Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import os | |
| import json | |
| import random | |
| from datetime import datetime | |
| from src.backend.run_eval_suite import run_evaluation | |
| from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request | |
| from src.backend.sort_queue import sort_models_by_priority | |
| from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Tasks, Task, num_fewshots | |
| from src.backend.manage_requests import EvalRequest | |
| from src.leaderboard.read_evals import EvalResult | |
| from src.envs import QUEUE_REPO, RESULTS_REPO, API | |
| from src.utils import my_snapshot_download | |
| import time | |
| import logging | |
| import pprint | |
| import argparse | |
| # def get_subdirectories(path): | |
| # subdirectories = [] | |
| # # Get all entries in the directory | |
| # entries = os.listdir(path) | |
| # for entry in entries: | |
| # # Check if the entry is a directory | |
| # if os.path.isdir(os.path.join(path, entry)): | |
| # subdirectories.append(entry) | |
| # return subdirectories | |
| # parser = argparse.ArgumentParser(description="Get subdirectory names") | |
| # parser.add_argument("include_path", help="Path to the directory", nargs='?', default=None) | |
| # args = parser.parse_args() | |
| # # = get_subdirectories(args.include_path) | |
| def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir): | |
| for i in range(10): | |
| try: | |
| set_eval_request(api=api, eval_request=eval_request, set_to_status=set_to_status, hf_repo=hf_repo, local_dir=local_dir) | |
| return | |
| except Exception: | |
| time.sleep(60) | |
| return | |
| logging.getLogger("openai").setLevel(logging.WARNING) | |
| logging.basicConfig(level=logging.ERROR) | |
| pp = pprint.PrettyPrinter(width=80) | |
| PENDING_STATUS = "PENDING" | |
| RUNNING_STATUS = "RUNNING" | |
| FINISHED_STATUS = "FINISHED" | |
| FAILED_STATUS = "FAILED" | |
| TASKS_HARNESS = [task.value for task in Tasks] | |
| # starts by downloading results and requests. makes sense since we want to be able to use different backend servers! | |
| my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| def sanity_checks(): | |
| print(f'Device: {DEVICE}') | |
| # pull the eval dataset from the hub and parse any eval requests | |
| # check completed evals and set them to finished | |
| my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS, | |
| failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND) | |
| return | |
| def request_to_result_name(request: EvalRequest) -> str: | |
| org_and_model = request.model.split("/", 1) | |
| if len(org_and_model) == 1: | |
| model = org_and_model[0] | |
| res = f"{model}_{request.precision}" | |
| else: | |
| org = org_and_model[0] | |
| model = org_and_model[1] | |
| res = f"{org}_{model}_{request.precision}" | |
| return res | |
| # doesn't make distinctions for tasks since the original code runs eval on ALL tasks. | |
| def process_evaluation(task_name: str, eval_request: EvalRequest) -> dict: | |
| # batch_size = 1 | |
| batch_size = "auto" | |
| # might not have to get the benchmark. | |
| print(f"task_name parameter in process_evaluation() = {task_name}") #, task_names=[task.benchmark] = {[task.benchmark]}") | |
| num_fewshot = num_fewshots[task_name] | |
| results = run_evaluation(eval_request=eval_request, task_names=task_name, num_fewshot=num_fewshot, | |
| batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT) | |
| print('RESULTS', results) | |
| dumped = json.dumps(results, indent=2, default=lambda o: '<not serializable>') | |
| print(dumped) | |
| output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{task_name}_{datetime.now()}.json") | |
| os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
| with open(output_path, "w") as f: | |
| f.write(dumped) | |
| my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{task_name}_{datetime.now()}.json", | |
| repo_id=RESULTS_REPO, repo_type="dataset") | |
| return results | |
| # the rendering is done with files in local repo. | |
| def process_pending_requests() -> bool: | |
| sanity_checks() | |
| current_pending_status = [PENDING_STATUS] | |
| # Get all eval request that are PENDING, if you want to run other evals, change this parameter | |
| # GETTING REQUESTS FROM THE HUB NOT LOCAL DIR. | |
| eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| # Sort the evals by priority (first submitted first run) | |
| eval_requests = sort_models_by_priority(api=API, models=eval_requests) | |
| random.shuffle(eval_requests) | |
| # this says zero | |
| print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") | |
| if len(eval_requests) == 0: | |
| return False | |
| eval_request = eval_requests[0] | |
| pp.pprint(eval_request) | |
| my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| # task_lst = TASKS_HARNESS.copy() | |
| task_lst = eval_request.get_user_requested_task_names() | |
| random.shuffle(task_lst) | |
| print(f"task_lst in process_pending_requests(): {task_lst}") | |
| for task_name in task_lst: | |
| results = process_evaluation(task_name, eval_request) | |
| my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| return True | |
| if __name__ == "__main__": | |
| # wait = True | |
| # import socket | |
| # if socket.gethostname() in {'hamburg'} or os.path.isdir("/home/pminervi"): | |
| # wait = False | |
| # if wait: | |
| # time.sleep(60 * random.randint(2, 5)) | |
| # pass | |
| # res = False | |
| res = process_pending_requests() | |
| # if res is False: | |
| # res = process_finished_requests(100) | |
| # if res is False: | |
| # res = process_finished_requests(0) | |