Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,569 Bytes
0373e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
os.environ["GRADIO_TEMP_DIR"] = "./tmp"
import time
import torch
import spaces
import tempfile
import sys
import gradio as gr
from io import StringIO
from contextlib import contextmanager
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
AutoModel,
AutoTokenizer,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer
)
from huggingface_hub import snapshot_download
from qwen_vl_utils import process_vision_info
from otsl_utils import convert_otsl_to_html
# == download weights ==
# model_dir = snapshot_download('opendatalab/TRivia-3B', local_dir='./models/TRivia-3B')
# == select device ==
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load TRivia-3B
try:
MODEL_ID = "opendatalab/TRivia-3B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto"
).eval()
print("✓ TRivia-3B loaded")
except Exception as e:
model = None
processor = None
@spaces.GPU
def recognize_image(image: Image.Image,
max_new_tokens: int, temperature: float):
if image is None:
yield "Please upload an image.", "Please upload an image."
return
try:
# Prepare messages in chat format
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "You are an AI specialized in recognizing and extracting table from images. Your mission is to analyze the table image and generate the result in OTSL format using specified tags. Output only the results without any other words and explanation."},
{"type": "image"},
]
}]
prompt_full = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True
).to(device)
streamer = TextIteratorStreamer(
processor.tokenizer if hasattr(processor, 'tokenizer') else processor,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"repetition_penalty": 1.05,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream the results
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
html_text = convert_otsl_to_html(buffer)
time.sleep(0.01)
yield buffer, html_text, html_text
# Ensure thread completes
thread.join()
except Exception as e:
error_msg = f"Error during generation: {str(e)}"
print(f"Full error: {e}")
import traceback
traceback.print_exc()
yield error_msg, error_msg, error_msg
def gradio_reset():
return gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None)
if __name__ == "__main__":
with open("header.html", "r") as file:
header = file.read()
with gr.Blocks() as demo:
gr.HTML(header)
with gr.Row():
with gr.Column():
input_img = gr.Image(label=" ", interactive=True)
with gr.Row():
clear = gr.Button(value="Clear")
predict = gr.Button(value="Table Recognition", interactive=True, variant="primary")
with gr.Accordion("Advanced Settings", open=False):
max_tokens = gr.Slider(
minimum=1,
maximum=8192,
value=4096,
step=1,
label="Max New Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.1,
step=0.1,
label="Temperature"
)
with gr.Accordion("Examples:"):
example_root = os.path.join(os.path.dirname(__file__), "assets", "example")
gr.Examples(
examples=[os.path.join(example_root, _) for _ in os.listdir(example_root) if
_.endswith("png")],
inputs=[input_img],
)
with gr.Column():
rendered_html = gr.Markdown(label="Rendered HTML:", show_label=True)
output_html = gr.Textbox(label="Converted HTML:", interactive=False)
pred_otsl = gr.Textbox(label="Predicted OTSL:", interactive=False)
clear.click(gradio_reset, inputs=None, outputs=[input_img, pred_otsl, output_html, rendered_html])
predict.click(recognize_image, inputs=[input_img, max_tokens, temperature], outputs=[pred_otsl, output_html, rendered_html])
demo.launch(server_name="0.0.0.0", server_port=10041, debug=True)
|