Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
|
@@ -5,10 +5,246 @@ import gradio as gr
|
|
| 5 |
# run nnunet
|
| 6 |
# export
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
return "cat"
|
| 13 |
|
| 14 |
|
|
|
|
| 5 |
# run nnunet
|
| 6 |
# export
|
| 7 |
|
| 8 |
+
import os
|
| 9 |
+
import pickle
|
| 10 |
+
import subprocess
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Union
|
| 13 |
|
| 14 |
+
import numpy as np
|
| 15 |
+
import SimpleITK as sitk
|
| 16 |
+
from evalutils import SegmentationAlgorithm
|
| 17 |
+
from evalutils.validators import (UniqueImagesValidator,
|
| 18 |
+
UniquePathIndicesValidator)
|
| 19 |
+
from picai_baseline.nnunet.softmax_export import \
|
| 20 |
+
save_softmax_nifti_from_softmax
|
| 21 |
+
from picai_prep import atomic_image_write
|
| 22 |
+
from picai_prep.preprocessing import (PreprocessingSettings, Sample,
|
| 23 |
+
resample_to_reference_scan)
|
| 24 |
|
| 25 |
|
| 26 |
+
class MissingSequenceError(Exception):
|
| 27 |
+
"""Exception raised when a sequence is missing."""
|
| 28 |
+
|
| 29 |
+
def __init__(self, name, folder):
|
| 30 |
+
message = f"Could not find scan for {name} in {folder} (files: {os.listdir(folder)})"
|
| 31 |
+
super().__init__(message)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class MultipleScansSameSequencesError(Exception):
|
| 35 |
+
"""Exception raised when multiple scans of the same sequences are provided."""
|
| 36 |
+
|
| 37 |
+
def __init__(self, name, folder):
|
| 38 |
+
message = f"Found multiple scans for {name} in {folder} (files: {os.listdir(folder)})"
|
| 39 |
+
super().__init__(message)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def convert_to_original_extent(pred: np.ndarray, pkl_path: Union[Path, str], dst_path: Union[Path, str]):
|
| 43 |
+
# convert to nnUNet's internal softmax format
|
| 44 |
+
pred = np.array([1-pred, pred])
|
| 45 |
+
|
| 46 |
+
# read physical properties of current case
|
| 47 |
+
with open(pkl_path, "rb") as fp:
|
| 48 |
+
properties = pickle.load(fp)
|
| 49 |
+
|
| 50 |
+
# let nnUNet resample to original physical space
|
| 51 |
+
save_softmax_nifti_from_softmax(
|
| 52 |
+
segmentation_softmax=pred,
|
| 53 |
+
out_fname=str(dst_path),
|
| 54 |
+
properties_dict=properties,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def strip_metadata(img: sitk.Image) -> None:
|
| 59 |
+
for key in img.GetMetaDataKeys():
|
| 60 |
+
img.EraseMetaData(key)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def overwrite_affine(fixed_img: sitk.Image, moving_img: sitk.Image) -> sitk.Image:
|
| 64 |
+
moving_img.SetOrigin(fixed_img.GetOrigin())
|
| 65 |
+
moving_img.SetDirection(fixed_img.GetDirection())
|
| 66 |
+
moving_img.SetSpacing(fixed_img.GetSpacing())
|
| 67 |
+
return moving_img
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class ProstateSegmentationAlgorithm(SegmentationAlgorithm):
|
| 71 |
+
"""
|
| 72 |
+
Wrapper to deploy trained prostate segmentation nnU-Net model from
|
| 73 |
+
https://github.com/DIAGNijmegen/picai_baseline as a
|
| 74 |
+
grand-challenge.org algorithm.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
def __init__(self):
|
| 78 |
+
super().__init__(
|
| 79 |
+
validators=dict(
|
| 80 |
+
input_image=(
|
| 81 |
+
UniqueImagesValidator(),
|
| 82 |
+
UniquePathIndicesValidator(),
|
| 83 |
+
)
|
| 84 |
+
),
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# input / output paths for algorithm
|
| 88 |
+
self.input_dirs = [
|
| 89 |
+
"/input/images/transverse-t2-prostate-mri"
|
| 90 |
+
]
|
| 91 |
+
self.scan_paths = []
|
| 92 |
+
self.prostate_segmentation_path_pz = Path("/output/images/softmax-prostate-peripheral-zone-segmentation/prostate_gland_sm_pz.mha")
|
| 93 |
+
self.prostate_segmentation_path_tz = Path("/output/images/softmax-prostate-central-gland-segmentation/prostate_gland_sm_tz.mha")
|
| 94 |
+
self.prostate_segmentation_path = Path("/output/images/prostate-zonal-segmentation/prostate_gland.mha")
|
| 95 |
+
|
| 96 |
+
# input / output paths for nnUNet
|
| 97 |
+
self.nnunet_inp_dir = Path("/opt/algorithm/nnunet/input")
|
| 98 |
+
self.nnunet_out_dir = Path("/opt/algorithm/nnunet/output")
|
| 99 |
+
self.nnunet_results = Path("/opt/algorithm/results")
|
| 100 |
+
|
| 101 |
+
# ensure required folders exist
|
| 102 |
+
self.nnunet_inp_dir.mkdir(exist_ok=True, parents=True)
|
| 103 |
+
self.nnunet_out_dir.mkdir(exist_ok=True, parents=True)
|
| 104 |
+
self.prostate_segmentation_path_pz.parent.mkdir(exist_ok=True, parents=True)
|
| 105 |
+
|
| 106 |
+
# input validation for multiple inputs
|
| 107 |
+
scan_glob_format = "*.mha"
|
| 108 |
+
for folder in self.input_dirs:
|
| 109 |
+
file_paths = list(Path(folder).glob(scan_glob_format))
|
| 110 |
+
if len(file_paths) == 0:
|
| 111 |
+
raise MissingSequenceError(name=folder.split("/")[-1], folder=folder)
|
| 112 |
+
elif len(file_paths) >= 2:
|
| 113 |
+
raise MultipleScansSameSequencesError(name=folder.split("/")[-1], folder=folder)
|
| 114 |
+
else:
|
| 115 |
+
# append scan path to algorithm input paths
|
| 116 |
+
self.scan_paths += [file_paths[0]]
|
| 117 |
+
|
| 118 |
+
def preprocess_input(self):
|
| 119 |
+
"""Preprocess input images to nnUNet Raw Data Archive format"""
|
| 120 |
+
# set up Sample
|
| 121 |
+
sample = Sample(
|
| 122 |
+
scans=[
|
| 123 |
+
sitk.ReadImage(str(path))
|
| 124 |
+
for path in [self.scan_paths[0]]
|
| 125 |
+
],
|
| 126 |
+
settings=PreprocessingSettings(
|
| 127 |
+
physical_size=[81.0, 192.0, 192.0],
|
| 128 |
+
crop_only=True
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# perform preprocessing
|
| 133 |
+
sample.preprocess()
|
| 134 |
+
|
| 135 |
+
# write preprocessed scans to nnUNet input directory
|
| 136 |
+
for i, scan in enumerate(sample.scans):
|
| 137 |
+
path = self.nnunet_inp_dir / f"scan_{i:04d}.nii.gz"
|
| 138 |
+
atomic_image_write(scan, path)
|
| 139 |
+
|
| 140 |
+
# Note: need to overwrite process because of flexible inputs, which requires custom data loading
|
| 141 |
+
def process(self):
|
| 142 |
+
"""
|
| 143 |
+
Load bpMRI scans and segment the prostate glands
|
| 144 |
+
"""
|
| 145 |
+
# perform preprocessing
|
| 146 |
+
self.preprocess_input()
|
| 147 |
+
|
| 148 |
+
# perform inference using nnUNet
|
| 149 |
+
self.predict(
|
| 150 |
+
task="Task848_experiment48",
|
| 151 |
+
trainer="nnUNetTrainerV2_MMS",
|
| 152 |
+
checkpoint="model_best",
|
| 153 |
+
folds="0"
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
pred_path_prostate = str(self.nnunet_out_dir / "scan.npz")
|
| 157 |
+
sm_arr = np.load(pred_path_prostate)['softmax']
|
| 158 |
+
pz_arr = np.array(sm_arr[1, :, :, :]).astype('float32')
|
| 159 |
+
tz_arr = np.array(sm_arr[2, :, :, :]).astype('float32')
|
| 160 |
+
|
| 161 |
+
# read postprocessed prediction
|
| 162 |
+
pred_path = str(self.nnunet_out_dir / "scan.nii.gz")
|
| 163 |
+
pred_postprocessed: sitk.Image = sitk.ReadImage(pred_path)
|
| 164 |
+
|
| 165 |
+
# remove metadata to get rid of SimpleITK warning
|
| 166 |
+
strip_metadata(pred_postprocessed)
|
| 167 |
+
|
| 168 |
+
# save postprocessed prediction to output
|
| 169 |
+
atomic_image_write(pred_postprocessed, self.prostate_segmentation_path, mkdir=True)
|
| 170 |
+
|
| 171 |
+
for pred, save_path in [
|
| 172 |
+
(pz_arr, self.prostate_segmentation_path_pz),
|
| 173 |
+
(tz_arr, self.prostate_segmentation_path_tz),
|
| 174 |
+
]:
|
| 175 |
+
# the prediction is currently at the size and location of the nnU-Net preprocessed
|
| 176 |
+
# scan, so we need to convert it to the original extent before we continue
|
| 177 |
+
convert_to_original_extent(
|
| 178 |
+
pred=pred,
|
| 179 |
+
pkl_path=self.nnunet_out_dir / "scan.pkl",
|
| 180 |
+
dst_path=self.nnunet_out_dir / "softmax.nii.gz",
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# now each voxel in softmax.nii.gz corresponds to the same voxel in the reference scan
|
| 184 |
+
pred = sitk.ReadImage(str(self.nnunet_out_dir / "softmax.nii.gz"))
|
| 185 |
+
|
| 186 |
+
# convert prediction to a SimpleITK image and infuse the physical metadata of the reference scan
|
| 187 |
+
reference_scan_original_path = str(self.scan_paths[0])
|
| 188 |
+
reference_scan = sitk.ReadImage(reference_scan_original_path)
|
| 189 |
+
pred = resample_to_reference_scan(pred, reference_scan_original=reference_scan)
|
| 190 |
+
|
| 191 |
+
# clip small values to 0 to save disk space
|
| 192 |
+
arr = sitk.GetArrayFromImage(pred)
|
| 193 |
+
arr[arr < 1e-3] = 0
|
| 194 |
+
pred_clipped = sitk.GetImageFromArray(arr)
|
| 195 |
+
pred_clipped.CopyInformation(pred)
|
| 196 |
+
|
| 197 |
+
# remove metadata to get rid of SimpleITK warning
|
| 198 |
+
strip_metadata(pred_clipped)
|
| 199 |
+
|
| 200 |
+
# save prediction to output folder
|
| 201 |
+
atomic_image_write(pred_clipped, save_path, mkdir=True)
|
| 202 |
+
|
| 203 |
+
def predict(self, task, trainer="nnUNetTrainerV2", network="3d_fullres",
|
| 204 |
+
checkpoint="model_final_checkpoint", folds="0,1,2,3,4", store_probability_maps=True,
|
| 205 |
+
disable_augmentation=False, disable_patch_overlap=False):
|
| 206 |
+
"""
|
| 207 |
+
Use trained nnUNet network to generate segmentation masks
|
| 208 |
+
"""
|
| 209 |
+
|
| 210 |
+
# Set environment variables
|
| 211 |
+
os.environ['RESULTS_FOLDER'] = str(self.nnunet_results)
|
| 212 |
+
|
| 213 |
+
# Run prediction script
|
| 214 |
+
cmd = [
|
| 215 |
+
'nnUNet_predict',
|
| 216 |
+
'-t', task,
|
| 217 |
+
'-i', str(self.nnunet_inp_dir),
|
| 218 |
+
'-o', str(self.nnunet_out_dir),
|
| 219 |
+
'-m', network,
|
| 220 |
+
'-tr', trainer,
|
| 221 |
+
'--num_threads_preprocessing', '2',
|
| 222 |
+
'--num_threads_nifti_save', '1'
|
| 223 |
+
]
|
| 224 |
+
|
| 225 |
+
if folds:
|
| 226 |
+
cmd.append('-f')
|
| 227 |
+
cmd.extend(folds.split(','))
|
| 228 |
+
|
| 229 |
+
if checkpoint:
|
| 230 |
+
cmd.append('-chk')
|
| 231 |
+
cmd.append(checkpoint)
|
| 232 |
+
|
| 233 |
+
if store_probability_maps:
|
| 234 |
+
cmd.append('--save_npz')
|
| 235 |
+
|
| 236 |
+
if disable_augmentation:
|
| 237 |
+
cmd.append('--disable_tta')
|
| 238 |
+
|
| 239 |
+
if disable_patch_overlap:
|
| 240 |
+
cmd.extend(['--step_size', '1'])
|
| 241 |
+
|
| 242 |
+
subprocess.check_call(cmd)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def predict(input_file):
|
| 247 |
+
print(input_file)
|
| 248 |
return "cat"
|
| 249 |
|
| 250 |
|