Spaces:
Sleeping
Sleeping
File size: 35,019 Bytes
b20c769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# type: ignore
import math
from argparse import Namespace
from collections import OrderedDict
from pathlib import Path
from typing import AnyStr, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_
from torch import Tensor
PIXEL_WISE_MODALITIES = [
"sentinel2",
"sentinel1",
"aster",
"canopy_height_eth",
"esa_worldcover",
"dynamic_world",
]
# Input modalities for training
INP_MODALITIES = {
"sentinel2": [
"B1",
"B2",
"B3",
"B4",
"B5",
"B6",
"B7",
"B8A",
"B8",
"B9",
"B11",
"B12",
],
}
# Output modalities for training
OUT_MODALITIES = {
"sentinel2": [
"B1",
"B2",
"B3",
"B4",
"B5",
"B6",
"B7",
"B8A",
"B8",
"B9",
"B11",
"B12",
],
"sentinel1": "all",
"aster": "all",
"era5": "all",
"dynamic_world": "all",
"canopy_height_eth": "all",
"lat": "all",
"lon": "all",
"biome": "all",
"eco_region": "all",
"month": "all",
"esa_worldcover": "all",
}
# an example of all the modalities. DO NOT CHANGE THIS, ALWAYS CHANGE THE INP and OUT MODALITIES ABOVE
MODALITIES_FULL = {
"sentinel2": [
"B1",
"B2",
"B3",
"B4",
"B5",
"B6",
"B7",
"B8A",
"B8",
"B9",
"B10",
"B11",
"B12",
],
"sentinel2_cloudmask": ["QA60"],
"sentinel2_cloudprod": ["MSK_CLDPRB"],
"sentinel2_scl": ["SCL"],
"sentinel1": [
"asc_VV",
"asc_VH",
"asc_HH",
"asc_HV",
"desc_VV",
"desc_VH",
"desc_HH",
"desc_HV",
],
"aster": ["elevation", "slope"],
"era5": [
"prev_month_avg_temp",
"prev_month_min_temp",
"prev_month_max_temp",
"prev_month_total_precip",
"curr_month_avg_temp",
"curr_month_min_temp",
"curr_month_max_temp",
"curr_month_total_precip",
"year_avg_temp",
"year_min_temp",
"year_max_temp",
"year_total_precip",
],
"dynamic_world": ["landcover"],
"canopy_height_eth": ["height", "std"],
"lat": ["sin", "cos"],
"lon": ["sin", "cos"],
"biome": ["biome"],
"eco_region": ["eco_region"],
"month": ["sin_month", "cos_month"],
"esa_worldcover": ["map"],
}
class MMEarthWrapper(nn.Module):
def __init__(
self, weights_path: Path, size="atto", do_pool=True, temporal_pooling: str = "mean"
):
super().__init__()
if size == "atto":
self.dim = 320
check = weights_path / "mmearth-atto-checkpoint-199.pth"
checkpoint = torch.load(check, map_location="cpu")
weights = remap_checkpoint_keys(checkpoint["model"])
args = Namespace(
checkpoint_dir=check,
random_crop=True,
random_crop_size=112,
patch_size=16,
loss_aggr="uncertainty",
use_orig_stem=False,
mask_ratio=0.6,
linear_probe=False,
)
args.inp_modalities = INP_MODALITIES
args.out_modalities = OUT_MODALITIES
args.modalities = args.inp_modalities.copy()
args.modalities.update(args.out_modalities)
args.modalities_full = MODALITIES_FULL
model = convnextv2_atto(
mask_ratio=args.mask_ratio,
decoder_depth=1,
decoder_embed_dim=512,
norm_pix_loss=True,
patch_size=args.patch_size,
img_size=args.random_crop_size,
args=args,
)
self.encoder = model.encoder
self.encoder.load_state_dict(weights, strict=False)
self.image_resolution = 112
self.grid_size = 7
elif size == "tiny":
self.dim = 768
check = weights_path / "mmearth-tiny-checkpoint-199.pth"
checkpoint = torch.load(check, map_location="cpu")
weights = remap_checkpoint_keys(checkpoint["model"])
args = Namespace(
checkpoint_dir=check,
random_crop=True,
random_crop_size=56,
patch_size=8,
loss_aggr="uncertainty",
use_orig_stem=False,
mask_ratio=0.6,
linear_probe=False,
)
args.inp_modalities = INP_MODALITIES
args.out_modalities = OUT_MODALITIES
args.modalities = args.inp_modalities.copy()
args.modalities.update(args.out_modalities)
args.modalities_full = MODALITIES_FULL
model = convnextv2_tiny(
mask_ratio=args.mask_ratio,
decoder_depth=1,
decoder_embed_dim=512,
norm_pix_loss=True,
patch_size=args.patch_size,
img_size=args.random_crop_size,
args=args,
)
self.encoder = model.encoder
self.encoder.load_state_dict(weights, strict=False)
self.image_resolution = 56
self.grid_size = 6
else:
raise ValueError(f"size must be atto or tiny, not {size}")
self.do_pool = do_pool
if temporal_pooling not in ["mean", "max"]:
raise ValueError(
f"Expected temporal_pooling to be in ['mean', 'max'], got {temporal_pooling}"
)
self.temporal_pooling = temporal_pooling
def resize(self, images):
images = F.interpolate(
images,
size=(self.image_resolution, self.image_resolution),
mode="bilinear",
align_corners=False,
)
return images
def preproccess(self, images):
if len(images.shape) == 5:
raise ValueError(f"Unexpected input shape {images.shape}")
images = rearrange(images, "b h w c -> b c h w")
assert images.shape[1] == 13
# MMEarth does not use B10 as input
remove_idx = 10
images = torch.cat(
[images[:, :remove_idx, :, :], images[:, (remove_idx + 1) :, :, :]], dim=1
)
assert images.shape[1] == 12
return self.resize(images) # (bsz, 12, 112, 112)
def forward(self, s2=None, s1=None, months=None):
if s2 is None:
raise ValueError("S2 can't be None for MMEarth")
if len(s2.shape) == 5:
outputs_l: List[torch.Tensor] = []
for timestep in range(s2.shape[3]):
image = self.preproccess(s2[:, :, :, timestep])
output = self.encoder(image)
# output shape for atto: (bsz, 320, 7, 7)
# output shape for tiny: (bsz, 768, 6, 6)
if self.do_pool:
output = output.mean(dim=-1).mean(dim=-1)
else:
output = rearrange(output, "b c h w -> b (h w) c")
outputs_l.append(output)
outputs_t = torch.stack(outputs_l, dim=-1) # b h w d t
if self.temporal_pooling == "mean":
return outputs_t.mean(dim=-1)
else:
return torch.amax(outputs_t, dim=-1)
else:
s2 = self.preproccess(s2)
output = self.encoder(s2)
if self.do_pool:
return output.mean(dim=-1).mean(dim=-1) # (bsz, dim)
else:
return rearrange(output, "b c h w -> b (h w) c") # (bsz, seq_len, dim)
def remap_checkpoint_keys(ckpt):
new_ckpt = OrderedDict()
for k, v in ckpt.items():
if k.startswith("encoder"):
k = ".".join(k.split(".")[1:]) # remove encoder in the name
if k.endswith("kernel"):
k = ".".join(k.split(".")[:-1]) # remove kernel in the name
new_k = k + ".weight"
if len(v.shape) == 3: # resahpe standard convolution
kv, in_dim, out_dim = v.shape
ks = int(math.sqrt(kv))
new_ckpt[new_k] = (
v.permute(2, 1, 0).reshape(out_dim, in_dim, ks, ks).transpose(3, 2)
)
elif len(v.shape) == 2: # reshape depthwise convolution
kv, dim = v.shape
ks = int(math.sqrt(kv))
new_ckpt[new_k] = v.permute(1, 0).reshape(dim, 1, ks, ks).transpose(3, 2)
continue
elif "ln" in k or "linear" in k:
k = k.split(".")
k.pop(-2) # remove ln and linear in the name
new_k = ".".join(k)
elif "backbone.resnet" in k:
# sometimes the resnet model is saved with the prefix backbone.resnet
# we need to remove this prefix
new_k = k.split("backbone.resnet.")[1]
else:
new_k = k
new_ckpt[new_k] = v
# reshape grn affine parameters and biases
for k, v in new_ckpt.items():
if k.endswith("bias") and len(v.shape) != 1:
new_ckpt[k] = v.reshape(-1)
elif "grn" in k:
new_ckpt[k] = v.unsqueeze(0).unsqueeze(1)
return new_ckpt
class LayerNorm(nn.Module):
"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GRN(nn.Module):
"""GRN (Global Response Normalization) layer"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-4)
return self.gamma * (x * Nx) + self.beta + x
class Block(nn.Module):
"""ConvNeXtV2 Block.
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
"""
def __init__(self, dim, drop_path=0.0):
super().__init__()
self.dwconv: nn.Module = nn.Conv2d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depth-wise conv
self.norm: nn.Module = LayerNorm(dim, eps=1e-6)
self.pwconv1: nn.Module = nn.Linear(
dim, 4 * dim
) # point-wise/1x1 convs, implemented with linear layers
self.act: nn.Module = nn.GELU()
self.grn: nn.Module = GRN(4 * dim)
self.pwconv2: nn.Module = nn.Linear(4 * dim, dim)
self.drop_path: nn.Module = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x: Tensor) -> Tensor:
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXtV2(nn.Module):
"""ConvNeXt V2
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(
self,
patch_size: int = 32,
img_size: int = 128,
in_chans: int = 3,
num_classes: int = 1000,
depths: Optional[list[int]] = None,
dims: Optional[list[int]] = None,
drop_path_rate: float = 0.0,
head_init_scale: float = 1.0,
use_orig_stem: bool = False,
args: Optional[Namespace] = None,
):
super().__init__()
self.depths = depths
if self.depths is None: # set default value
self.depths = [3, 3, 9, 3]
self.img_size = img_size
self.use_orig_stem = use_orig_stem
assert depths is not None
self.num_stage = len(depths)
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layer
self.patch_size = patch_size
if dims is None:
dims = [96, 192, 384, 768]
if self.use_orig_stem:
self.stem_orig = nn.Sequential(
nn.Conv2d(
in_chans,
dims[0],
kernel_size=patch_size // (2 ** (self.num_stage - 1)),
stride=patch_size // (2 ** (self.num_stage - 1)),
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
else:
self.initial_conv = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=3, stride=1),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
nn.GELU(),
)
# depthwise conv for stem
self.stem = nn.Sequential(
nn.Conv2d(
dims[0],
dims[0],
kernel_size=patch_size // (2 ** (self.num_stage - 1)),
stride=patch_size // (2 ** (self.num_stage - 1)),
padding=(patch_size // (2 ** (self.num_stage - 1))) // 2,
groups=dims[0],
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = (
nn.ModuleList()
) # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(self.num_stage):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
self.head = nn.Linear(dims[-1], num_classes)
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, x):
if self.use_orig_stem:
x = self.stem_orig(x)
else:
x = self.initial_conv(x)
x = self.stem(x)
x = self.stages[0](x)
for i in range(3):
x = self.downsample_layers[i](x)
x = self.stages[i + 1](x)
return x # pool with wrapper
def upsample_mask(self, mask, scale):
assert len(mask.shape) == 2
p = int(mask.shape[1] ** 0.5)
return (
mask.reshape(-1, p, p)
.repeat_interleave(scale, axis=1)
.repeat_interleave(scale, axis=2)
)
def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor:
# no masking
return self.forward_features(x)
class FCMAE(nn.Module):
"""Fully Convolutional Masked Autoencoder with ConvNeXtV2 backbone"""
def __init__(
self,
img_size: int = 112,
depths: list[int] = None,
dims: list[int] = None,
decoder_depth: int = 1,
decoder_embed_dim: int = 512,
patch_size: float = 16,
mask_ratio: float = 0.6,
norm_pix_loss: bool = False,
args: Namespace = None,
loss_fn=None,
sparse: bool = True,
):
super().__init__()
print("using the multi-modal fcmae model")
# configs
self.args = args
self.img_size = img_size
if depths is None: # set default value
depths = [3, 3, 9, 3]
self.depths = depths
if dims is None:
dims = [96, 192, 384, 768]
self.dims = dims
self.patch_size = patch_size
self.mask_ratio = mask_ratio
self.num_patches = (img_size // patch_size) ** 2
self.decoder_embed_dim = decoder_embed_dim
self.decoder_depth = decoder_depth
self.norm_pix_loss = norm_pix_loss
self.loss_fn = loss_fn
self.sparse = sparse
self.in_chans = (
len(args.modalities["sentinel2"])
if args.modalities["sentinel2"] != "all"
else len(args.modalities_full["sentinel2"])
)
self.out_chans = {}
for modality in self.args.modalities.keys():
if modality in ["sentinel2", "sentinel1", "aster", "canopy_height_eth"]:
# all the conituous pixel level modalities
if self.args.modalities[modality] == "all":
self.out_chans[modality] = len(self.args.modalities_full[modality])
else:
self.out_chans[modality] = len(self.args.modalities[modality])
elif modality == "biome":
self.out_chans[modality] = 14 # 14 biomes
elif modality == "eco_region":
self.out_chans[modality] = 846 # 846 eco regions
elif modality in ["lat", "lon", "month", "era5"]:
if self.args.modalities[modality] == "all":
self.out_chans[modality] = len(self.args.modalities_full[modality])
else:
self.out_chans[modality] = len(self.args.modalities[modality])
elif modality == "esa_worldcover":
self.out_chans[modality] = 11 # 11 classes for esa worldcover
elif modality == "dynamic_world":
self.out_chans[modality] = 9 # 9 classes for dynamic world
# encoder
self.encoder = ConvNeXtV2(
in_chans=self.in_chans,
depths=depths,
dims=dims,
patch_size=patch_size,
img_size=img_size,
use_orig_stem=args.use_orig_stem,
)
self.proj = nn.Conv2d(in_channels=dims[-1], out_channels=decoder_embed_dim, kernel_size=1)
# mask tokens
self.mask_token = nn.Parameter(torch.zeros(1, decoder_embed_dim, 1, 1))
decoder = [Block(dim=decoder_embed_dim, drop_path=0.0) for _ in range(decoder_depth)]
# creating a decoder for each modality
self.decoder_dict = nn.ModuleDict()
self.pred_dict = nn.ModuleDict()
for modality in self.args.out_modalities.keys():
if modality in [
"sentinel2",
"sentinel1",
"aster",
"canopy_height_eth",
"dynamic_world",
"esa_worldcover",
"IMNET",
]:
# all the pixel level modalities
self.decoder_dict[modality] = nn.Sequential(*decoder)
self.pred_dict[modality] = nn.Conv2d(
in_channels=decoder_embed_dim,
out_channels=patch_size**2 * self.out_chans[modality],
kernel_size=1,
)
elif modality in ["biome", "eco_region", "lat", "lon", "month", "era5"]:
# all the non-pixel level modalities along with a global average pooling
self.decoder_dict[modality] = nn.Sequential(*decoder)
self.layer_norm_tmp = LayerNorm(
decoder_embed_dim, eps=1e-6, data_format="channels_first"
)
self.pred_dict[modality] = nn.Linear(
in_features=decoder_embed_dim, out_features=self.out_chans[modality]
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
w = m.weight.data
trunc_normal_(w.view([w.shape[0], -1]))
nn.init.constant_(m.bias, 0)
if isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
if hasattr(self, "mask_token"):
torch.nn.init.normal_(self.mask_token, std=0.02)
def patchify(self, imgs: Tensor, modality: str) -> Tensor:
"""
imgs: (N, 3, H, W)
x: (N, L, patch_size**2 *3)
"""
p = self.patch_size
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
if modality in ["dynamic_world", "esa_worldcover"]:
# for these modalities, we only have one channel
channels = 1
else:
channels = self.out_chans[modality]
h = w = imgs.shape[2] // p
x = imgs.reshape(shape=(imgs.shape[0], channels, h, p, w, p))
x = torch.einsum("nchpwq->nhwpqc", x)
x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * channels))
return x
def unpatchify(self, x: Tensor) -> Tensor:
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
p = self.patch_size
print("shape of x:", x.shape)
h = w = self.img_size // p
# assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, self.in_chans))
x = torch.einsum("nhwpqc->nchpwq", x)
imgs = x.reshape(shape=(x.shape[0], self.in_chans, h * p, h * p))
return imgs
def gen_random_mask(self, x: Tensor, mask_ratio: float) -> Tensor:
N = x.shape[0] # number of samples
L = (x.shape[2] // self.patch_size) ** 2 # number of patches
len_keep = int(L * (1 - mask_ratio)) # number of patches to keep
# the following lines generate a mask with 0s and 1s at random locations
noise = torch.randn(N, L, device=x.device)
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# generate the binary mask: 0 is keep 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask # (batch_size, no_patches**2)
def upsample_mask(self, mask: Tensor, scale: float):
assert len(mask.shape) == 2
p = int(mask.shape[1] ** 0.5)
return (
mask.reshape(-1, p, p).repeat_interleave(scale, dim=1).repeat_interleave(scale, dim=2)
)
def forward_encoder(self, imgs: Tensor, mask_ratio: float) -> Tuple[Tensor, Tensor]:
# generate random masks
mask = self.gen_random_mask(imgs, mask_ratio)
# encoding
x = self.encoder(imgs, mask)
return x, mask
def forward_decoder(self, x: Tensor, mask: Tensor) -> Dict[AnyStr, Tensor]:
pred = {}
x = self.proj(x)
n, c, h, w = x.shape
mask = mask.reshape(-1, h, w).unsqueeze(1).type_as(x)
mask_token = self.mask_token.repeat(x.shape[0], 1, x.shape[2], x.shape[3])
x = x * (1.0 - mask) + mask_token * mask
for modalities in self.args.out_modalities.keys():
# decoding
x_ = self.decoder_dict[modalities](x)
if modalities in ["biome", "eco_region", "lat", "lon", "month", "era5"]:
x_ = self.layer_norm_tmp(x_)
# for the image level modalities we use global average pooling followed by the linear layer in pred_dict
x_ = x_.mean(dim=[-2, -1])
# pred
pred[modalities] = self.pred_dict[modalities](x_)
return pred
def forward_loss(
self, imgs_dict: Dict[AnyStr, Tensor], preds: Dict[AnyStr, Tensor], mask: Tensor
) -> Tuple[Tensor, Dict, Tensor, Tensor]:
"""
imgs_dict: A dict of different modalities, each with shape of [N, C, H, W], C is the number of channels/bands
preds: A dict of predictions for different modalities each of shape [N, L, p*p*C]
mask: [N, L], 0 is keep, 1 is remove
"""
loss_dict = {}
for modality in self.args.out_modalities.keys():
if modality in ["biome", "eco_region", "lat", "lon", "month", "era5"]:
# all the image level modalities
# we still further divide this into categorical and continuous modalities
if modality in ["biome", "eco_region"]:
# categorical modalities
imgs = imgs_dict[modality]
pred = preds[modality]
imgs_classes = torch.argmax(imgs, dim=-1)
# we don't need to patchify the image for these modalities
# compute the loss
loss = nn.CrossEntropyLoss()(pred, imgs_classes)
loss_dict[modality] = loss
elif modality in ["lat", "lon", "month", "era5"]:
# continuous modalities
imgs = imgs_dict[modality]
pred = preds[modality]
# we don't need to patchify the image for these modalities but we can still ignore any nan values
nan_mask = torch.isnan(imgs)
pred = pred[~nan_mask]
imgs = imgs[~nan_mask]
# compute the loss
loss = nn.MSELoss()(pred, imgs)
loss_dict[modality] = loss
elif modality in ["dynamic_world", "esa_worldcover"]:
# pixel level modalities but categorical
imgs = imgs_dict[modality]
pred = preds[modality]
if len(pred.shape) == 4:
n, c, _, _ = pred.shape
pred = pred.reshape(n, c, -1)
pred = torch.einsum("ncl->nlc", pred)
# pred is of the shape [N, L, C] where C is patch_size**2 * num_classes. we need to first convert this to [N, L, patch_size**2, num_classes]
# L is the number of patches
pred = pred.reshape(pred.shape[0], pred.shape[1], self.patch_size**2, -1)
target = self.patchify(imgs, modality)
# we only compute the loss on the patches where the mask is 1
# mask is of the shape [N, L]
# target is of the shape [N, L, patch_size**2 * num_classes]
# pred is of the shape [N, L, patch_size**2, num_classes]
# we need to apply the mask on target and pred for every channel
target = target.reshape(target.shape[0], target.shape[1], self.patch_size**2, -1)
mask_tmp = mask.unsqueeze(-1).repeat(1, 1, self.patch_size**2).unsqueeze(-1)
target = target.reshape(target.shape[0], -1)
pred = pred.reshape(pred.shape[0], -1, self.out_chans[modality])
mask_tmp = mask_tmp.reshape(mask.shape[0], -1)
# we only compute the loss on the patches where the mask is 1
target = target[mask_tmp == 1]
pred = pred[mask_tmp == 1]
# we also apply a nan mask on the target and pred, since sometimes the target can be nan
nan_mask = target == -1
target = target[~nan_mask]
pred = pred[~nan_mask]
loss = nn.CrossEntropyLoss()(pred, target)
loss_dict[modality] = loss
elif modality == "IMNET":
imgs = imgs_dict[modality]
pred = preds[modality]
if len(pred.shape) == 4:
n, c, _, _ = pred.shape
pred = pred.reshape(n, c, -1)
pred = torch.einsum("ncl->nlc", pred)
target = self.patchify(imgs, modality)
if self.norm_pix_loss:
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.0e-6) ** 0.5
loss = (pred - target) ** 2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
loss_dict[modality] = loss
else:
# pixel level modalities but continuous
imgs = imgs_dict[modality]
pred = preds[modality]
if len(pred.shape) == 4:
n, c, _, _ = pred.shape # [N, C, H, W]
pred = pred.reshape(n, c, -1)
pred = torch.einsum("ncl->nlc", pred)
target = self.patchify(imgs, modality)
if (
self.norm_pix_loss and modality == "sentinel2"
): # we only compute the per-patch norm on sentinel2
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.0e-6) ** 0.5
loss = (pred - target) ** 2 # using mean squared error
nan_mask = torch.isnan(loss)
count = torch.count_nonzero(~nan_mask, dim=-1)
loss[nan_mask] = 0
loss = loss.sum(dim=-1) / count
# uncomment the below line to compute the loss on the whole image - this results in better reconstructions, but
# not better representations for downstream tasks
# mask = torch.ones_like(mask)
# counting the number of pixels where mask is 1 and loss is not nan. since we only compute the loss on these.
# we create the nan mask again, since sometimes count can be 0.
nan_mask = torch.isnan(loss * mask)
tmp = loss * mask
tmp[nan_mask] = 0
sum_ = tmp.sum()
count = torch.count_nonzero(tmp)
loss = sum_ / count # mean loss on removed patches
loss_dict[modality] = loss
loss_list = [loss_dict[modality] for modality in loss_dict.keys()]
if self.args.loss_aggr == "uncertainty":
uncertainty_loss_, log_vars = self.loss_fn(loss_list)
loss_combined = sum(uncertainty_loss_)
return loss_combined, loss_dict, log_vars, uncertainty_loss_
elif self.args.loss_aggr == "unweighted":
loss_combined = sum(loss_list)
return loss_combined, loss_dict, None, None
def forward(self, imgs_dict: Dict[AnyStr, Tensor], labels=None, mask_ratio: float = 0.6):
# apply random crop to all pixel-wise modalities
params = self.random_crop.generate_parameters(imgs_dict["sentinel2"].shape)
# Apply the same transform to all images in the batch
for modality in imgs_dict:
if modality in PIXEL_WISE_MODALITIES:
imgs_dict[modality] = self.random_crop.apply_transform(
imgs_dict[modality], params, None
)
# here imgs_dict is a dictionary with every modality, we set imgs to be the input which in this case
# is always sentinel2.
imgs = imgs_dict["sentinel2"]
# convert nan to 0 for "sentinel2", "sentinel1", "aster", "canopy_height_eth".
# This is done since the data is normalized to have a mean of 0 and std of 1. hence
# effectively we are setting the nan values to the mean. In the case of the input,
# setting to 0 also ensures that these values become sparse.
for modality in imgs_dict.keys():
if modality in ["sentinel2", "sentinel1", "aster", "canopy_height_eth"]:
imgs_dict[modality] = torch.nan_to_num(
imgs_dict[modality], nan=0.0, posinf=0.0, neginf=0.0
)
x, mask = self.forward_encoder(imgs, mask_ratio)
pred = self.forward_decoder(x, mask)
loss, loss_dict, log_vars, normalized_loss_list = self.forward_loss(imgs_dict, pred, mask)
return loss, pred, mask, loss_dict, log_vars, normalized_loss_list
def convnextv2_atto(**kwargs):
model = FCMAE(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)
return model
def convnextv2_femto(**kwargs):
model = FCMAE(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)
return model
def convnextv2_pico(**kwargs):
model = FCMAE(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)
return model
def convnextv2_nano(**kwargs):
model = FCMAE(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs)
return model
def convnextv2_tiny(**kwargs):
model = FCMAE(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
return model
def convnextv2_base(**kwargs):
model = FCMAE(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
return model
def convnextv2_large(**kwargs):
model = FCMAE(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
return model
def convnextv2_huge(**kwargs):
model = FCMAE(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs)
return model
|