Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import requests
|
| 4 |
+
from prophet import Prophet
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
logging.basicConfig(level=logging.INFO)
|
| 8 |
+
|
| 9 |
+
########################################
|
| 10 |
+
# OKX endpoints & utility
|
| 11 |
+
########################################
|
| 12 |
+
|
| 13 |
+
# 1) GET symbols (spot tickers)
|
| 14 |
+
OKX_TICKERS_ENDPOINT = "https://www.okx.com/api/v5/market/tickers?instType=SPOT"
|
| 15 |
+
|
| 16 |
+
# 2) GET historical candles for a symbol
|
| 17 |
+
# e.g. https://www.okx.com/api/v5/market/candles?instId=BTC-USDT&bar=1H&limit=100
|
| 18 |
+
OKX_CANDLE_ENDPOINT = "https://www.okx.com/api/v5/market/candles"
|
| 19 |
+
|
| 20 |
+
# You can extend or modify this to match more of OKX's `bar` intervals
|
| 21 |
+
TIMEFRAME_MAPPING = {
|
| 22 |
+
"1m": "1m",
|
| 23 |
+
"5m": "5m",
|
| 24 |
+
"15m": "15m",
|
| 25 |
+
"30m": "30m",
|
| 26 |
+
"1h": "1H",
|
| 27 |
+
"2h": "2H",
|
| 28 |
+
"4h": "4H",
|
| 29 |
+
"6h": "6H",
|
| 30 |
+
"12h": "12H",
|
| 31 |
+
"1d": "1D",
|
| 32 |
+
"1w": "1W", # OKX supports 1W, etc.
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
def fetch_okx_symbols():
|
| 36 |
+
"""
|
| 37 |
+
Fetch the list of symbols (instId) from OKX Spot tickers.
|
| 38 |
+
"""
|
| 39 |
+
logging.info("Fetching symbols from OKX Spot tickers...")
|
| 40 |
+
try:
|
| 41 |
+
resp = requests.get(OKX_TICKERS_ENDPOINT, timeout=30)
|
| 42 |
+
resp.raise_for_status()
|
| 43 |
+
json_data = resp.json()
|
| 44 |
+
|
| 45 |
+
if json_data.get("code") != "0":
|
| 46 |
+
logging.error(f"Non-zero code returned: {json_data}")
|
| 47 |
+
return ["Error: Could not fetch OKX symbols"]
|
| 48 |
+
|
| 49 |
+
data = json_data.get("data", [])
|
| 50 |
+
# Example item in data: { "instId": "ETH-USDT", "instType": "SPOT", ... }
|
| 51 |
+
symbols = [item["instId"] for item in data if item.get("instType") == "SPOT"]
|
| 52 |
+
if not symbols:
|
| 53 |
+
logging.warning("No spot symbols found.")
|
| 54 |
+
return ["Error: No spot symbols found."]
|
| 55 |
+
|
| 56 |
+
logging.info(f"Fetched {len(symbols)} OKX spot symbols.")
|
| 57 |
+
return sorted(symbols)
|
| 58 |
+
|
| 59 |
+
except Exception as e:
|
| 60 |
+
logging.error(f"Error fetching OKX symbols: {e}")
|
| 61 |
+
return [f"Error: {str(e)}"]
|
| 62 |
+
|
| 63 |
+
def fetch_okx_candles(symbol, timeframe="1H", limit=100):
|
| 64 |
+
"""
|
| 65 |
+
Fetch historical candle data for a symbol from OKX.
|
| 66 |
+
timeframe must match OKX's `bar` (e.g. "1H", "4H", "1D").
|
| 67 |
+
Returns (DataFrame, error_message) or (DataFrame, "").
|
| 68 |
+
"""
|
| 69 |
+
logging.info(f"Fetching {limit} candles for {symbol} @ {timeframe} from OKX...")
|
| 70 |
+
params = {
|
| 71 |
+
"instId": symbol,
|
| 72 |
+
"bar": timeframe,
|
| 73 |
+
"limit": limit
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
resp = requests.get(OKX_CANDLE_ENDPOINT, params=params, timeout=30)
|
| 78 |
+
resp.raise_for_status()
|
| 79 |
+
json_data = resp.json()
|
| 80 |
+
|
| 81 |
+
if json_data.get("code") != "0":
|
| 82 |
+
msg = f"OKX returned code={json_data.get('code')}, msg={json_data.get('msg')}"
|
| 83 |
+
logging.error(msg)
|
| 84 |
+
return pd.DataFrame(), msg
|
| 85 |
+
|
| 86 |
+
# Data looks like: ["1673684400000", "20923.7", "20952.5", "20881.3", "20945.8", "927.879", "19412314.5671"]
|
| 87 |
+
# Let's parse columns: [0] ts, [1] open, [2] high, [3] low, [4] close, [5] volume, [6] ??? quoteVol
|
| 88 |
+
items = json_data.get("data", [])
|
| 89 |
+
if not items:
|
| 90 |
+
warning_msg = f"No candle data returned for {symbol}."
|
| 91 |
+
logging.warning(warning_msg)
|
| 92 |
+
return pd.DataFrame(), warning_msg
|
| 93 |
+
|
| 94 |
+
# items is a list of lists, each is a candle. Reverse if needed to go old->new:
|
| 95 |
+
# OKX returns the most recent data first, so we invert it for chronological order
|
| 96 |
+
items.reverse()
|
| 97 |
+
|
| 98 |
+
df = pd.DataFrame(items, columns=[
|
| 99 |
+
"timestamp", "open", "high", "low", "close", "volume", "quoteVolume"
|
| 100 |
+
])
|
| 101 |
+
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="ms")
|
| 102 |
+
df[["open", "high", "low", "close", "volume", "quoteVolume"]] = df[
|
| 103 |
+
["open", "high", "low", "close", "volume", "quoteVolume"]
|
| 104 |
+
].astype(float)
|
| 105 |
+
|
| 106 |
+
logging.info(f"Fetched {len(df)} rows for {symbol}.")
|
| 107 |
+
return df, ""
|
| 108 |
+
except Exception as e:
|
| 109 |
+
err_msg = f"Error fetching candles for {symbol}: {e}"
|
| 110 |
+
logging.error(err_msg)
|
| 111 |
+
return pd.DataFrame(), err_msg
|
| 112 |
+
|
| 113 |
+
########################################
|
| 114 |
+
# Prophet pipeline
|
| 115 |
+
########################################
|
| 116 |
+
|
| 117 |
+
def prepare_data_for_prophet(df):
|
| 118 |
+
"""
|
| 119 |
+
Convert the DataFrame to a Prophet-compatible format.
|
| 120 |
+
"""
|
| 121 |
+
if df.empty:
|
| 122 |
+
logging.warning("Empty DataFrame, cannot prepare data for Prophet.")
|
| 123 |
+
return pd.DataFrame(columns=["ds", "y"])
|
| 124 |
+
|
| 125 |
+
df_prophet = df.rename(columns={"timestamp": "ds", "close": "y"})
|
| 126 |
+
return df_prophet[["ds", "y"]]
|
| 127 |
+
|
| 128 |
+
def prophet_forecast(df_prophet, periods=10, freq="H"):
|
| 129 |
+
"""
|
| 130 |
+
Train a Prophet model and forecast.
|
| 131 |
+
"""
|
| 132 |
+
if df_prophet.empty:
|
| 133 |
+
logging.warning("Prophet input is empty, no forecast can be generated.")
|
| 134 |
+
return pd.DataFrame(), "No data to forecast."
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
model = Prophet()
|
| 138 |
+
model.fit(df_prophet)
|
| 139 |
+
future = model.make_future_dataframe(periods=periods, freq=freq)
|
| 140 |
+
forecast = model.predict(future)
|
| 141 |
+
return forecast, ""
|
| 142 |
+
except Exception as e:
|
| 143 |
+
logging.error(f"Forecast error: {e}")
|
| 144 |
+
return pd.DataFrame(), f"Forecast error: {e}"
|
| 145 |
+
|
| 146 |
+
def prophet_wrapper(df_prophet, forecast_steps, freq):
|
| 147 |
+
"""
|
| 148 |
+
Do the forecast, then slice out the new/future rows.
|
| 149 |
+
"""
|
| 150 |
+
if len(df_prophet) < 10:
|
| 151 |
+
return pd.DataFrame(), "Not enough data for forecasting (need >=10 rows)."
|
| 152 |
+
|
| 153 |
+
full_forecast, err = prophet_forecast(df_prophet, forecast_steps, freq)
|
| 154 |
+
if err:
|
| 155 |
+
return pd.DataFrame(), err
|
| 156 |
+
|
| 157 |
+
# Only keep the newly generated future portion
|
| 158 |
+
future_only = full_forecast.iloc[len(df_prophet):, ["ds", "yhat", "yhat_lower", "yhat_upper"]]
|
| 159 |
+
return future_only, ""
|
| 160 |
+
|
| 161 |
+
########################################
|
| 162 |
+
# Main Gradio logic
|
| 163 |
+
########################################
|
| 164 |
+
|
| 165 |
+
def predict(symbol, timeframe, forecast_steps):
|
| 166 |
+
"""
|
| 167 |
+
Orchestrate candle fetch + prophet forecast.
|
| 168 |
+
"""
|
| 169 |
+
# Convert user timeframe to OKX bar param
|
| 170 |
+
okx_bar = TIMEFRAME_MAPPING.get(timeframe, "1H")
|
| 171 |
+
|
| 172 |
+
# Let’s fetch 500 candles
|
| 173 |
+
df_raw, err = fetch_okx_candles(symbol, timeframe=okx_bar, limit=500)
|
| 174 |
+
if err:
|
| 175 |
+
return pd.DataFrame(), err
|
| 176 |
+
|
| 177 |
+
df_prophet = prepare_data_for_prophet(df_raw)
|
| 178 |
+
# We guess frequency from timeframe. If timeframe is "1h", we'll do freq="H" in Prophet, etc.
|
| 179 |
+
# We'll do a simple mapping here:
|
| 180 |
+
freq = "H" if "h" in timeframe.lower() else "D" # e.g. "1h" -> "H", "1d" -> "D"
|
| 181 |
+
|
| 182 |
+
future_df, err2 = prophet_wrapper(df_prophet, forecast_steps, freq)
|
| 183 |
+
if err2:
|
| 184 |
+
return pd.DataFrame(), err2
|
| 185 |
+
|
| 186 |
+
return future_df, ""
|
| 187 |
+
|
| 188 |
+
def display_forecast(symbol, timeframe, forecast_steps):
|
| 189 |
+
"""
|
| 190 |
+
For the Gradio UI, returns forecast or error message.
|
| 191 |
+
"""
|
| 192 |
+
logging.info(f"User requested: symbol={symbol}, timeframe={timeframe}, steps={forecast_steps}")
|
| 193 |
+
forecast_df, error = predict(symbol, timeframe, forecast_steps)
|
| 194 |
+
if error:
|
| 195 |
+
return f"Error: {error}"
|
| 196 |
+
return forecast_df
|
| 197 |
+
|
| 198 |
+
def main():
|
| 199 |
+
# Fetch OKX symbols
|
| 200 |
+
symbols = fetch_okx_symbols()
|
| 201 |
+
if not symbols or "Error" in symbols[0]:
|
| 202 |
+
symbols = ["No symbols available"]
|
| 203 |
+
|
| 204 |
+
with gr.Blocks() as demo:
|
| 205 |
+
gr.Markdown("# OKX Price Forecasting with Prophet")
|
| 206 |
+
gr.Markdown(
|
| 207 |
+
"This app uses OKX's spot market candles to predict future price movements. "
|
| 208 |
+
"Select a symbol and timeframe, specify forecast steps, then click 'Generate Forecast'. "
|
| 209 |
+
"No proxies or special access required."
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
symbol_dd = gr.Dropdown(
|
| 213 |
+
label="Symbol",
|
| 214 |
+
choices=symbols,
|
| 215 |
+
value=symbols[0] if symbols else None
|
| 216 |
+
)
|
| 217 |
+
timeframe_dd = gr.Dropdown(
|
| 218 |
+
label="Timeframe",
|
| 219 |
+
choices=["1m", "5m", "15m", "30m", "1h", "2h", "4h", "6h", "12h", "1d", "1w"],
|
| 220 |
+
value="1h"
|
| 221 |
+
)
|
| 222 |
+
steps_slider = gr.Slider(
|
| 223 |
+
label="Forecast Steps (hours/days depending on timeframe)",
|
| 224 |
+
minimum=1,
|
| 225 |
+
maximum=100,
|
| 226 |
+
value=10
|
| 227 |
+
)
|
| 228 |
+
forecast_btn = gr.Button("Generate Forecast")
|
| 229 |
+
|
| 230 |
+
output_df = gr.Dataframe(
|
| 231 |
+
label="Future Forecast Only",
|
| 232 |
+
headers=["ds", "yhat", "yhat_lower", "yhat_upper"]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
forecast_btn.click(
|
| 236 |
+
fn=display_forecast,
|
| 237 |
+
inputs=[symbol_dd, timeframe_dd, steps_slider],
|
| 238 |
+
outputs=output_df
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
gr.Markdown(
|
| 242 |
+
"Looking for more automation? Check out this "
|
| 243 |
+
"[crypto trading bot](https://www.gunbot.com)."
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
return demo
|
| 247 |
+
|
| 248 |
+
if __name__ == "__main__":
|
| 249 |
+
app = main()
|
| 250 |
+
app.launch()
|