VoxCPM-Demo / app.py
刘鑫
set zero gpu inference
98637c8
raw
history blame
12.1 kB
import os
import numpy as np
import torch
import gradio as gr
import spaces
from typing import Optional, Tuple
from pathlib import Path
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if os.environ.get("HF_REPO_ID", "").strip() == "":
os.environ["HF_REPO_ID"] = "openbmb/VoxCPM1.5"
# Global model cache for ZeroGPU
_asr_model = None
_voxcpm_model = None
_default_local_model_dir = "./models/VoxCPM1.5"
def _resolve_model_dir() -> str:
"""
Resolve model directory:
1) Use local checkpoint directory if exists
2) If HF_REPO_ID env is set, download into models/{repo}
3) Fallback to 'models'
"""
if os.path.isdir(_default_local_model_dir):
return _default_local_model_dir
repo_id = os.environ.get("HF_REPO_ID", "").strip()
if len(repo_id) > 0:
target_dir = os.path.join("models", repo_id.replace("/", "__"))
if not os.path.isdir(target_dir):
try:
from huggingface_hub import snapshot_download
os.makedirs(target_dir, exist_ok=True)
print(f"Downloading model from HF repo '{repo_id}' to '{target_dir}' ...")
snapshot_download(repo_id=repo_id, local_dir=target_dir, local_dir_use_symlinks=False)
except Exception as e:
print(f"Warning: HF download failed: {e}. Falling back to 'models'.")
return "models"
return target_dir
return "models"
def get_asr_model():
"""Lazy load ASR model."""
global _asr_model
if _asr_model is None:
from funasr import AutoModel
print("Loading ASR model...")
_asr_model = AutoModel(
model="iic/SenseVoiceSmall",
disable_update=True,
log_level='INFO',
device="cuda:0",
)
print("ASR model loaded.")
return _asr_model
def get_voxcpm_model():
"""Lazy load VoxCPM model."""
global _voxcpm_model
if _voxcpm_model is None:
import voxcpm
print("Loading VoxCPM model...")
model_dir = _resolve_model_dir()
print(f"Using model dir: {model_dir}")
_voxcpm_model = voxcpm.VoxCPM(voxcpm_model_path=model_dir)
print("VoxCPM model loaded.")
return _voxcpm_model
@spaces.GPU
def prompt_wav_recognition(prompt_wav: Optional[str]) -> str:
"""Use ASR to recognize prompt audio text."""
if prompt_wav is None or not prompt_wav.strip():
return ""
asr_model = get_asr_model()
res = asr_model.generate(input=prompt_wav, language="auto", use_itn=True)
text = res[0]["text"].split('|>')[-1]
return text
@spaces.GPU(duration=120)
def generate_tts_audio(
text_input: str,
prompt_wav_path_input: Optional[str] = None,
prompt_text_input: Optional[str] = None,
cfg_value_input: float = 2.0,
inference_timesteps_input: int = 10,
do_normalize: bool = True,
denoise: bool = True,
) -> Tuple[int, np.ndarray]:
"""
Generate speech from text using VoxCPM; optional reference audio for voice style guidance.
Returns (sample_rate, waveform_numpy)
"""
voxcpm_model = get_voxcpm_model()
text = (text_input or "").strip()
if len(text) == 0:
raise ValueError("Please input text to synthesize.")
prompt_wav_path = prompt_wav_path_input if prompt_wav_path_input else None
prompt_text = prompt_text_input if prompt_text_input else None
print(f"Generating audio for text: '{text[:60]}...'")
wav = voxcpm_model.generate(
text=text,
prompt_text=prompt_text,
prompt_wav_path=prompt_wav_path,
cfg_value=float(cfg_value_input),
inference_timesteps=int(inference_timesteps_input),
normalize=do_normalize,
denoise=denoise,
)
return (voxcpm_model.tts_model.sample_rate, wav)
# ---------- UI Builders ----------
def create_demo_interface():
"""Build the Gradio UI for VoxCPM demo."""
# static assets (logo path)
try:
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
except Exception:
pass
with gr.Blocks(
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"]
),
css="""
.logo-container {
text-align: center;
margin: 0.5rem 0 1rem 0;
}
.logo-container img {
height: 80px;
width: auto;
max-width: 200px;
display: inline-block;
}
/* Bold accordion labels */
#acc_quick details > summary,
#acc_tips details > summary {
font-weight: 600 !important;
font-size: 1.1em !important;
}
/* Bold labels for specific checkboxes */
#chk_denoise label,
#chk_denoise span,
#chk_normalize label,
#chk_normalize span {
font-weight: 600;
}
"""
) as interface:
# Header logo
gr.HTML('<div class="logo-container"><img src="/gradio_api/file=assets/voxcpm-logo.png" alt="VoxCPM Logo"></div>')
# Quick Start
with gr.Accordion("📋 Quick Start Guide |快速入门", open=False, elem_id="acc_quick"):
gr.Markdown("""
### How to Use |使用说明
1. **(Optional) Provide a Voice Prompt** - Upload or record an audio clip to provide the desired voice characteristics for synthesis.
**(可选)提供参考声音** - 上传或录制一段音频,为声音合成提供音色、语调和情感等个性化特征
2. **(Optional) Enter prompt text** - If you provided a voice prompt, enter the corresponding transcript here (auto-recognition available).
**(可选项)输入参考文本** - 如果提供了参考语音,请输入其对应的文本内容(支持自动识别)。
3. **Enter target text** - Type the text you want the model to speak.
**输入目标文本** - 输入您希望模型朗读的文字内容。
4. **Generate Speech** - Click the "Generate" button to create your audio.
**生成语音** - 点击"生成"按钮,即可为您创造出音频。
""")
# Pro Tips
with gr.Accordion("💡 Pro Tips |使用建议", open=False, elem_id="acc_tips"):
gr.Markdown("""
### Prompt Speech Enhancement|参考语音降噪
- **Enable** to remove background noise for a clean voice, with an external ZipEnhancer component. However, this will limit the audio sampling rate to 16kHz, restricting the cloning quality ceiling.
**启用**:通过 ZipEnhancer 组件消除背景噪音,但会将音频采样率限制在16kHz,限制克隆上限。
- **Disable** to preserve the original audio's all information, including background atmosphere, and support audio cloning up to 44.1kHz sampling rate.
**禁用**:保留原始音频的全部信息,包括背景环境声,最高支持44.1kHz的音频复刻。
### Text Normalization|文本正则化
- **Enable** to process general text with an external WeTextProcessing component.
**启用**:使用 WeTextProcessing 组件,可支持常见文本的正则化处理。
- **Disable** to use VoxCPM's native text understanding ability. For example, it supports phonemes input (For Chinese, phonemes are converted using pinyin, {ni3}{hao3}; For English, phonemes are converted using CMUDict, {HH AH0 L OW1}), try it!
**禁用**:将使用 VoxCPM 内置的文本理解能力。如,支持音素输入(如中文转拼音:{ni3}{hao3};英文转CMUDict:{HH AH0 L OW1})和公式符号合成,尝试一下!
### CFG Value|CFG 值
- **Lower CFG** if the voice prompt sounds strained or expressive, or instability occurs with long text input.
**调低**:如果提示语音听起来不自然或过于夸张,或者长文本输入出现稳定性问题。
- **Higher CFG** for better adherence to the prompt speech style or input text, or instability occurs with too short text input.
**调高**:为更好地贴合提示音频的风格或输入文本, 或者极短文本输入出现稳定性问题。
### Inference Timesteps|推理时间步
- **Lower** for faster synthesis speed.
**调低**:合成速度更快。
- **Higher** for better synthesis quality.
**调高**:合成质量更佳。
""")
# Main controls
with gr.Row():
with gr.Column():
prompt_wav = gr.Audio(
sources=["upload", 'microphone'],
type="filepath",
label="Prompt Speech (Optional, or let VoxCPM improvise)",
value="./examples/example.wav",
)
DoDenoisePromptAudio = gr.Checkbox(
value=False,
label="Prompt Speech Enhancement",
elem_id="chk_denoise",
info="We use ZipEnhancer model to denoise the prompt audio."
)
with gr.Row():
prompt_text = gr.Textbox(
value="Just by listening a few minutes a day, you'll be able to eliminate negative thoughts by conditioning your mind to be more positive.",
label="Prompt Text",
placeholder="Please enter the prompt text. Automatic recognition is supported, and you can correct the results yourself..."
)
run_btn = gr.Button("Generate Speech", variant="primary")
with gr.Column():
cfg_value = gr.Slider(
minimum=1.0,
maximum=3.0,
value=2.0,
step=0.1,
label="CFG Value (Guidance Scale)",
info="Higher values increase adherence to prompt, lower values allow more creativity"
)
inference_timesteps = gr.Slider(
minimum=4,
maximum=30,
value=10,
step=1,
label="Inference Timesteps",
info="Number of inference timesteps for generation (higher values may improve quality but slower)"
)
with gr.Row():
text = gr.Textbox(
value="VoxCPM is an innovative end-to-end TTS model from ModelBest, designed to generate highly realistic speech.",
label="Target Text",
)
with gr.Row():
DoNormalizeText = gr.Checkbox(
value=False,
label="Text Normalization",
elem_id="chk_normalize",
info="We use wetext library to normalize the input text."
)
audio_output = gr.Audio(label="Output Audio")
# Wiring
run_btn.click(
fn=generate_tts_audio,
inputs=[text, prompt_wav, prompt_text, cfg_value, inference_timesteps, DoNormalizeText, DoDenoisePromptAudio],
outputs=[audio_output],
show_progress=True,
api_name="generate",
)
prompt_wav.change(fn=prompt_wav_recognition, inputs=[prompt_wav], outputs=[prompt_text])
return interface
def run_demo(server_name: str = "0.0.0.0", server_port: int = 7860, show_error: bool = True):
interface = create_demo_interface()
# Recommended to enable queue on Spaces for better throughput
interface.queue(max_size=10).launch(server_name=server_name, server_port=server_port, show_error=show_error)
if __name__ == "__main__":
run_demo()