | |
| prompt_text = gr.Textbox( | |
| value="Just by listening a few minutes a day, you'll be able to eliminate negative thoughts by conditioning your mind to be more positive.", | |
| label="Prompt Text", | |
| placeholder="Please enter the prompt text. Automatic recognition is supported, and you can correct the results yourself..." | |
| ) | |
| run_btn = gr.Button("Generate Speech", variant="primary") | |
| with gr.Column(): | |
| cfg_value = gr.Slider( | |
| minimum=1.0, | |
| maximum=3.0, | |
| value=2.0, | |
| step=0.1, | |
| label="CFG Value (Guidance Scale)", | |
| info="Higher values increase adherence to prompt, lower values allow more creativity" | |
| ) | |
| inference_timesteps = gr.Slider( | |
| minimum=4, | |
| maximum=30, | |
| value=10, | |
| step=1, | |
| label="Inference Timesteps", | |
| info="Number of inference timesteps for generation (higher values may improve quality but slower)" | |
| ) | |
| with gr.Row(): | |
| text = gr.Textbox( | |
| value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.", | |
| label="Target Text", | |
| ) | |
| with gr.Row(): | |
| DoNormalizeText = gr.Checkbox( | |
| value=False, | |
| label="Text Normalization", | |
| elem_id="chk_normalize", | |
| info="We use wetext library to normalize the input text." | |
| ) | |
| audio_output = gr.Audio(label="Output Audio") | |
| # Wiring | |
| run_btn.click( | |
| fn=generate_tts_audio, | |
| inputs=[text, prompt_wav, prompt_text, cfg_value, inference_timesteps, DoNormalizeText, DoDenoisePromptAudio], | |
| outputs=[audio_output], | |
| show_progress=True, | |
| api_name="generate", | |
| ) | |
| prompt_wav.change(fn=prompt_wav_recognition, inputs=[prompt_wav], outputs=[prompt_text]) | |
| return interface | |
| def run_demo(server_name: str = "0.0.0.0", server_port: int = 7860, show_error: bool = True): | |
| interface = create_demo_interface() | |
| # Recommended to enable queue on Spaces for better throughput | |
| interface.queue(max_size=10).launch(server_name=server_name, server_port=server_port, show_error=show_error) | |
| if __name__ == "__main__": | |
| run_demo() |