Spaces:
Runtime error
Runtime error
test this out
Browse files- gradio_app.py +4 -2
- inference.py +159 -0
gradio_app.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
def monai_inference(input):
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
demo = gr.Interface(
|
| 7 |
fn=monai_inference,
|
|
@@ -10,5 +12,5 @@ demo = gr.Interface(
|
|
| 10 |
title="Inference on monai model",
|
| 11 |
description="You can upload either zip of dicom folder or .nii.gz file. In turn, you can download the mask as .nii.gz file.",
|
| 12 |
)
|
| 13 |
-
|
| 14 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from inference import make_inference
|
| 3 |
|
| 4 |
def monai_inference(input):
|
| 5 |
+
data_dict = [{"t2": input.name}]
|
| 6 |
+
return make_inference(data_dict)
|
| 7 |
|
| 8 |
demo = gr.Interface(
|
| 9 |
fn=monai_inference,
|
|
|
|
| 12 |
title="Inference on monai model",
|
| 13 |
description="You can upload either zip of dicom folder or .nii.gz file. In turn, you can download the mask as .nii.gz file.",
|
| 14 |
)
|
| 15 |
+
demo.queue()
|
| 16 |
demo.launch()
|
inference.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import monai
|
| 2 |
+
import torch
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import nibabel as nib
|
| 5 |
+
import numpy as np
|
| 6 |
+
from monai.data import DataLoader
|
| 7 |
+
from monai.utils.enums import CommonKeys
|
| 8 |
+
from scipy import ndimage
|
| 9 |
+
from monai.data import Dataset
|
| 10 |
+
from monai.inferers import sliding_window_inference
|
| 11 |
+
from monai.metrics import DiceMetric
|
| 12 |
+
from monai.transforms import (
|
| 13 |
+
Activationsd,
|
| 14 |
+
AsDiscreted,
|
| 15 |
+
Compose,
|
| 16 |
+
ConcatItemsd,
|
| 17 |
+
KeepLargestConnectedComponentd,
|
| 18 |
+
LoadImaged,
|
| 19 |
+
EnsureChannelFirstd,
|
| 20 |
+
EnsureTyped,
|
| 21 |
+
SaveImaged,
|
| 22 |
+
ScaleIntensityd,
|
| 23 |
+
NormalizeIntensityd,
|
| 24 |
+
Spacingd,
|
| 25 |
+
Orientationd,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
|
| 30 |
+
# print("Using device:", device)
|
| 31 |
+
|
| 32 |
+
# model = monai.networks.nets.UNet(
|
| 33 |
+
# in_channels=1,
|
| 34 |
+
# out_channels=3,
|
| 35 |
+
# spatial_dims=3,
|
| 36 |
+
# channels=[16, 32, 64, 128, 256, 512],
|
| 37 |
+
# strides=[2, 2, 2, 2, 2],
|
| 38 |
+
# num_res_units=4,
|
| 39 |
+
# act="PRELU",
|
| 40 |
+
# norm="BATCH",
|
| 41 |
+
# dropout=0.15,
|
| 42 |
+
# )
|
| 43 |
+
|
| 44 |
+
# model.load_state_dict(torch.load("anatomy.pt", map_location=device))
|
| 45 |
+
|
| 46 |
+
keys = ("t2", "t2_anatomy_reader1")
|
| 47 |
+
transforms = Compose(
|
| 48 |
+
[
|
| 49 |
+
LoadImaged(keys=keys, image_only=False),
|
| 50 |
+
EnsureChannelFirstd(keys=keys),
|
| 51 |
+
Spacingd(keys=keys, pixdim=[0.5, 0.5, 0.5], mode=("bilinear", "nearest")),
|
| 52 |
+
Orientationd(keys=keys, axcodes="RAS"),
|
| 53 |
+
ScaleIntensityd(keys=keys, minv=0, maxv=1),
|
| 54 |
+
NormalizeIntensityd(keys=keys),
|
| 55 |
+
EnsureTyped(keys=keys),
|
| 56 |
+
ConcatItemsd(keys=("t2"), name=CommonKeys.IMAGE, dim=0),
|
| 57 |
+
ConcatItemsd(keys=("t2_anatomy_reader1"), name=CommonKeys.LABEL, dim=0),
|
| 58 |
+
]
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
postprocessing = Compose(
|
| 65 |
+
[
|
| 66 |
+
EnsureTyped(keys=[CommonKeys.PRED, CommonKeys.LABEL]),
|
| 67 |
+
KeepLargestConnectedComponentd(
|
| 68 |
+
keys=CommonKeys.PRED,
|
| 69 |
+
applied_labels=list(range(1, 3))
|
| 70 |
+
),
|
| 71 |
+
]
|
| 72 |
+
)
|
| 73 |
+
inferer = monai.inferers.SlidingWindowInferer(
|
| 74 |
+
roi_size=(96, 96, 96),
|
| 75 |
+
sw_batch_size=4,
|
| 76 |
+
overlap=0.5,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def resize_image(image: np.array, target_shape: tuple):
|
| 80 |
+
depth_factor = target_shape[0] / image.shape[0]
|
| 81 |
+
width_factor = target_shape[1] / image.shape[1]
|
| 82 |
+
height_factor = target_shape[2] / image.shape[2]
|
| 83 |
+
|
| 84 |
+
return ndimage.zoom(image, (depth_factor, width_factor, height_factor), order=1)
|
| 85 |
+
|
| 86 |
+
# model.eval()
|
| 87 |
+
# with torch.no_grad():
|
| 88 |
+
# for i in range(len(test_ds)):
|
| 89 |
+
# example = test_ds[i]
|
| 90 |
+
# label = example["t2_anatomy_reader1"]
|
| 91 |
+
# input_tensor = example["t2"].unsqueeze(0)
|
| 92 |
+
# input_tensor = input_tensor.to(device)
|
| 93 |
+
# output_tensor = inferer(input_tensor, model)
|
| 94 |
+
# output_tensor = output_tensor.argmax(dim=1, keepdim=False)
|
| 95 |
+
# output_tensor = output_tensor.squeeze(0).to(torch.device("cpu"))
|
| 96 |
+
|
| 97 |
+
# output_tensor = postprocessing({"pred": output_tensor, "label": label})["pred"]
|
| 98 |
+
# output_tensor = output_tensor.numpy().astype(np.uint8)
|
| 99 |
+
# target_shape = example["t2_meta_dict"]["spatial_shape"]
|
| 100 |
+
# output_tensor = resize_image(output_tensor, target_shape)
|
| 101 |
+
|
| 102 |
+
# # flip first two dimensions
|
| 103 |
+
# output_tensor = np.flip(output_tensor, axis=0)
|
| 104 |
+
# output_tensor = np.flip(output_tensor, axis=1)
|
| 105 |
+
|
| 106 |
+
# new_image = nib.Nifti1Image(output_tensor, affine=example["t2_meta_dict"]["affine"])
|
| 107 |
+
# nib.save(new_image, f"test/{i+1:03}/predicted.nii.gz")
|
| 108 |
+
|
| 109 |
+
# print("Saved", i+1)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def make_inference(data_dict:list) -> str:
|
| 113 |
+
|
| 114 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 115 |
+
|
| 116 |
+
print("Using device:", device)
|
| 117 |
+
|
| 118 |
+
model = monai.networks.nets.UNet(
|
| 119 |
+
in_channels=1,
|
| 120 |
+
out_channels=3,
|
| 121 |
+
spatial_dims=3,
|
| 122 |
+
channels=[16, 32, 64, 128, 256, 512],
|
| 123 |
+
strides=[2, 2, 2, 2, 2],
|
| 124 |
+
num_res_units=4,
|
| 125 |
+
act="PRELU",
|
| 126 |
+
norm="BATCH",
|
| 127 |
+
dropout=0.15,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
model.load_state_dict(torch.load("anatomy.pt", map_location=device))
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
test_ds = Dataset(
|
| 134 |
+
data=data_dict,
|
| 135 |
+
transform=transforms,
|
| 136 |
+
)
|
| 137 |
+
model.eval()
|
| 138 |
+
with torch.no_grad():
|
| 139 |
+
example = test_ds[0]
|
| 140 |
+
label = example["t2_anatomy_reader1"]
|
| 141 |
+
input_tensor = example["t2"].unsqueeze(0)
|
| 142 |
+
input_tensor = input_tensor.to(device)
|
| 143 |
+
output_tensor = inferer(input_tensor, model)
|
| 144 |
+
output_tensor = output_tensor.argmax(dim=1, keepdim=False)
|
| 145 |
+
output_tensor = output_tensor.squeeze(0).to(torch.device("cpu"))
|
| 146 |
+
|
| 147 |
+
output_tensor = postprocessing({"pred": output_tensor, "label": label})["pred"]
|
| 148 |
+
output_tensor = output_tensor.numpy().astype(np.uint8)
|
| 149 |
+
target_shape = example["t2_meta_dict"]["spatial_shape"]
|
| 150 |
+
output_tensor = resize_image(output_tensor, target_shape)
|
| 151 |
+
|
| 152 |
+
# flip first two dimensions
|
| 153 |
+
output_tensor = np.flip(output_tensor, axis=0)
|
| 154 |
+
output_tensor = np.flip(output_tensor, axis=1)
|
| 155 |
+
|
| 156 |
+
new_image = nib.Nifti1Image(output_tensor, affine=example["t2_meta_dict"]["affine"])
|
| 157 |
+
nib.save(new_image, "predicted.nii.gz")
|
| 158 |
+
return "predicted.nii.gz"
|
| 159 |
+
|