stablehairv2_demo / grapp.py
ouclxy's picture
Create grapp.py
f07f747 verified
raw
history blame
14.3 kB
import os
os.environ.setdefault("GRADIO_TEMP_DIR", "/data2/lzliu/tmp/gradio")
os.environ.setdefault("TMPDIR", "/data2/lzliu/tmp")
os.makedirs("/data2/lzliu/tmp/gradio", exist_ok=True)
os.makedirs("/data2/lzliu/tmp", exist_ok=True)
# 其余保持不变
import logging
import gradio as gr
import torch
import os
import uuid
from test_stablehairv2 import log_validation
from test_stablehairv2 import UNet3DConditionModel, ControlNetModel, CCProjection
from test_stablehairv2 import AutoTokenizer, CLIPVisionModelWithProjection, AutoencoderKL, UNet2DConditionModel
from omegaconf import OmegaConf
import numpy as np
import cv2
from test_stablehairv2 import _maybe_align_image
from HairMapper.hair_mapper_run import bald_head
import base64
with open("imgs/background.jpg", "rb") as f:
b64_img = base64.b64encode(f.read()).decode()
def inference(id_image, hair_image):
os.makedirs("gradio_inputs", exist_ok=True)
os.makedirs("gradio_outputs", exist_ok=True)
id_path = "gradio_inputs/id.png"
hair_path = "gradio_inputs/hair.png"
id_image.save(id_path)
hair_image.save(hair_path)
# ===== 图像对齐 =====
aligned_id = _maybe_align_image(id_path, output_size=1024, prefer_cuda=True)
aligned_hair = _maybe_align_image(hair_path, output_size=1024, prefer_cuda=True)
# 保存对齐结果(方便 Gradio 输出)
aligned_id_path = "gradio_outputs/aligned_id.png"
aligned_hair_path = "gradio_outputs/aligned_hair.png"
cv2.imwrite(aligned_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
cv2.imwrite(aligned_hair_path, cv2.cvtColor(aligned_hair, cv2.COLOR_RGB2BGR))
# ===== 调用 HairMapper 秃头化 =====
bald_id_path = "gradio_outputs/bald_id.png"
cv2.imwrite(bald_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
bald_head(bald_id_path, bald_id_path)
# ===== 原本的 Args =====
class Args:
pretrained_model_name_or_path = "./stable-diffusion-v1-5/stable-diffusion-v1-5"
model_path = "./trained_model"
image_encoder = "openai/clip-vit-large-patch14"
controlnet_model_name_or_path = None
revision = None
output_dir = "gradio_outputs"
seed = 42
num_validation_images = 1
validation_ids = [aligned_id_path] # 用对齐后的图像
validation_hairs = [aligned_hair_path] # 用对齐后的图像
use_fp16 = False
args = Args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 初始化 logger
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
# ===== 模型加载(和 main() 对齐) =====
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer",
revision=args.revision)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder, revision=args.revision).to(device)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision).to(
device, dtype=torch.float32)
infer_config = OmegaConf.load('./configs/inference/inference_v2.yaml')
unet2 = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, torch_dtype=torch.float32
).to(device)
conv_in_8 = torch.nn.Conv2d(8, unet2.conv_in.out_channels, kernel_size=unet2.conv_in.kernel_size,
padding=unet2.conv_in.padding)
conv_in_8.requires_grad_(False)
unet2.conv_in.requires_grad_(False)
torch.nn.init.zeros_(conv_in_8.weight)
conv_in_8.weight[:, :4, :, :].copy_(unet2.conv_in.weight)
conv_in_8.bias.copy_(unet2.conv_in.bias)
unet2.conv_in = conv_in_8
controlnet = ControlNetModel.from_unet(unet2).to(device)
state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model.bin"), map_location="cpu")
controlnet.load_state_dict(state_dict2, strict=False)
prefix = "motion_module"
ckpt_num = "4140000"
save_path = os.path.join(args.model_path, f"{prefix}-{ckpt_num}.pth")
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
args.pretrained_model_name_or_path,
save_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(device)
cc_projection = CCProjection().to(device)
state_dict3 = torch.load(os.path.join(args.model_path, "pytorch_model_1.bin"), map_location="cpu")
cc_projection.load_state_dict(state_dict3, strict=False)
from ref_encoder.reference_unet import ref_unet
Hair_Encoder = ref_unet.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False,
device_map=None, ignore_mismatched_sizes=True
).to(device)
state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model_2.bin"), map_location="cpu")
Hair_Encoder.load_state_dict(state_dict2, strict=False)
# 推理
log_validation(
vae, tokenizer, image_encoder, denoising_unet,
args, device, logger,
cc_projection, controlnet, Hair_Encoder
)
output_video = os.path.join(args.output_dir, "validation", "generated_video_0.mp4")
# 提取视频帧用于可拖动预览
frames_dir = os.path.join(args.output_dir, "frames", uuid.uuid4().hex)
os.makedirs(frames_dir, exist_ok=True)
cap = cv2.VideoCapture(output_video)
frames_list = []
idx = 0
while True:
ret, frame = cap.read()
if not ret:
break
fp = os.path.join(frames_dir, f"{idx:03d}.png")
cv2.imwrite(fp, frame)
frames_list.append(fp)
idx += 1
cap.release()
max_frames = len(frames_list) if frames_list else 1
first_frame = frames_list[0] if frames_list else None
return aligned_id_path, aligned_hair_path, bald_id_path, output_video, frames_list, gr.update(minimum=1,
maximum=max_frames,
value=1,
step=1), first_frame
# Gradio 前端
# 原 Interface 版本(保留以便回退)
# demo = gr.Interface(
# fn=inference,
# inputs=[
# gr.Image(type="pil", label="上传身份图(ID Image)"),
# gr.Image(type="pil", label="上传发型图(Hair Reference Image)")
# ],
# outputs=[
# gr.Image(type="filepath", label="对齐后的身份图"),
# gr.Image(type="filepath", label="对齐后的发型图"),
# gr.Image(type="filepath", label="秃头化后的身份图"),
# gr.Video(label="生成的视频")
# ],
# title="StableHairV2 多视角发型迁移",
# description="上传身份图和发型参考图,查看对齐结果并生成多视角视频"
# )
# if __name__ == "__main__":
# demo.launch(server_name="0.0.0.0", server_port=7860)
# Blocks 美化版
css = f"""
html, body {{
height: 100%;
margin: 0;
padding: 0;
}}
.gradio-container {{
width: 100% !important;
height: 100% !important;
margin: 0 !important;
padding: 0 !important;
background-image: url("data:image/jpeg;base64,{b64_img}");
background-size: cover;
background-position: center;
background-attachment: fixed; /* 背景固定 */
}}
#title-card {{
background: rgba(255, 255, 255, 0.8);
border-radius: 12px;
padding: 16px 24px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
margin-bottom: 20px;
}}
#title-card h2 {{
text-align: center;
margin: 4px 0 12px 0;
font-size: 28px;
}}
#title-card p {{
text-align: center;
font-size: 16px;
color: #374151;
}}
.out-card {{
border:1px solid #e5e7eb; border-radius:10px; padding:10px;
background: rgba(255,255,255,0.85);
}}
.two-col {{
display:grid !important; grid-template-columns: 360px minmax(680px, 1fr); gap:16px
}}
.left-pane {{min-width: 360px}}
.right-pane {{min-width: 680px}}
/* Tabs 美化 */
.tabs {{
background: rgba(255,255,255,0.88);
border-radius: 12px;
box-shadow: 0 8px 24px rgba(0,0,0,0.08);
padding: 8px;
border: 1px solid #e5e7eb;
}}
.tab-nav {{
display: flex; gap: 8px; margin-bottom: 8px;
background: transparent;
border-bottom: 1px solid #e5e7eb;
padding-bottom: 6px;
}}
.tab-nav button {{
background: rgba(255,255,255,0.7);
border: 1px solid #e5e7eb;
backdrop-filter: blur(6px);
border-radius: 8px;
padding: 6px 12px;
color: #111827;
transition: all .2s ease;
}}
.tab-nav button:hover {{
transform: translateY(-1px);
box-shadow: 0 4px 10px rgba(0,0,0,0.06);
}}
.tab-nav button[aria-selected="true"] {{
background: #4f46e5;
color: #fff;
border-color: #4f46e5;
box-shadow: 0 6px 14px rgba(79,70,229,0.25);
}}
.tabitem {{
background: rgba(255,255,255,0.88);
border-radius: 10px;
padding: 8px;
}}
/* 发型库滚动限制容器:固定260px高度,内部可滚动 */
#hair_gallery_wrap {{
height: 260px !important;
overflow-y: scroll !important;
overflow-x: auto !important;
}}
#hair_gallery_wrap .grid, #hair_gallery_wrap .wrap {{
height: 100% !important;
overflow-y: scroll !important;
}}
/* 确保画廊本体占满容器高度,避免滚动条落到页面底部 */
#hair_gallery {{
height: 100% !important;
}}
"""
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate"),
css=css
) as demo:
# ==== 顶部 Panel ====
with gr.Group(elem_id="title-card"):
gr.Markdown("""
<h2 id='title'>StableHairV2 多视角发型迁移</h2>
<p>上传身份图与发型参考图,系统将自动完成 <b>对齐 → 秃头化 → 视频生成</b>。</p>
""")
with gr.Row(elem_classes=["two-col"]):
with gr.Column(scale=5, min_width=260, elem_classes=["left-pane"]):
id_input = gr.Image(type="pil", label="身份图", height=200)
hair_input = gr.Image(type="pil", label="发型参考图", height=200)
with gr.Row():
run_btn = gr.Button("开始生成", variant="primary")
clear_btn = gr.Button("清空")
# ========= 发型库(点击即填充到“发型参考图”) =========
def _list_imgs(dir_path: str):
exts = (".png", ".jpg", ".jpeg", ".webp")
# exts = (".jpg")
try:
files = [os.path.join(dir_path, f) for f in sorted(os.listdir(dir_path))
if f.lower().endswith(exts)]
return files
except Exception:
return []
hair_list = _list_imgs("hair_resposity")
with gr.Accordion("发型库(点击选择后自动填充)", open=True):
with gr.Group(elem_id="hair_gallery_wrap"):
gallery = gr.Gallery(
value=hair_list,
columns=4, rows=2, allow_preview=True, label="发型库",
elem_id="hair_gallery"
)
def _pick_hair(evt: gr.SelectData): # type: ignore[name-defined]
i = evt.index if hasattr(evt, 'index') else 0
i = 0 if i is None else int(i)
if 0 <= i < len(hair_list):
return gr.update(value=hair_list[i])
return gr.update()
gallery.select(_pick_hair, inputs=None, outputs=hair_input)
with gr.Column(scale=7, min_width=520, elem_classes=["right-pane"]):
with gr.Tabs():
with gr.TabItem("生成视频"):
with gr.Group(elem_classes=["out-card"]):
video_out = gr.Video(label="生成的视频", height=340)
with gr.Row():
frame_slider = gr.Slider(1, 21, value=1, step=1, label="多视角预览(拖动查看帧)")
frame_preview = gr.Image(type="filepath", label="预览帧", height=260)
frames_state = gr.State([])
with gr.TabItem("归一化对齐结果"):
with gr.Group(elem_classes=["out-card"]):
with gr.Row():
aligned_id_out = gr.Image(type="filepath", label="对齐后的身份图", height=240)
aligned_hair_out = gr.Image(type="filepath", label="对齐后的发型图", height=240)
with gr.TabItem("秃头化结果"):
with gr.Group(elem_classes=["out-card"]):
bald_id_out = gr.Image(type="filepath", label="秃头化后的身份图", height=260)
# 逻辑保持不变
run_btn.click(fn=inference,
inputs=[id_input, hair_input],
outputs=[aligned_id_out, aligned_hair_out, bald_id_out,
video_out, frames_state, frame_slider, frame_preview])
def _on_slide(frames, idx):
if not frames:
return gr.update()
i = int(idx) - 1
i = max(0, min(i, len(frames) - 1))
return gr.update(value=frames[i])
frame_slider.change(_on_slide, inputs=[frames_state, frame_slider], outputs=frame_preview)
def _clear():
return None, None, None, None, None
clear_btn.click(_clear, None,
[id_input, hair_input, aligned_id_out, aligned_hair_out, bald_id_out])
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860)