Spaces:
Sleeping
Sleeping
File size: 13,343 Bytes
b20c769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
from functools import partial
from pathlib import Path
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from einops import rearrange
from timm.models.vision_transformer import Block
class DOFAWrapper(nn.Module):
def __init__(
self, weights_path: Path, size="base", do_pool=True, temporal_pooling: str = "mean"
):
super().__init__()
if size == "base":
self.encoder = vit_base_patch16()
checkpoint = torch.load(weights_path / "DOFA_ViT_base_e100.pth", map_location="cpu")
self.dim = 768
elif size == "large":
self.encoder = vit_large_patch16()
checkpoint = torch.load(weights_path / "DOFA_ViT_large_e100.pth", map_location="cpu")
self.dim = 1024
else:
raise ValueError(f"size must be base or large, not {size}")
self.encoder.load_state_dict(checkpoint, strict=False)
self.image_resolution = 224
self.patch_size = 16
self.grid_size = int(self.image_resolution / self.patch_size)
# Sentinel-2 wavelengths, with RGB re-ordered
self.s2_waves = [0.665, 0.56, 0.49, 0.705, 0.74, 0.783, 0.842, 1.61, 2.19]
self.s1_waves = [3.75, 3.75]
self.do_pool = do_pool
if temporal_pooling not in ["mean", "max"]:
raise ValueError(
f"Expected temporal_pooling to be in ['mean', 'max'], got {temporal_pooling}"
)
self.temporal_pooling = temporal_pooling
def resize(self, images):
images = F.interpolate(
images,
size=(self.image_resolution, self.image_resolution),
mode="bilinear",
align_corners=False,
)
return images
def preproccess(self, images):
if len(images.shape) == 5:
# take the mean along the temporal dimension
images = torch.mean(images, dim=2)
images = rearrange(images, "b h w c -> b c h w")
assert images.shape[1] in (13, 2)
# need to re-order RGB and remove coastal aerosol, water vapour, narrow NIR, and cirrus
if images.shape[1] == 13:
channel_ids = [3, 2, 1, 4, 5, 6, 7, 11, 12]
images = images[:, channel_ids, :, :]
return self.resize(images) # (bsz, C, H, W)
def forward(self, s2=None, s1=None, months=None):
# TODO add support for s1 with s1 waves
if s2 is not None:
if len(s2.shape) == 5:
outputs_l: List[torch.Tensor] = []
for timestep in range(s2.shape[3]):
image = self.preproccess(s2[:, :, :, timestep])
output = self.encoder.forward_features(image, wave_list=self.s2_waves)
if self.do_pool:
output = output.mean(dim=1)
else:
output = output[:, 1:]
outputs_l.append(output)
outputs_t = torch.stack(outputs_l, dim=-1) # b h w d t
if self.temporal_pooling == "mean":
return outputs_t.mean(dim=-1)
else:
return torch.amax(outputs_t, dim=-1)
else:
s2 = self.preproccess(s2)
output = self.encoder.forward_features(s2, wave_list=self.s2_waves)
if self.do_pool:
return output.mean(dim=1)
else:
return output[:, 1:]
elif s1 is not None:
if len(s1.shape) == 5:
outputs_l: List[torch.Tensor] = []
for timestep in range(s1.shape[3]):
image = self.preproccess(s1[:, :, :, timestep])
output = self.encoder.forward_features(image, wave_list=self.s1_waves)
if self.do_pool:
output = output.mean(dim=1)
else:
output = output[:, 1:]
outputs_l.append(output)
outputs_t = torch.stack(outputs_l, dim=-1) # b h w d t
if self.temporal_pooling == "mean":
return outputs_t.mean(dim=-1)
else:
return torch.amax(outputs_t, dim=-1)
else:
s1 = self.preproccess(s1)
output = self.encoder.forward_features(s1, wave_list=self.s1_waves)
if self.do_pool:
return output.mean(dim=1)
else:
return output[:, 1:]
def get_1d_sincos_pos_embed_from_grid_torch(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.float32, device=pos.device)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.cat([emb_sin, emb_cos], dim=1) # (M, D)
return emb
class TransformerWeightGenerator(nn.Module):
def __init__(self, input_dim, output_dim, embed_dim, num_heads=4, num_layers=1):
super(TransformerWeightGenerator, self).__init__()
encoder_layer = nn.TransformerEncoderLayer(
d_model=input_dim,
nhead=num_heads,
activation="gelu",
norm_first=False,
batch_first=False,
dropout=False,
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer, num_layers=num_layers, enable_nested_tensor=False
)
# Linear layer to map transformer output to desired weight shape
self.fc_weight = nn.Linear(input_dim, output_dim)
self.fc_bias = nn.Linear(input_dim, embed_dim)
self.wt_num = 128
self.weight_tokens = nn.Parameter(torch.empty([self.wt_num, input_dim]))
self.bias_token = nn.Parameter(torch.empty([1, input_dim]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is
# too big (2.)
torch.nn.init.normal_(self.weight_tokens, std=0.02)
torch.nn.init.normal_(self.bias_token, std=0.02)
def forward(self, x):
# x should have shape [seq_len, batch, input_dim]
pos_wave = x
x = torch.cat([self.weight_tokens, pos_wave], dim=0)
x = torch.cat([x, self.bias_token], dim=0)
transformer_output = self.transformer_encoder(x)
weights = self.fc_weight(transformer_output[self.wt_num : -1] + pos_wave)
bias = self.fc_bias(transformer_output[-1]) # Using the last output to generate bias
return weights, bias
class Basic1d(nn.Module):
def __init__(self, in_channels, out_channels, bias=True):
super().__init__()
conv = nn.Linear(in_channels, out_channels, bias)
self.conv = nn.Sequential(
conv,
)
if not bias:
self.conv.add_module("ln", nn.LayerNorm(out_channels))
self.conv.add_module("relu", nn.ReLU(inplace=True))
def forward(self, x):
out = self.conv(x)
return out
class FCResLayer(nn.Module):
def __init__(self, linear_size=128):
super(FCResLayer, self).__init__()
self.l_size = linear_size
self.nonlin1 = nn.ReLU(inplace=True)
self.nonlin2 = nn.ReLU(inplace=True)
self.w1 = nn.Linear(self.l_size, self.l_size)
self.w2 = nn.Linear(self.l_size, self.l_size)
def forward(self, x):
y = self.w1(x)
y = self.nonlin1(y)
y = self.w2(y)
y = self.nonlin2(y)
out = x + y
return out
class Dynamic_MLP_OFA(nn.Module):
"""
Input: channels of wavelength (normalized): List -> List
kernel size of the depth-wise convolution: kernel_size, default 3x3
wv_planes
inplanes
"""
def __init__(self, wv_planes, inter_dim=128, kernel_size=3, embed_dim=1024):
super().__init__()
self.kernel_size = kernel_size
self.wv_planes = wv_planes
self.embed_dim = embed_dim
self.kernel_size = kernel_size
self._num_kernel = self.kernel_size * self.kernel_size * self.embed_dim
self.inter_dim = inter_dim
self.patch_size = (kernel_size, kernel_size)
self.num_patches = -1
self.weight_generator = TransformerWeightGenerator(wv_planes, self._num_kernel, embed_dim)
self.scaler = 0.01
self.fclayer = FCResLayer(wv_planes)
self._init_weights()
def _get_weights(self, waves):
dynamic_weights = self.weight_generator(waves)
return dynamic_weights
def weight_init(self, m):
if isinstance(m, nn.Linear):
init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def _init_weights(self):
"""
initialize the base weights and dynamic mlp weights
"""
self.weight_generator.apply(self.weight_init)
self.fclayer.apply(self.weight_init)
def forward(self, img_feat, wvs):
inplanes = wvs.size(0)
# wv_feats: 9,128 -> 9, 3x3x3
waves = get_1d_sincos_pos_embed_from_grid_torch(self.wv_planes, wvs * 1000)
waves = self.fclayer(waves)
weight, bias = self._get_weights(waves) # 3x3x3
dynamic_weight = weight.view(
self.embed_dim, inplanes, self.kernel_size, self.kernel_size
) # 3xoutdx16x16
if bias is not None:
bias = bias.view([self.embed_dim]) * self.scaler
weights = dynamic_weight * self.scaler
dynamic_out = F.conv2d(
img_feat, weights, bias=bias, stride=self.kernel_size, padding=1, dilation=1
)
x = dynamic_out
x = x.flatten(2).transpose(1, 2)
return x, waves
class OFAViT(nn.Module):
"""Masked Autoencoder with VisionTransformer backbone"""
def __init__(
self,
img_size=224,
patch_size=16,
drop_rate=0.0,
embed_dim=1024,
depth=24,
num_heads=16,
wv_planes=128,
num_classes=45,
global_pool=True,
mlp_ratio=4.0,
norm_layer=nn.LayerNorm,
):
super().__init__()
self.wv_planes = wv_planes
self.global_pool = global_pool
if self.global_pool:
norm_layer = norm_layer
embed_dim = embed_dim
self.fc_norm = norm_layer(embed_dim)
else:
self.norm = norm_layer(embed_dim)
self.patch_embed = Dynamic_MLP_OFA(
wv_planes=128, inter_dim=128, kernel_size=16, embed_dim=embed_dim
)
self.num_patches = (img_size // patch_size) ** 2
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.num_patches + 1, embed_dim), requires_grad=False
) # fixed sin-cos embedding
self.blocks = nn.ModuleList(
[
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
for i in range(depth)
]
)
self.head_drop = nn.Dropout(drop_rate)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x, wave_list):
# embed patches
wavelist = torch.tensor(wave_list, device=x.device).float()
self.waves = wavelist
x, _ = self.patch_embed(x, self.waves)
x = x + self.pos_embed[:, 1:, :]
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for block in self.blocks:
x = block(x)
return x
def forward_head(self, x, pre_logits=False):
x = self.head_drop(x)
return x if pre_logits else self.head(x)
def forward(self, x, wave_list):
x = self.forward_features(x, wave_list)
x = self.forward_head(x)
return x
def vit_small_patch16(**kwargs):
model = OFAViT(
patch_size=16,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def vit_base_patch16(**kwargs):
model = OFAViT(
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def vit_large_patch16(**kwargs):
model = OFAViT(
patch_size=16,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
def vit_huge_patch14(**kwargs):
model = OFAViT(
patch_size=14,
embed_dim=1280,
depth=32,
num_heads=16,
mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs,
)
return model
|