Spaces:
Runtime error
Runtime error
Upload 72 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +6 -0
- hair_resposity/2.jpg +0 -0
- hair_resposity/6.jpg +3 -0
- hair_resposity/7.jpg +3 -0
- imgs/background.png +3 -0
- imgs/multiview1.gif +3 -0
- imgs/multiview2.gif +3 -0
- imgs/teaser.jpg +3 -0
- ref_encoder/__init__.py +0 -0
- ref_encoder/adapter.py +40 -0
- ref_encoder/attention.py +481 -0
- ref_encoder/attention_processor.py +391 -0
- ref_encoder/latent_controlnet.py +0 -0
- ref_encoder/motion_module.py +388 -0
- ref_encoder/mutual_self_attention.py +365 -0
- ref_encoder/pose_guider.py +57 -0
- ref_encoder/reference_control.py +528 -0
- ref_encoder/reference_unet.py +1053 -0
- ref_encoder/reference_unetv2.py +1037 -0
- ref_encoder/resnet.py +263 -0
- ref_encoder/transformer_2d.py +396 -0
- ref_encoder/transformer_3d.py +202 -0
- ref_encoder/unet_2d_blocks.py +1074 -0
- ref_encoder/unet_2d_condition.py +1308 -0
- ref_encoder/unet_3d.py +702 -0
- ref_encoder/unet_3d_blocks.py +906 -0
- src/__init__.py +0 -0
- src/dataset/dance_image.py +124 -0
- src/dataset/dance_video.py +137 -0
- src/dwpose/__init__.py +123 -0
- src/dwpose/onnxdet.py +130 -0
- src/dwpose/onnxpose.py +370 -0
- src/dwpose/util.py +378 -0
- src/dwpose/wholebody.py +48 -0
- src/models/attention.py +481 -0
- src/models/motion_module.py +388 -0
- src/models/mutual_self_attention.py +365 -0
- src/models/pose_guider.py +57 -0
- src/models/resnet.py +252 -0
- src/models/transformer_2d.py +396 -0
- src/models/transformer_3d.py +202 -0
- src/models/unet_2d_blocks.py +1074 -0
- src/models/unet_2d_condition.py +1308 -0
- src/models/unet_3d.py +707 -0
- src/models/unet_3d_blocks.py +906 -0
- src/pipelines/__init__.py +0 -0
- src/pipelines/context.py +76 -0
- src/pipelines/pipeline_lmks2vid_long.py +622 -0
- src/pipelines/pipeline_pose2img.py +360 -0
- src/pipelines/pipeline_pose2vid.py +458 -0
.gitattributes
CHANGED
|
@@ -44,3 +44,9 @@ hair_resposity/8.jpg filter=lfs diff=lfs merge=lfs -text
|
|
| 44 |
test_imgs/ref2.jpg filter=lfs diff=lfs merge=lfs -text
|
| 45 |
test_imgs/wjl.jpg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
test_imgs/zzf.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
test_imgs/ref2.jpg filter=lfs diff=lfs merge=lfs -text
|
| 45 |
test_imgs/wjl.jpg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
test_imgs/zzf.jpg filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
hair_resposity/6.jpg filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
hair_resposity/7.jpg filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
imgs/background.png filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
imgs/multiview1.gif filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
imgs/multiview2.gif filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
imgs/teaser.jpg filter=lfs diff=lfs merge=lfs -text
|
hair_resposity/2.jpg
ADDED
|
hair_resposity/6.jpg
ADDED
|
Git LFS Details
|
hair_resposity/7.jpg
ADDED
|
Git LFS Details
|
imgs/background.png
ADDED
|
Git LFS Details
|
imgs/multiview1.gif
ADDED
|
Git LFS Details
|
imgs/multiview2.gif
ADDED
|
Git LFS Details
|
imgs/teaser.jpg
ADDED
|
Git LFS Details
|
ref_encoder/__init__.py
ADDED
|
File without changes
|
ref_encoder/adapter.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
|
| 4 |
+
def is_torch2_available():
|
| 5 |
+
return hasattr(F, "scaled_dot_product_attention")
|
| 6 |
+
if is_torch2_available():
|
| 7 |
+
from .attention_processor import HairAttnProcessor2_0 as HairAttnProcessor, AttnProcessor2_0 as AttnProcessor
|
| 8 |
+
else:
|
| 9 |
+
from .attention_processor import HairAttnProcessor, AttnProcessor
|
| 10 |
+
|
| 11 |
+
def adapter_injection(unet, device="cuda", dtype=torch.float32, use_resampler=False, continue_learning_path=None):
|
| 12 |
+
device = device
|
| 13 |
+
dtype = dtype
|
| 14 |
+
# load Hair attention layers
|
| 15 |
+
attn_procs = {}
|
| 16 |
+
for name in unet.attn_processors.keys():
|
| 17 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
| 18 |
+
if name.startswith("mid_block"):
|
| 19 |
+
hidden_size = unet.config.block_out_channels[-1]
|
| 20 |
+
elif name.startswith("up_blocks"):
|
| 21 |
+
block_id = int(name[len("up_blocks.")])
|
| 22 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
| 23 |
+
elif name.startswith("down_blocks"):
|
| 24 |
+
block_id = int(name[len("down_blocks.")])
|
| 25 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
| 26 |
+
if cross_attention_dim is None:
|
| 27 |
+
attn_procs[name] = HairAttnProcessor(hidden_size=hidden_size, cross_attention_dim=hidden_size, scale=1, use_resampler=use_resampler).to(device, dtype=dtype)
|
| 28 |
+
else:
|
| 29 |
+
attn_procs[name] = AttnProcessor()
|
| 30 |
+
unet.set_attn_processor(attn_procs)
|
| 31 |
+
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
|
| 32 |
+
adapter_layers = adapter_modules
|
| 33 |
+
adapter_layers.to(device, dtype=dtype)
|
| 34 |
+
|
| 35 |
+
return adapter_layers
|
| 36 |
+
|
| 37 |
+
def set_scale(unet, scale):
|
| 38 |
+
for attn_processor in unet.attn_processors.values():
|
| 39 |
+
if isinstance(attn_processor, HairAttnProcessor):
|
| 40 |
+
attn_processor.scale = scale
|
ref_encoder/attention.py
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
| 2 |
+
|
| 3 |
+
from typing import Any, Dict, Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
|
| 7 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from torch import nn
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class BasicTransformerBlock(nn.Module):
|
| 13 |
+
r"""
|
| 14 |
+
A basic Transformer block.
|
| 15 |
+
|
| 16 |
+
Parameters:
|
| 17 |
+
dim (`int`): The number of channels in the input and output.
|
| 18 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 19 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 20 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 21 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 22 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 23 |
+
num_embeds_ada_norm (:
|
| 24 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
| 25 |
+
attention_bias (:
|
| 26 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
| 27 |
+
only_cross_attention (`bool`, *optional*):
|
| 28 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
| 29 |
+
double_self_attention (`bool`, *optional*):
|
| 30 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
| 31 |
+
upcast_attention (`bool`, *optional*):
|
| 32 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
| 33 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
| 34 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 35 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
| 36 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
| 37 |
+
final_dropout (`bool` *optional*, defaults to False):
|
| 38 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 39 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
| 40 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
| 41 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
| 42 |
+
The type of positional embeddings to apply to.
|
| 43 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
| 44 |
+
The maximum number of positional embeddings to apply.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
dim: int,
|
| 50 |
+
num_attention_heads: int,
|
| 51 |
+
attention_head_dim: int,
|
| 52 |
+
dropout=0.0,
|
| 53 |
+
cross_attention_dim: Optional[int] = None,
|
| 54 |
+
activation_fn: str = "geglu",
|
| 55 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 56 |
+
attention_bias: bool = False,
|
| 57 |
+
only_cross_attention: bool = False,
|
| 58 |
+
double_self_attention: bool = False,
|
| 59 |
+
upcast_attention: bool = False,
|
| 60 |
+
norm_elementwise_affine: bool = True,
|
| 61 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
| 62 |
+
norm_eps: float = 1e-5,
|
| 63 |
+
final_dropout: bool = False,
|
| 64 |
+
attention_type: str = "default",
|
| 65 |
+
positional_embeddings: Optional[str] = None,
|
| 66 |
+
num_positional_embeddings: Optional[int] = None,
|
| 67 |
+
):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.only_cross_attention = only_cross_attention
|
| 70 |
+
|
| 71 |
+
self.use_ada_layer_norm_zero = (
|
| 72 |
+
num_embeds_ada_norm is not None
|
| 73 |
+
) and norm_type == "ada_norm_zero"
|
| 74 |
+
self.use_ada_layer_norm = (
|
| 75 |
+
num_embeds_ada_norm is not None
|
| 76 |
+
) and norm_type == "ada_norm"
|
| 77 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
| 78 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
| 79 |
+
|
| 80 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
| 81 |
+
raise ValueError(
|
| 82 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
| 83 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
| 87 |
+
raise ValueError(
|
| 88 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if positional_embeddings == "sinusoidal":
|
| 92 |
+
self.pos_embed = SinusoidalPositionalEmbedding(
|
| 93 |
+
dim, max_seq_length=num_positional_embeddings
|
| 94 |
+
)
|
| 95 |
+
else:
|
| 96 |
+
self.pos_embed = None
|
| 97 |
+
|
| 98 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 99 |
+
# 1. Self-Attn
|
| 100 |
+
if self.use_ada_layer_norm:
|
| 101 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 102 |
+
elif self.use_ada_layer_norm_zero:
|
| 103 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
| 104 |
+
else:
|
| 105 |
+
self.norm1 = nn.LayerNorm(
|
| 106 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
self.attn1 = Attention(
|
| 110 |
+
query_dim=dim,
|
| 111 |
+
heads=num_attention_heads,
|
| 112 |
+
dim_head=attention_head_dim,
|
| 113 |
+
dropout=dropout,
|
| 114 |
+
bias=attention_bias,
|
| 115 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 116 |
+
upcast_attention=upcast_attention,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# 2. Cross-Attn
|
| 120 |
+
if cross_attention_dim is not None or double_self_attention:
|
| 121 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
| 122 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
| 123 |
+
# the second cross attention block.
|
| 124 |
+
self.norm2 = (
|
| 125 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 126 |
+
if self.use_ada_layer_norm
|
| 127 |
+
else nn.LayerNorm(
|
| 128 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
self.attn2 = Attention(
|
| 132 |
+
query_dim=dim,
|
| 133 |
+
cross_attention_dim=cross_attention_dim
|
| 134 |
+
if not double_self_attention
|
| 135 |
+
else None,
|
| 136 |
+
heads=num_attention_heads,
|
| 137 |
+
dim_head=attention_head_dim,
|
| 138 |
+
dropout=dropout,
|
| 139 |
+
bias=attention_bias,
|
| 140 |
+
upcast_attention=upcast_attention,
|
| 141 |
+
) # is self-attn if encoder_hidden_states is none
|
| 142 |
+
else:
|
| 143 |
+
self.norm2 = None
|
| 144 |
+
self.attn2 = None
|
| 145 |
+
|
| 146 |
+
# 3. Feed-forward
|
| 147 |
+
if not self.use_ada_layer_norm_single:
|
| 148 |
+
self.norm3 = nn.LayerNorm(
|
| 149 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
self.ff = FeedForward(
|
| 153 |
+
dim,
|
| 154 |
+
dropout=dropout,
|
| 155 |
+
activation_fn=activation_fn,
|
| 156 |
+
final_dropout=final_dropout,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# 4. Fuser
|
| 160 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
| 161 |
+
self.fuser = GatedSelfAttentionDense(
|
| 162 |
+
dim, cross_attention_dim, num_attention_heads, attention_head_dim
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# 5. Scale-shift for PixArt-Alpha.
|
| 166 |
+
if self.use_ada_layer_norm_single:
|
| 167 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
| 168 |
+
|
| 169 |
+
# let chunk size default to None
|
| 170 |
+
self._chunk_size = None
|
| 171 |
+
self._chunk_dim = 0
|
| 172 |
+
|
| 173 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
| 174 |
+
# Sets chunk feed-forward
|
| 175 |
+
self._chunk_size = chunk_size
|
| 176 |
+
self._chunk_dim = dim
|
| 177 |
+
|
| 178 |
+
def forward(
|
| 179 |
+
self,
|
| 180 |
+
hidden_states: torch.FloatTensor,
|
| 181 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 182 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 183 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 184 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 185 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 186 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 187 |
+
) -> torch.FloatTensor:
|
| 188 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 189 |
+
# 0. Self-Attention
|
| 190 |
+
batch_size = hidden_states.shape[0]
|
| 191 |
+
|
| 192 |
+
if self.use_ada_layer_norm:
|
| 193 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 194 |
+
elif self.use_ada_layer_norm_zero:
|
| 195 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 196 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 197 |
+
)
|
| 198 |
+
elif self.use_layer_norm:
|
| 199 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 200 |
+
elif self.use_ada_layer_norm_single:
|
| 201 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 202 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
| 203 |
+
).chunk(6, dim=1)
|
| 204 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 205 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 206 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
| 207 |
+
else:
|
| 208 |
+
raise ValueError("Incorrect norm used")
|
| 209 |
+
|
| 210 |
+
if self.pos_embed is not None:
|
| 211 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 212 |
+
|
| 213 |
+
# 1. Retrieve lora scale.
|
| 214 |
+
lora_scale = (
|
| 215 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 216 |
+
if cross_attention_kwargs is not None
|
| 217 |
+
else 1.0
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# 2. Prepare GLIGEN inputs
|
| 221 |
+
cross_attention_kwargs = (
|
| 222 |
+
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 223 |
+
)
|
| 224 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
| 225 |
+
|
| 226 |
+
attn_output = self.attn1(
|
| 227 |
+
norm_hidden_states,
|
| 228 |
+
encoder_hidden_states=encoder_hidden_states
|
| 229 |
+
if self.only_cross_attention
|
| 230 |
+
else None,
|
| 231 |
+
attention_mask=attention_mask,
|
| 232 |
+
**cross_attention_kwargs,
|
| 233 |
+
)
|
| 234 |
+
if self.use_ada_layer_norm_zero:
|
| 235 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 236 |
+
elif self.use_ada_layer_norm_single:
|
| 237 |
+
attn_output = gate_msa * attn_output
|
| 238 |
+
|
| 239 |
+
hidden_states = attn_output + hidden_states
|
| 240 |
+
if hidden_states.ndim == 4:
|
| 241 |
+
hidden_states = hidden_states.squeeze(1)
|
| 242 |
+
|
| 243 |
+
# 2.5 GLIGEN Control
|
| 244 |
+
if gligen_kwargs is not None:
|
| 245 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
| 246 |
+
|
| 247 |
+
# 3. Cross-Attention
|
| 248 |
+
if self.attn2 is not None:
|
| 249 |
+
if self.use_ada_layer_norm:
|
| 250 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
| 251 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
| 252 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 253 |
+
elif self.use_ada_layer_norm_single:
|
| 254 |
+
# For PixArt norm2 isn't applied here:
|
| 255 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
| 256 |
+
norm_hidden_states = hidden_states
|
| 257 |
+
else:
|
| 258 |
+
raise ValueError("Incorrect norm")
|
| 259 |
+
|
| 260 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
| 261 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 262 |
+
|
| 263 |
+
attn_output = self.attn2(
|
| 264 |
+
norm_hidden_states,
|
| 265 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 266 |
+
attention_mask=encoder_attention_mask,
|
| 267 |
+
**cross_attention_kwargs,
|
| 268 |
+
)
|
| 269 |
+
hidden_states = attn_output + hidden_states
|
| 270 |
+
|
| 271 |
+
# 4. Feed-forward
|
| 272 |
+
if not self.use_ada_layer_norm_single:
|
| 273 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 274 |
+
|
| 275 |
+
if self.use_ada_layer_norm_zero:
|
| 276 |
+
norm_hidden_states = (
|
| 277 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
if self.use_ada_layer_norm_single:
|
| 281 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 282 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 283 |
+
|
| 284 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
| 285 |
+
|
| 286 |
+
if self.use_ada_layer_norm_zero:
|
| 287 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 288 |
+
elif self.use_ada_layer_norm_single:
|
| 289 |
+
ff_output = gate_mlp * ff_output
|
| 290 |
+
|
| 291 |
+
hidden_states = ff_output + hidden_states
|
| 292 |
+
if hidden_states.ndim == 4:
|
| 293 |
+
hidden_states = hidden_states.squeeze(1)
|
| 294 |
+
|
| 295 |
+
return hidden_states
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
| 299 |
+
def __init__(
|
| 300 |
+
self,
|
| 301 |
+
dim: int,
|
| 302 |
+
num_attention_heads: int,
|
| 303 |
+
attention_head_dim: int,
|
| 304 |
+
dropout=0.0,
|
| 305 |
+
cross_attention_dim: Optional[int] = None,
|
| 306 |
+
activation_fn: str = "geglu",
|
| 307 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 308 |
+
attention_bias: bool = False,
|
| 309 |
+
only_cross_attention: bool = False,
|
| 310 |
+
upcast_attention: bool = False,
|
| 311 |
+
unet_use_cross_frame_attention=None,
|
| 312 |
+
unet_use_temporal_attention=None,
|
| 313 |
+
name=None,
|
| 314 |
+
):
|
| 315 |
+
super().__init__()
|
| 316 |
+
self.only_cross_attention = only_cross_attention
|
| 317 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
| 318 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
| 319 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
| 320 |
+
self.name=name
|
| 321 |
+
|
| 322 |
+
# SC-Attn
|
| 323 |
+
self.attn1 = Attention(
|
| 324 |
+
query_dim=dim,
|
| 325 |
+
heads=num_attention_heads,
|
| 326 |
+
dim_head=attention_head_dim,
|
| 327 |
+
dropout=dropout,
|
| 328 |
+
bias=attention_bias,
|
| 329 |
+
upcast_attention=upcast_attention,
|
| 330 |
+
)
|
| 331 |
+
self.norm1 = (
|
| 332 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 333 |
+
if self.use_ada_layer_norm
|
| 334 |
+
else nn.LayerNorm(dim)
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Cross-Attn
|
| 338 |
+
if cross_attention_dim is not None:
|
| 339 |
+
self.attn2 = Attention(
|
| 340 |
+
query_dim=dim,
|
| 341 |
+
cross_attention_dim=cross_attention_dim,
|
| 342 |
+
heads=num_attention_heads,
|
| 343 |
+
dim_head=attention_head_dim,
|
| 344 |
+
dropout=dropout,
|
| 345 |
+
bias=attention_bias,
|
| 346 |
+
upcast_attention=upcast_attention,
|
| 347 |
+
)
|
| 348 |
+
else:
|
| 349 |
+
self.attn2 = None
|
| 350 |
+
|
| 351 |
+
if cross_attention_dim is not None:
|
| 352 |
+
self.norm2 = (
|
| 353 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 354 |
+
if self.use_ada_layer_norm
|
| 355 |
+
else nn.LayerNorm(dim)
|
| 356 |
+
)
|
| 357 |
+
else:
|
| 358 |
+
self.norm2 = None
|
| 359 |
+
|
| 360 |
+
# Feed-forward
|
| 361 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 362 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 363 |
+
self.use_ada_layer_norm_zero = False
|
| 364 |
+
# Temp-Attn
|
| 365 |
+
assert unet_use_temporal_attention is not None
|
| 366 |
+
if unet_use_temporal_attention:
|
| 367 |
+
self.attn_temp = Attention(
|
| 368 |
+
query_dim=dim,
|
| 369 |
+
heads=num_attention_heads,
|
| 370 |
+
dim_head=attention_head_dim,
|
| 371 |
+
dropout=dropout,
|
| 372 |
+
bias=attention_bias,
|
| 373 |
+
upcast_attention=upcast_attention,
|
| 374 |
+
)
|
| 375 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
| 376 |
+
self.norm_temp = (
|
| 377 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 378 |
+
if self.use_ada_layer_norm
|
| 379 |
+
else nn.LayerNorm(dim)
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
def forward(
|
| 383 |
+
self,
|
| 384 |
+
hidden_states,
|
| 385 |
+
encoder_hidden_states=None,
|
| 386 |
+
timestep=None,
|
| 387 |
+
attention_mask=None,
|
| 388 |
+
video_length=None,
|
| 389 |
+
self_attention_additional_feats=None,
|
| 390 |
+
mode=None,
|
| 391 |
+
):
|
| 392 |
+
norm_hidden_states = (
|
| 393 |
+
self.norm1(hidden_states, timestep)
|
| 394 |
+
if self.use_ada_layer_norm
|
| 395 |
+
else self.norm1(hidden_states)
|
| 396 |
+
)
|
| 397 |
+
if self.name:
|
| 398 |
+
modify_norm_hidden_states = norm_hidden_states
|
| 399 |
+
if mode == "write":
|
| 400 |
+
self_attention_additional_feats[self.name]=norm_hidden_states
|
| 401 |
+
elif mode == "read" and self_attention_additional_feats:
|
| 402 |
+
ref_states = self_attention_additional_feats[self.name]
|
| 403 |
+
bank_fea = [
|
| 404 |
+
rearrange(
|
| 405 |
+
ref_states.unsqueeze(1).repeat(1, video_length, 1, 1),
|
| 406 |
+
"b t l c -> (b t) l c",
|
| 407 |
+
)
|
| 408 |
+
]
|
| 409 |
+
modify_norm_hidden_states = torch.cat(
|
| 410 |
+
[norm_hidden_states] + bank_fea, dim=1
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
if self.unet_use_cross_frame_attention:
|
| 414 |
+
hidden_states = (
|
| 415 |
+
self.attn1(
|
| 416 |
+
norm_hidden_states,
|
| 417 |
+
attention_mask=attention_mask,
|
| 418 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
| 419 |
+
video_length=video_length,
|
| 420 |
+
)
|
| 421 |
+
+ hidden_states
|
| 422 |
+
)
|
| 423 |
+
else:
|
| 424 |
+
hidden_states = (
|
| 425 |
+
self.attn1(
|
| 426 |
+
norm_hidden_states,
|
| 427 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
| 428 |
+
attention_mask=attention_mask
|
| 429 |
+
)
|
| 430 |
+
+ hidden_states
|
| 431 |
+
)
|
| 432 |
+
else:
|
| 433 |
+
if self.unet_use_cross_frame_attention:
|
| 434 |
+
hidden_states = (
|
| 435 |
+
self.attn1(
|
| 436 |
+
norm_hidden_states,
|
| 437 |
+
attention_mask=attention_mask,
|
| 438 |
+
video_length=video_length,
|
| 439 |
+
)
|
| 440 |
+
+ hidden_states
|
| 441 |
+
)
|
| 442 |
+
else:
|
| 443 |
+
hidden_states = (
|
| 444 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask)
|
| 445 |
+
+ hidden_states
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
if self.attn2 is not None:
|
| 449 |
+
# Cross-Attention
|
| 450 |
+
norm_hidden_states = (
|
| 451 |
+
self.norm2(hidden_states, timestep)
|
| 452 |
+
if self.use_ada_layer_norm
|
| 453 |
+
else self.norm2(hidden_states)
|
| 454 |
+
)
|
| 455 |
+
hidden_states = (
|
| 456 |
+
self.attn2(
|
| 457 |
+
norm_hidden_states,
|
| 458 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 459 |
+
attention_mask=attention_mask,
|
| 460 |
+
)
|
| 461 |
+
+ hidden_states
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
# Feed-forward
|
| 465 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 466 |
+
|
| 467 |
+
# Temporal-Attention
|
| 468 |
+
if self.unet_use_temporal_attention:
|
| 469 |
+
d = hidden_states.shape[1]
|
| 470 |
+
hidden_states = rearrange(
|
| 471 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
| 472 |
+
)
|
| 473 |
+
norm_hidden_states = (
|
| 474 |
+
self.norm_temp(hidden_states, timestep)
|
| 475 |
+
if self.use_ada_layer_norm
|
| 476 |
+
else self.norm_temp(hidden_states)
|
| 477 |
+
)
|
| 478 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
| 479 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
| 480 |
+
|
| 481 |
+
return hidden_states
|
ref_encoder/attention_processor.py
ADDED
|
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 6 |
+
if is_xformers_available():
|
| 7 |
+
import xformers
|
| 8 |
+
import xformers.ops
|
| 9 |
+
else:
|
| 10 |
+
xformers = None
|
| 11 |
+
|
| 12 |
+
class HairAttnProcessor(nn.Module):
|
| 13 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, use_resampler=False):
|
| 14 |
+
super().__init__()
|
| 15 |
+
|
| 16 |
+
self.hidden_size = hidden_size
|
| 17 |
+
self.cross_attention_dim = cross_attention_dim
|
| 18 |
+
self.scale = scale
|
| 19 |
+
self.use_resampler = use_resampler
|
| 20 |
+
if self.use_resampler:
|
| 21 |
+
self.resampler = Resampler(query_dim=hidden_size)
|
| 22 |
+
self.to_k_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 23 |
+
self.to_v_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 24 |
+
|
| 25 |
+
def __call__(
|
| 26 |
+
self,
|
| 27 |
+
attn,
|
| 28 |
+
hidden_states,
|
| 29 |
+
encoder_hidden_states=None,
|
| 30 |
+
attention_mask=None,
|
| 31 |
+
temb=None,
|
| 32 |
+
):
|
| 33 |
+
residual = hidden_states
|
| 34 |
+
|
| 35 |
+
if attn.spatial_norm is not None:
|
| 36 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 37 |
+
|
| 38 |
+
input_ndim = hidden_states.ndim
|
| 39 |
+
|
| 40 |
+
if input_ndim == 4:
|
| 41 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 42 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 43 |
+
|
| 44 |
+
batch_size, sequence_length, _ = (
|
| 45 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 46 |
+
)
|
| 47 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 48 |
+
|
| 49 |
+
if attn.group_norm is not None:
|
| 50 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 51 |
+
|
| 52 |
+
query = attn.to_q(hidden_states)
|
| 53 |
+
|
| 54 |
+
if encoder_hidden_states is None:
|
| 55 |
+
encoder_hidden_states = hidden_states
|
| 56 |
+
elif attn.norm_cross:
|
| 57 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 58 |
+
|
| 59 |
+
# split hidden states
|
| 60 |
+
split_num = encoder_hidden_states.shape[1] // 2
|
| 61 |
+
encoder_hidden_states, _hidden_states = encoder_hidden_states[:, :split_num,
|
| 62 |
+
:], encoder_hidden_states[:, split_num:, :]
|
| 63 |
+
|
| 64 |
+
if self.use_resampler:
|
| 65 |
+
_hidden_states = self.resampler(_hidden_states)
|
| 66 |
+
|
| 67 |
+
key = attn.to_k(encoder_hidden_states)
|
| 68 |
+
value = attn.to_v(encoder_hidden_states)
|
| 69 |
+
|
| 70 |
+
query = attn.head_to_batch_dim(query)
|
| 71 |
+
key = attn.head_to_batch_dim(key)
|
| 72 |
+
value = attn.head_to_batch_dim(value)
|
| 73 |
+
|
| 74 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 75 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 76 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 77 |
+
|
| 78 |
+
_key = self.to_k_SSR(_hidden_states)
|
| 79 |
+
_value = self.to_v_SSR(_hidden_states)
|
| 80 |
+
|
| 81 |
+
_key = attn.head_to_batch_dim(_key)
|
| 82 |
+
_value = attn.head_to_batch_dim(_value)
|
| 83 |
+
|
| 84 |
+
_attention_probs = attn.get_attention_scores(query, _key, None)
|
| 85 |
+
_hidden_states = torch.bmm(_attention_probs, _value)
|
| 86 |
+
_hidden_states = attn.batch_to_head_dim(_hidden_states)
|
| 87 |
+
|
| 88 |
+
# # assume _hidden_states is a tensor of shape (batch_size, num_patches, hidden_size)
|
| 89 |
+
# batch_size, num_patches, hidden_size = _hidden_states.shape
|
| 90 |
+
# # create a mask tensor of shape (batch_size, num_patches)
|
| 91 |
+
# mask = torch.zeros((batch_size, num_patches), device="cuda", dtype=torch.float16)
|
| 92 |
+
# mask[:, 0:num_patches // 2] = 1
|
| 93 |
+
# # reshape the mask tensor to match the shape of _hidden_states
|
| 94 |
+
# mask = mask.unsqueeze(-1).expand(-1, -1, hidden_size)
|
| 95 |
+
# # apply the mask to _hidden_states
|
| 96 |
+
# _hidden_states = _hidden_states * mask
|
| 97 |
+
|
| 98 |
+
hidden_states = hidden_states + self.scale * _hidden_states
|
| 99 |
+
|
| 100 |
+
# linear proj
|
| 101 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 102 |
+
# dropout
|
| 103 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 104 |
+
|
| 105 |
+
if input_ndim == 4:
|
| 106 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 107 |
+
|
| 108 |
+
if attn.residual_connection:
|
| 109 |
+
hidden_states = hidden_states + residual
|
| 110 |
+
|
| 111 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 112 |
+
|
| 113 |
+
return hidden_states
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class HairAttnProcessor2_0(torch.nn.Module):
|
| 117 |
+
|
| 118 |
+
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, use_resampler=False):
|
| 119 |
+
super().__init__()
|
| 120 |
+
|
| 121 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 122 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 123 |
+
|
| 124 |
+
self.hidden_size = hidden_size
|
| 125 |
+
self.cross_attention_dim = cross_attention_dim
|
| 126 |
+
self.scale = scale
|
| 127 |
+
self.use_resampler = use_resampler
|
| 128 |
+
if self.use_resampler:
|
| 129 |
+
self.resampler = Resampler(query_dim=hidden_size)
|
| 130 |
+
self.to_k_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 131 |
+
self.to_v_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
| 132 |
+
|
| 133 |
+
def __call__(
|
| 134 |
+
self,
|
| 135 |
+
attn,
|
| 136 |
+
hidden_states,
|
| 137 |
+
encoder_hidden_states=None,
|
| 138 |
+
attention_mask=None,
|
| 139 |
+
temb=None,
|
| 140 |
+
):
|
| 141 |
+
residual = hidden_states
|
| 142 |
+
|
| 143 |
+
if attn.spatial_norm is not None:
|
| 144 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 145 |
+
|
| 146 |
+
input_ndim = hidden_states.ndim
|
| 147 |
+
|
| 148 |
+
if input_ndim == 4:
|
| 149 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 150 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 151 |
+
|
| 152 |
+
batch_size, sequence_length, _ = (
|
| 153 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if attention_mask is not None:
|
| 157 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 158 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 159 |
+
# (batch, heads, source_length, target_length)
|
| 160 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 161 |
+
|
| 162 |
+
if attn.group_norm is not None:
|
| 163 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 164 |
+
|
| 165 |
+
query = attn.to_q(hidden_states)
|
| 166 |
+
|
| 167 |
+
if encoder_hidden_states is None:
|
| 168 |
+
encoder_hidden_states = hidden_states
|
| 169 |
+
elif attn.norm_cross:
|
| 170 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 171 |
+
|
| 172 |
+
# split hidden states
|
| 173 |
+
split_num = encoder_hidden_states.shape[1] // 2
|
| 174 |
+
encoder_hidden_states, _hidden_states = encoder_hidden_states[:, :split_num,
|
| 175 |
+
:], encoder_hidden_states[:, split_num:, :]
|
| 176 |
+
|
| 177 |
+
if self.use_resampler:
|
| 178 |
+
_hidden_states = self.resampler(_hidden_states)
|
| 179 |
+
|
| 180 |
+
key = attn.to_k(encoder_hidden_states)
|
| 181 |
+
value = attn.to_v(encoder_hidden_states)
|
| 182 |
+
|
| 183 |
+
inner_dim = key.shape[-1]
|
| 184 |
+
head_dim = inner_dim // attn.heads
|
| 185 |
+
|
| 186 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 187 |
+
|
| 188 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 189 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 190 |
+
|
| 191 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 192 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 193 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 194 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 198 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 199 |
+
|
| 200 |
+
_hidden_states = _hidden_states.to(self.to_k_SSR.weight.dtype)
|
| 201 |
+
_key = self.to_k_SSR(_hidden_states)
|
| 202 |
+
_value = self.to_v_SSR(_hidden_states)
|
| 203 |
+
|
| 204 |
+
_key = _key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 205 |
+
_value = _value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 206 |
+
|
| 207 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 208 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 209 |
+
_hidden_states = F.scaled_dot_product_attention(
|
| 210 |
+
query.to(self.to_k_SSR.weight.dtype), _key, _value, attn_mask=None, dropout_p=0.0, is_causal=False
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
_hidden_states = _hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 214 |
+
_hidden_states = _hidden_states.to(query.dtype)
|
| 215 |
+
|
| 216 |
+
hidden_states = hidden_states + self.scale * _hidden_states
|
| 217 |
+
|
| 218 |
+
# linear proj
|
| 219 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 220 |
+
# dropout
|
| 221 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 222 |
+
|
| 223 |
+
if input_ndim == 4:
|
| 224 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 225 |
+
|
| 226 |
+
if attn.residual_connection:
|
| 227 |
+
hidden_states = hidden_states + residual
|
| 228 |
+
|
| 229 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 230 |
+
|
| 231 |
+
return hidden_states
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class AttnProcessor(nn.Module):
|
| 235 |
+
r"""
|
| 236 |
+
Default processor for performing attention-related computations.
|
| 237 |
+
"""
|
| 238 |
+
def __init__(
|
| 239 |
+
self,
|
| 240 |
+
hidden_size=None,
|
| 241 |
+
cross_attention_dim=None,
|
| 242 |
+
):
|
| 243 |
+
super().__init__()
|
| 244 |
+
|
| 245 |
+
def __call__(
|
| 246 |
+
self,
|
| 247 |
+
attn,
|
| 248 |
+
hidden_states,
|
| 249 |
+
encoder_hidden_states=None,
|
| 250 |
+
attention_mask=None,
|
| 251 |
+
temb=None,
|
| 252 |
+
):
|
| 253 |
+
residual = hidden_states
|
| 254 |
+
|
| 255 |
+
if attn.spatial_norm is not None:
|
| 256 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 257 |
+
|
| 258 |
+
input_ndim = hidden_states.ndim
|
| 259 |
+
|
| 260 |
+
if input_ndim == 4:
|
| 261 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 262 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 263 |
+
|
| 264 |
+
batch_size, sequence_length, _ = (
|
| 265 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 266 |
+
)
|
| 267 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 268 |
+
|
| 269 |
+
if attn.group_norm is not None:
|
| 270 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 271 |
+
|
| 272 |
+
query = attn.to_q(hidden_states)
|
| 273 |
+
|
| 274 |
+
if encoder_hidden_states is None:
|
| 275 |
+
encoder_hidden_states = hidden_states
|
| 276 |
+
elif attn.norm_cross:
|
| 277 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 278 |
+
|
| 279 |
+
key = attn.to_k(encoder_hidden_states)
|
| 280 |
+
value = attn.to_v(encoder_hidden_states)
|
| 281 |
+
|
| 282 |
+
query = attn.head_to_batch_dim(query)
|
| 283 |
+
key = attn.head_to_batch_dim(key)
|
| 284 |
+
value = attn.head_to_batch_dim(value)
|
| 285 |
+
|
| 286 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
| 287 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 288 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 289 |
+
|
| 290 |
+
# linear proj
|
| 291 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 292 |
+
# dropout
|
| 293 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 294 |
+
|
| 295 |
+
if input_ndim == 4:
|
| 296 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 297 |
+
|
| 298 |
+
if attn.residual_connection:
|
| 299 |
+
hidden_states = hidden_states + residual
|
| 300 |
+
|
| 301 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 302 |
+
|
| 303 |
+
return hidden_states
|
| 304 |
+
|
| 305 |
+
class AttnProcessor2_0(torch.nn.Module):
|
| 306 |
+
r"""
|
| 307 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 308 |
+
"""
|
| 309 |
+
|
| 310 |
+
def __init__(
|
| 311 |
+
self,
|
| 312 |
+
hidden_size=None,
|
| 313 |
+
cross_attention_dim=None,
|
| 314 |
+
):
|
| 315 |
+
super().__init__()
|
| 316 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 317 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 318 |
+
|
| 319 |
+
def __call__(
|
| 320 |
+
self,
|
| 321 |
+
attn,
|
| 322 |
+
hidden_states,
|
| 323 |
+
encoder_hidden_states=None,
|
| 324 |
+
attention_mask=None,
|
| 325 |
+
temb=None,
|
| 326 |
+
):
|
| 327 |
+
residual = hidden_states
|
| 328 |
+
|
| 329 |
+
if attn.spatial_norm is not None:
|
| 330 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 331 |
+
|
| 332 |
+
input_ndim = hidden_states.ndim
|
| 333 |
+
|
| 334 |
+
if input_ndim == 4:
|
| 335 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 336 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 337 |
+
|
| 338 |
+
batch_size, sequence_length, _ = (
|
| 339 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
if attention_mask is not None:
|
| 343 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 344 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 345 |
+
# (batch, heads, source_length, target_length)
|
| 346 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 347 |
+
|
| 348 |
+
if attn.group_norm is not None:
|
| 349 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 350 |
+
|
| 351 |
+
query = attn.to_q(hidden_states)
|
| 352 |
+
|
| 353 |
+
if encoder_hidden_states is None:
|
| 354 |
+
encoder_hidden_states = hidden_states
|
| 355 |
+
elif attn.norm_cross:
|
| 356 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 357 |
+
|
| 358 |
+
key = attn.to_k(encoder_hidden_states)
|
| 359 |
+
value = attn.to_v(encoder_hidden_states)
|
| 360 |
+
|
| 361 |
+
inner_dim = key.shape[-1]
|
| 362 |
+
head_dim = inner_dim // attn.heads
|
| 363 |
+
|
| 364 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 365 |
+
|
| 366 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 367 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 368 |
+
|
| 369 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 370 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 371 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 372 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 376 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 377 |
+
|
| 378 |
+
# linear proj
|
| 379 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 380 |
+
# dropout
|
| 381 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 382 |
+
|
| 383 |
+
if input_ndim == 4:
|
| 384 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 385 |
+
|
| 386 |
+
if attn.residual_connection:
|
| 387 |
+
hidden_states = hidden_states + residual
|
| 388 |
+
|
| 389 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 390 |
+
|
| 391 |
+
return hidden_states
|
ref_encoder/latent_controlnet.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ref_encoder/motion_module.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapt from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
| 2 |
+
import math
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Callable, Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from diffusers.models.attention import FeedForward
|
| 8 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
| 9 |
+
from diffusers.utils import BaseOutput
|
| 10 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 11 |
+
from einops import rearrange, repeat
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def zero_module(module):
|
| 16 |
+
# Zero out the parameters of a module and return it.
|
| 17 |
+
for p in module.parameters():
|
| 18 |
+
p.detach().zero_()
|
| 19 |
+
return module
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
| 24 |
+
sample: torch.FloatTensor
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if is_xformers_available():
|
| 28 |
+
import xformers
|
| 29 |
+
import xformers.ops
|
| 30 |
+
else:
|
| 31 |
+
xformers = None
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
| 35 |
+
if motion_module_type == "Vanilla":
|
| 36 |
+
return VanillaTemporalModule(
|
| 37 |
+
in_channels=in_channels,
|
| 38 |
+
**motion_module_kwargs,
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
raise ValueError
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class VanillaTemporalModule(nn.Module):
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
in_channels,
|
| 48 |
+
num_attention_heads=8,
|
| 49 |
+
num_transformer_block=2,
|
| 50 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
| 51 |
+
cross_frame_attention_mode=None,
|
| 52 |
+
temporal_position_encoding=False,
|
| 53 |
+
temporal_position_encoding_max_len=24,
|
| 54 |
+
temporal_attention_dim_div=1,
|
| 55 |
+
zero_initialize=True,
|
| 56 |
+
):
|
| 57 |
+
super().__init__()
|
| 58 |
+
|
| 59 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
| 60 |
+
in_channels=in_channels,
|
| 61 |
+
num_attention_heads=num_attention_heads,
|
| 62 |
+
attention_head_dim=in_channels
|
| 63 |
+
// num_attention_heads
|
| 64 |
+
// temporal_attention_dim_div,
|
| 65 |
+
num_layers=num_transformer_block,
|
| 66 |
+
attention_block_types=attention_block_types,
|
| 67 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 68 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 69 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if zero_initialize:
|
| 73 |
+
self.temporal_transformer.proj_out = zero_module(
|
| 74 |
+
self.temporal_transformer.proj_out
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def forward(
|
| 78 |
+
self,
|
| 79 |
+
input_tensor,
|
| 80 |
+
temb,
|
| 81 |
+
encoder_hidden_states,
|
| 82 |
+
attention_mask=None,
|
| 83 |
+
anchor_frame_idx=None,
|
| 84 |
+
):
|
| 85 |
+
hidden_states = input_tensor
|
| 86 |
+
hidden_states = self.temporal_transformer(
|
| 87 |
+
hidden_states, encoder_hidden_states, attention_mask
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
output = hidden_states
|
| 91 |
+
return output
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class TemporalTransformer3DModel(nn.Module):
|
| 95 |
+
def __init__(
|
| 96 |
+
self,
|
| 97 |
+
in_channels,
|
| 98 |
+
num_attention_heads,
|
| 99 |
+
attention_head_dim,
|
| 100 |
+
num_layers,
|
| 101 |
+
attention_block_types=(
|
| 102 |
+
"Temporal_Self",
|
| 103 |
+
"Temporal_Self",
|
| 104 |
+
),
|
| 105 |
+
dropout=0.0,
|
| 106 |
+
norm_num_groups=32,
|
| 107 |
+
cross_attention_dim=768,
|
| 108 |
+
activation_fn="geglu",
|
| 109 |
+
attention_bias=False,
|
| 110 |
+
upcast_attention=False,
|
| 111 |
+
cross_frame_attention_mode=None,
|
| 112 |
+
temporal_position_encoding=False,
|
| 113 |
+
temporal_position_encoding_max_len=24,
|
| 114 |
+
):
|
| 115 |
+
super().__init__()
|
| 116 |
+
|
| 117 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 118 |
+
|
| 119 |
+
self.norm = torch.nn.GroupNorm(
|
| 120 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
| 121 |
+
)
|
| 122 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 123 |
+
|
| 124 |
+
self.transformer_blocks = nn.ModuleList(
|
| 125 |
+
[
|
| 126 |
+
TemporalTransformerBlock(
|
| 127 |
+
dim=inner_dim,
|
| 128 |
+
num_attention_heads=num_attention_heads,
|
| 129 |
+
attention_head_dim=attention_head_dim,
|
| 130 |
+
attention_block_types=attention_block_types,
|
| 131 |
+
dropout=dropout,
|
| 132 |
+
norm_num_groups=norm_num_groups,
|
| 133 |
+
cross_attention_dim=cross_attention_dim,
|
| 134 |
+
activation_fn=activation_fn,
|
| 135 |
+
attention_bias=attention_bias,
|
| 136 |
+
upcast_attention=upcast_attention,
|
| 137 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 138 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 139 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 140 |
+
)
|
| 141 |
+
for d in range(num_layers)
|
| 142 |
+
]
|
| 143 |
+
)
|
| 144 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
| 145 |
+
|
| 146 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
| 147 |
+
assert (
|
| 148 |
+
hidden_states.dim() == 5
|
| 149 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
| 150 |
+
video_length = hidden_states.shape[2]
|
| 151 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
| 152 |
+
|
| 153 |
+
batch, channel, height, weight = hidden_states.shape
|
| 154 |
+
residual = hidden_states
|
| 155 |
+
|
| 156 |
+
hidden_states = self.norm(hidden_states)
|
| 157 |
+
inner_dim = hidden_states.shape[1]
|
| 158 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 159 |
+
batch, height * weight, inner_dim
|
| 160 |
+
)
|
| 161 |
+
hidden_states = self.proj_in(hidden_states)
|
| 162 |
+
|
| 163 |
+
# Transformer Blocks
|
| 164 |
+
for block in self.transformer_blocks:
|
| 165 |
+
hidden_states = block(
|
| 166 |
+
hidden_states,
|
| 167 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 168 |
+
video_length=video_length,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# output
|
| 172 |
+
hidden_states = self.proj_out(hidden_states)
|
| 173 |
+
hidden_states = (
|
| 174 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
| 175 |
+
.permute(0, 3, 1, 2)
|
| 176 |
+
.contiguous()
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
output = hidden_states + residual
|
| 180 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
| 181 |
+
|
| 182 |
+
return output
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class TemporalTransformerBlock(nn.Module):
|
| 186 |
+
def __init__(
|
| 187 |
+
self,
|
| 188 |
+
dim,
|
| 189 |
+
num_attention_heads,
|
| 190 |
+
attention_head_dim,
|
| 191 |
+
attention_block_types=(
|
| 192 |
+
"Temporal_Self",
|
| 193 |
+
"Temporal_Self",
|
| 194 |
+
),
|
| 195 |
+
dropout=0.0,
|
| 196 |
+
norm_num_groups=32,
|
| 197 |
+
cross_attention_dim=768,
|
| 198 |
+
activation_fn="geglu",
|
| 199 |
+
attention_bias=False,
|
| 200 |
+
upcast_attention=False,
|
| 201 |
+
cross_frame_attention_mode=None,
|
| 202 |
+
temporal_position_encoding=False,
|
| 203 |
+
temporal_position_encoding_max_len=24,
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
attention_blocks = []
|
| 208 |
+
norms = []
|
| 209 |
+
|
| 210 |
+
for block_name in attention_block_types:
|
| 211 |
+
attention_blocks.append(
|
| 212 |
+
VersatileAttention(
|
| 213 |
+
attention_mode=block_name.split("_")[0],
|
| 214 |
+
cross_attention_dim=cross_attention_dim
|
| 215 |
+
if block_name.endswith("_Cross")
|
| 216 |
+
else None,
|
| 217 |
+
query_dim=dim,
|
| 218 |
+
heads=num_attention_heads,
|
| 219 |
+
dim_head=attention_head_dim,
|
| 220 |
+
dropout=dropout,
|
| 221 |
+
bias=attention_bias,
|
| 222 |
+
upcast_attention=upcast_attention,
|
| 223 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 224 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 225 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 226 |
+
)
|
| 227 |
+
)
|
| 228 |
+
norms.append(nn.LayerNorm(dim))
|
| 229 |
+
|
| 230 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
| 231 |
+
self.norms = nn.ModuleList(norms)
|
| 232 |
+
|
| 233 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 234 |
+
self.ff_norm = nn.LayerNorm(dim)
|
| 235 |
+
|
| 236 |
+
def forward(
|
| 237 |
+
self,
|
| 238 |
+
hidden_states,
|
| 239 |
+
encoder_hidden_states=None,
|
| 240 |
+
attention_mask=None,
|
| 241 |
+
video_length=None,
|
| 242 |
+
):
|
| 243 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
| 244 |
+
norm_hidden_states = norm(hidden_states)
|
| 245 |
+
hidden_states = (
|
| 246 |
+
attention_block(
|
| 247 |
+
norm_hidden_states,
|
| 248 |
+
encoder_hidden_states=encoder_hidden_states
|
| 249 |
+
if attention_block.is_cross_attention
|
| 250 |
+
else None,
|
| 251 |
+
video_length=video_length,
|
| 252 |
+
)
|
| 253 |
+
+ hidden_states
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
| 257 |
+
|
| 258 |
+
output = hidden_states
|
| 259 |
+
return output
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class PositionalEncoding(nn.Module):
|
| 263 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 266 |
+
position = torch.arange(max_len).unsqueeze(1)
|
| 267 |
+
div_term = torch.exp(
|
| 268 |
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
| 269 |
+
)
|
| 270 |
+
pe = torch.zeros(1, max_len, d_model)
|
| 271 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
| 272 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
| 273 |
+
self.register_buffer("pe", pe)
|
| 274 |
+
|
| 275 |
+
def forward(self, x):
|
| 276 |
+
x = x + self.pe[:, : x.size(1)]
|
| 277 |
+
return self.dropout(x)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class VersatileAttention(Attention):
|
| 281 |
+
def __init__(
|
| 282 |
+
self,
|
| 283 |
+
attention_mode=None,
|
| 284 |
+
cross_frame_attention_mode=None,
|
| 285 |
+
temporal_position_encoding=False,
|
| 286 |
+
temporal_position_encoding_max_len=24,
|
| 287 |
+
*args,
|
| 288 |
+
**kwargs,
|
| 289 |
+
):
|
| 290 |
+
super().__init__(*args, **kwargs)
|
| 291 |
+
assert attention_mode == "Temporal"
|
| 292 |
+
|
| 293 |
+
self.attention_mode = attention_mode
|
| 294 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
| 295 |
+
|
| 296 |
+
self.pos_encoder = (
|
| 297 |
+
PositionalEncoding(
|
| 298 |
+
kwargs["query_dim"],
|
| 299 |
+
dropout=0.0,
|
| 300 |
+
max_len=temporal_position_encoding_max_len,
|
| 301 |
+
)
|
| 302 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
| 303 |
+
else None
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
def extra_repr(self):
|
| 307 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
| 308 |
+
|
| 309 |
+
def set_use_memory_efficient_attention_xformers(
|
| 310 |
+
self,
|
| 311 |
+
use_memory_efficient_attention_xformers: bool,
|
| 312 |
+
attention_op: Optional[Callable] = None,
|
| 313 |
+
):
|
| 314 |
+
if use_memory_efficient_attention_xformers:
|
| 315 |
+
if not is_xformers_available():
|
| 316 |
+
raise ModuleNotFoundError(
|
| 317 |
+
(
|
| 318 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
| 319 |
+
" xformers"
|
| 320 |
+
),
|
| 321 |
+
name="xformers",
|
| 322 |
+
)
|
| 323 |
+
elif not torch.cuda.is_available():
|
| 324 |
+
raise ValueError(
|
| 325 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
| 326 |
+
" only available for GPU "
|
| 327 |
+
)
|
| 328 |
+
else:
|
| 329 |
+
try:
|
| 330 |
+
# Make sure we can run the memory efficient attention
|
| 331 |
+
_ = xformers.ops.memory_efficient_attention(
|
| 332 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 333 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 334 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 335 |
+
)
|
| 336 |
+
except Exception as e:
|
| 337 |
+
raise e
|
| 338 |
+
|
| 339 |
+
# XFormersAttnProcessor corrupts video generation and work with Pytorch 1.13.
|
| 340 |
+
# Pytorch 2.0.1 AttnProcessor works the same as XFormersAttnProcessor in Pytorch 1.13.
|
| 341 |
+
# You don't need XFormersAttnProcessor here.
|
| 342 |
+
# processor = XFormersAttnProcessor(
|
| 343 |
+
# attention_op=attention_op,
|
| 344 |
+
# )
|
| 345 |
+
processor = AttnProcessor()
|
| 346 |
+
else:
|
| 347 |
+
processor = AttnProcessor()
|
| 348 |
+
|
| 349 |
+
self.set_processor(processor)
|
| 350 |
+
|
| 351 |
+
def forward(
|
| 352 |
+
self,
|
| 353 |
+
hidden_states,
|
| 354 |
+
encoder_hidden_states=None,
|
| 355 |
+
attention_mask=None,
|
| 356 |
+
video_length=None,
|
| 357 |
+
**cross_attention_kwargs,
|
| 358 |
+
):
|
| 359 |
+
if self.attention_mode == "Temporal":
|
| 360 |
+
d = hidden_states.shape[1] # d means HxW
|
| 361 |
+
hidden_states = rearrange(
|
| 362 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
if self.pos_encoder is not None:
|
| 366 |
+
hidden_states = self.pos_encoder(hidden_states)
|
| 367 |
+
|
| 368 |
+
encoder_hidden_states = (
|
| 369 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
| 370 |
+
if encoder_hidden_states is not None
|
| 371 |
+
else encoder_hidden_states
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
else:
|
| 375 |
+
raise NotImplementedError
|
| 376 |
+
|
| 377 |
+
hidden_states = self.processor(
|
| 378 |
+
self,
|
| 379 |
+
hidden_states,
|
| 380 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 381 |
+
attention_mask=attention_mask,
|
| 382 |
+
**cross_attention_kwargs,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
if self.attention_mode == "Temporal":
|
| 386 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
| 387 |
+
|
| 388 |
+
return hidden_states
|
ref_encoder/mutual_self_attention.py
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py
|
| 2 |
+
from typing import Any, Dict, Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
|
| 7 |
+
from src.models.attention import TemporalBasicTransformerBlock
|
| 8 |
+
|
| 9 |
+
#from .attention import BasicTransformerBlock
|
| 10 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 11 |
+
|
| 12 |
+
def torch_dfs(model: torch.nn.Module):
|
| 13 |
+
result = [model]
|
| 14 |
+
for child in model.children():
|
| 15 |
+
result += torch_dfs(child)
|
| 16 |
+
return result
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ReferenceAttentionControl:
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
unet,
|
| 23 |
+
mode="write",
|
| 24 |
+
do_classifier_free_guidance=False,
|
| 25 |
+
attention_auto_machine_weight=float("inf"),
|
| 26 |
+
gn_auto_machine_weight=1.0,
|
| 27 |
+
style_fidelity=1.0,
|
| 28 |
+
reference_attn=True,
|
| 29 |
+
reference_adain=False,
|
| 30 |
+
fusion_blocks="midup",
|
| 31 |
+
batch_size=1,
|
| 32 |
+
) -> None:
|
| 33 |
+
# 10. Modify self attention and group norm
|
| 34 |
+
self.unet = unet
|
| 35 |
+
assert mode in ["read", "write"]
|
| 36 |
+
assert fusion_blocks in ["midup", "full"]
|
| 37 |
+
self.reference_attn = reference_attn
|
| 38 |
+
self.reference_adain = reference_adain
|
| 39 |
+
self.fusion_blocks = fusion_blocks
|
| 40 |
+
self.register_reference_hooks(
|
| 41 |
+
mode,
|
| 42 |
+
do_classifier_free_guidance,
|
| 43 |
+
attention_auto_machine_weight,
|
| 44 |
+
gn_auto_machine_weight,
|
| 45 |
+
style_fidelity,
|
| 46 |
+
reference_attn,
|
| 47 |
+
reference_adain,
|
| 48 |
+
fusion_blocks,
|
| 49 |
+
batch_size=batch_size,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def register_reference_hooks(
|
| 53 |
+
self,
|
| 54 |
+
mode,
|
| 55 |
+
do_classifier_free_guidance,
|
| 56 |
+
attention_auto_machine_weight,
|
| 57 |
+
gn_auto_machine_weight,
|
| 58 |
+
style_fidelity,
|
| 59 |
+
reference_attn,
|
| 60 |
+
reference_adain,
|
| 61 |
+
dtype=torch.float16,
|
| 62 |
+
batch_size=1,
|
| 63 |
+
num_images_per_prompt=1,
|
| 64 |
+
device=torch.device("cpu"),
|
| 65 |
+
fusion_blocks="midup",
|
| 66 |
+
):
|
| 67 |
+
MODE = mode
|
| 68 |
+
do_classifier_free_guidance = do_classifier_free_guidance
|
| 69 |
+
attention_auto_machine_weight = attention_auto_machine_weight
|
| 70 |
+
gn_auto_machine_weight = gn_auto_machine_weight
|
| 71 |
+
style_fidelity = style_fidelity
|
| 72 |
+
reference_attn = reference_attn
|
| 73 |
+
reference_adain = reference_adain
|
| 74 |
+
fusion_blocks = fusion_blocks
|
| 75 |
+
num_images_per_prompt = num_images_per_prompt
|
| 76 |
+
dtype = dtype
|
| 77 |
+
if do_classifier_free_guidance:
|
| 78 |
+
uc_mask = (
|
| 79 |
+
torch.Tensor(
|
| 80 |
+
[1] * batch_size * num_images_per_prompt * 16
|
| 81 |
+
+ [0] * batch_size * num_images_per_prompt * 16
|
| 82 |
+
)
|
| 83 |
+
.to(device)
|
| 84 |
+
.bool()
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
uc_mask = (
|
| 88 |
+
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
|
| 89 |
+
.to(device)
|
| 90 |
+
.bool()
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
def hacked_basic_transformer_inner_forward(
|
| 94 |
+
self,
|
| 95 |
+
hidden_states: torch.FloatTensor,
|
| 96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 97 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 98 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 99 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 100 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 101 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 102 |
+
video_length=None,
|
| 103 |
+
self_attention_additional_feats=None,
|
| 104 |
+
mode=None,
|
| 105 |
+
):
|
| 106 |
+
if self.use_ada_layer_norm: # False
|
| 107 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 108 |
+
elif self.use_ada_layer_norm_zero:
|
| 109 |
+
(
|
| 110 |
+
norm_hidden_states,
|
| 111 |
+
gate_msa,
|
| 112 |
+
shift_mlp,
|
| 113 |
+
scale_mlp,
|
| 114 |
+
gate_mlp,
|
| 115 |
+
) = self.norm1(
|
| 116 |
+
hidden_states,
|
| 117 |
+
timestep,
|
| 118 |
+
class_labels,
|
| 119 |
+
hidden_dtype=hidden_states.dtype,
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 123 |
+
|
| 124 |
+
# 1. Self-Attention
|
| 125 |
+
# self.only_cross_attention = False
|
| 126 |
+
cross_attention_kwargs = (
|
| 127 |
+
cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 128 |
+
)
|
| 129 |
+
if self.only_cross_attention:
|
| 130 |
+
attn_output = self.attn1(
|
| 131 |
+
norm_hidden_states,
|
| 132 |
+
encoder_hidden_states=encoder_hidden_states
|
| 133 |
+
if self.only_cross_attention
|
| 134 |
+
else None,
|
| 135 |
+
attention_mask=attention_mask,
|
| 136 |
+
**cross_attention_kwargs,
|
| 137 |
+
)
|
| 138 |
+
else:
|
| 139 |
+
if MODE == "write":
|
| 140 |
+
self.bank.append(norm_hidden_states.clone())
|
| 141 |
+
attn_output = self.attn1(
|
| 142 |
+
norm_hidden_states,
|
| 143 |
+
encoder_hidden_states=encoder_hidden_states
|
| 144 |
+
if self.only_cross_attention
|
| 145 |
+
else None,
|
| 146 |
+
attention_mask=attention_mask,
|
| 147 |
+
**cross_attention_kwargs,
|
| 148 |
+
)
|
| 149 |
+
if MODE == "read":
|
| 150 |
+
bank_fea = [
|
| 151 |
+
rearrange(
|
| 152 |
+
d.unsqueeze(1).repeat(1, video_length, 1, 1),
|
| 153 |
+
"b t l c -> (b t) l c",
|
| 154 |
+
)
|
| 155 |
+
for d in self.bank
|
| 156 |
+
]
|
| 157 |
+
modify_norm_hidden_states = torch.cat(
|
| 158 |
+
[norm_hidden_states] + bank_fea, dim=1
|
| 159 |
+
)
|
| 160 |
+
hidden_states_uc = (
|
| 161 |
+
self.attn1(
|
| 162 |
+
norm_hidden_states,
|
| 163 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
| 164 |
+
attention_mask=attention_mask,
|
| 165 |
+
)
|
| 166 |
+
+ hidden_states
|
| 167 |
+
)
|
| 168 |
+
if do_classifier_free_guidance:
|
| 169 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 170 |
+
_uc_mask = uc_mask.clone()
|
| 171 |
+
if hidden_states.shape[0] != _uc_mask.shape[0]:
|
| 172 |
+
_uc_mask = (
|
| 173 |
+
torch.Tensor(
|
| 174 |
+
[1] * (hidden_states.shape[0] // 2)
|
| 175 |
+
+ [0] * (hidden_states.shape[0] // 2)
|
| 176 |
+
)
|
| 177 |
+
.to(device)
|
| 178 |
+
.bool()
|
| 179 |
+
)
|
| 180 |
+
hidden_states_c[_uc_mask] = (
|
| 181 |
+
self.attn1(
|
| 182 |
+
norm_hidden_states[_uc_mask],
|
| 183 |
+
encoder_hidden_states=norm_hidden_states[_uc_mask],
|
| 184 |
+
attention_mask=attention_mask,
|
| 185 |
+
)
|
| 186 |
+
+ hidden_states[_uc_mask]
|
| 187 |
+
)
|
| 188 |
+
hidden_states = hidden_states_c.clone()
|
| 189 |
+
else:
|
| 190 |
+
hidden_states = hidden_states_uc
|
| 191 |
+
|
| 192 |
+
# self.bank.clear()
|
| 193 |
+
if self.attn2 is not None:
|
| 194 |
+
# Cross-Attention
|
| 195 |
+
norm_hidden_states = (
|
| 196 |
+
self.norm2(hidden_states, timestep)
|
| 197 |
+
if self.use_ada_layer_norm
|
| 198 |
+
else self.norm2(hidden_states)
|
| 199 |
+
)
|
| 200 |
+
hidden_states = (
|
| 201 |
+
self.attn2(
|
| 202 |
+
norm_hidden_states,
|
| 203 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 204 |
+
attention_mask=attention_mask,
|
| 205 |
+
)
|
| 206 |
+
+ hidden_states
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Feed-forward
|
| 210 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 211 |
+
|
| 212 |
+
# Temporal-Attention
|
| 213 |
+
if self.unet_use_temporal_attention:
|
| 214 |
+
d = hidden_states.shape[1]
|
| 215 |
+
hidden_states = rearrange(
|
| 216 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
| 217 |
+
)
|
| 218 |
+
norm_hidden_states = (
|
| 219 |
+
self.norm_temp(hidden_states, timestep)
|
| 220 |
+
if self.use_ada_layer_norm
|
| 221 |
+
else self.norm_temp(hidden_states)
|
| 222 |
+
)
|
| 223 |
+
hidden_states = (
|
| 224 |
+
self.attn_temp(norm_hidden_states) + hidden_states
|
| 225 |
+
)
|
| 226 |
+
hidden_states = rearrange(
|
| 227 |
+
hidden_states, "(b d) f c -> (b f) d c", d=d
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return hidden_states
|
| 231 |
+
|
| 232 |
+
if self.use_ada_layer_norm_zero:
|
| 233 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 234 |
+
hidden_states = attn_output + hidden_states
|
| 235 |
+
|
| 236 |
+
if self.attn2 is not None:
|
| 237 |
+
norm_hidden_states = (
|
| 238 |
+
self.norm2(hidden_states, timestep)
|
| 239 |
+
if self.use_ada_layer_norm
|
| 240 |
+
else self.norm2(hidden_states)
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# 2. Cross-Attention
|
| 244 |
+
attn_output = self.attn2(
|
| 245 |
+
norm_hidden_states,
|
| 246 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 247 |
+
attention_mask=encoder_attention_mask,
|
| 248 |
+
**cross_attention_kwargs,
|
| 249 |
+
)
|
| 250 |
+
hidden_states = attn_output + hidden_states
|
| 251 |
+
|
| 252 |
+
# 3. Feed-forward
|
| 253 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 254 |
+
|
| 255 |
+
if self.use_ada_layer_norm_zero:
|
| 256 |
+
norm_hidden_states = (
|
| 257 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
ff_output = self.ff(norm_hidden_states)
|
| 261 |
+
|
| 262 |
+
if self.use_ada_layer_norm_zero:
|
| 263 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 264 |
+
|
| 265 |
+
hidden_states = ff_output + hidden_states
|
| 266 |
+
|
| 267 |
+
return hidden_states
|
| 268 |
+
|
| 269 |
+
if self.reference_attn:
|
| 270 |
+
if self.fusion_blocks == "midup":
|
| 271 |
+
attn_modules = [
|
| 272 |
+
module
|
| 273 |
+
for module in (
|
| 274 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
| 275 |
+
)
|
| 276 |
+
if isinstance(module, BasicTransformerBlock)
|
| 277 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 278 |
+
]
|
| 279 |
+
elif self.fusion_blocks == "full":
|
| 280 |
+
attn_modules = [
|
| 281 |
+
module
|
| 282 |
+
for module in torch_dfs(self.unet)
|
| 283 |
+
if isinstance(module, BasicTransformerBlock)
|
| 284 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 285 |
+
]
|
| 286 |
+
attn_modules = sorted(
|
| 287 |
+
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
for i, module in enumerate(attn_modules):
|
| 291 |
+
module._original_inner_forward = module.forward
|
| 292 |
+
if isinstance(module, BasicTransformerBlock):
|
| 293 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
| 294 |
+
module, BasicTransformerBlock
|
| 295 |
+
)
|
| 296 |
+
if isinstance(module, TemporalBasicTransformerBlock):
|
| 297 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
| 298 |
+
module, TemporalBasicTransformerBlock
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
module.bank = []
|
| 302 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
| 303 |
+
|
| 304 |
+
def update(self, writer, dtype=torch.float16):
|
| 305 |
+
if self.reference_attn:
|
| 306 |
+
if self.fusion_blocks == "midup":
|
| 307 |
+
reader_attn_modules = [
|
| 308 |
+
module
|
| 309 |
+
for module in (
|
| 310 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
| 311 |
+
)
|
| 312 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
| 313 |
+
]
|
| 314 |
+
writer_attn_modules = [
|
| 315 |
+
module
|
| 316 |
+
for module in (
|
| 317 |
+
torch_dfs(writer.unet.mid_block)
|
| 318 |
+
+ torch_dfs(writer.unet.up_blocks)
|
| 319 |
+
)
|
| 320 |
+
if isinstance(module, BasicTransformerBlock)
|
| 321 |
+
]
|
| 322 |
+
elif self.fusion_blocks == "full":
|
| 323 |
+
reader_attn_modules = [
|
| 324 |
+
module
|
| 325 |
+
for module in torch_dfs(self.unet)
|
| 326 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
| 327 |
+
]
|
| 328 |
+
writer_attn_modules = [
|
| 329 |
+
module
|
| 330 |
+
for module in torch_dfs(writer.unet)
|
| 331 |
+
if isinstance(module, BasicTransformerBlock)
|
| 332 |
+
]
|
| 333 |
+
reader_attn_modules = sorted(
|
| 334 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 335 |
+
)
|
| 336 |
+
writer_attn_modules = sorted(
|
| 337 |
+
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 338 |
+
)
|
| 339 |
+
for r, w in zip(reader_attn_modules, writer_attn_modules):
|
| 340 |
+
r.bank = [v.clone().to(dtype) for v in w.bank]
|
| 341 |
+
# w.bank.clear()
|
| 342 |
+
|
| 343 |
+
def clear(self):
|
| 344 |
+
if self.reference_attn:
|
| 345 |
+
if self.fusion_blocks == "midup":
|
| 346 |
+
reader_attn_modules = [
|
| 347 |
+
module
|
| 348 |
+
for module in (
|
| 349 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
| 350 |
+
)
|
| 351 |
+
if isinstance(module, BasicTransformerBlock)
|
| 352 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 353 |
+
]
|
| 354 |
+
elif self.fusion_blocks == "full":
|
| 355 |
+
reader_attn_modules = [
|
| 356 |
+
module
|
| 357 |
+
for module in torch_dfs(self.unet)
|
| 358 |
+
if isinstance(module, BasicTransformerBlock)
|
| 359 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 360 |
+
]
|
| 361 |
+
reader_attn_modules = sorted(
|
| 362 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 363 |
+
)
|
| 364 |
+
for r in reader_attn_modules:
|
| 365 |
+
r.bank.clear()
|
ref_encoder/pose_guider.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.nn.init as init
|
| 6 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 7 |
+
|
| 8 |
+
from src.models.motion_module import zero_module
|
| 9 |
+
from src.models.resnet import InflatedConv3d
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class PoseGuider(ModelMixin):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
conditioning_embedding_channels: int,
|
| 16 |
+
conditioning_channels: int = 3,
|
| 17 |
+
block_out_channels: Tuple[int] = (16, 32, 64, 128),
|
| 18 |
+
):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.conv_in = InflatedConv3d(
|
| 21 |
+
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
self.blocks = nn.ModuleList([])
|
| 25 |
+
|
| 26 |
+
for i in range(len(block_out_channels) - 1):
|
| 27 |
+
channel_in = block_out_channels[i]
|
| 28 |
+
channel_out = block_out_channels[i + 1]
|
| 29 |
+
self.blocks.append(
|
| 30 |
+
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
|
| 31 |
+
)
|
| 32 |
+
self.blocks.append(
|
| 33 |
+
InflatedConv3d(
|
| 34 |
+
channel_in, channel_out, kernel_size=3, padding=1, stride=2
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
self.conv_out = zero_module(
|
| 39 |
+
InflatedConv3d(
|
| 40 |
+
block_out_channels[-1],
|
| 41 |
+
conditioning_embedding_channels,
|
| 42 |
+
kernel_size=3,
|
| 43 |
+
padding=1,
|
| 44 |
+
)
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def forward(self, conditioning):
|
| 48 |
+
embedding = self.conv_in(conditioning)
|
| 49 |
+
embedding = F.silu(embedding)
|
| 50 |
+
|
| 51 |
+
for block in self.blocks:
|
| 52 |
+
embedding = block(embedding)
|
| 53 |
+
embedding = F.silu(embedding)
|
| 54 |
+
|
| 55 |
+
embedding = self.conv_out(embedding)
|
| 56 |
+
|
| 57 |
+
return embedding
|
ref_encoder/reference_control.py
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 3 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 4 |
+
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
|
| 5 |
+
|
| 6 |
+
def torch_dfs(model: torch.nn.Module):
|
| 7 |
+
result = [model]
|
| 8 |
+
for child in model.children():
|
| 9 |
+
result += torch_dfs(child)
|
| 10 |
+
return result
|
| 11 |
+
|
| 12 |
+
class ReferenceAttentionControl():
|
| 13 |
+
|
| 14 |
+
def __init__(self,
|
| 15 |
+
unet,
|
| 16 |
+
mode="write",
|
| 17 |
+
do_classifier_free_guidance=False,
|
| 18 |
+
attention_auto_machine_weight=float('inf'),
|
| 19 |
+
gn_auto_machine_weight=1.0,
|
| 20 |
+
style_fidelity=1.0,
|
| 21 |
+
reference_attn=True,
|
| 22 |
+
reference_adain=False,
|
| 23 |
+
fusion_blocks="full",
|
| 24 |
+
batch_size=1,
|
| 25 |
+
) -> None:
|
| 26 |
+
# 10. Modify self attention and group norm
|
| 27 |
+
self.unet = unet
|
| 28 |
+
assert mode in ["read", "write"]
|
| 29 |
+
assert fusion_blocks in ["midup", "full"]
|
| 30 |
+
self.reference_attn = reference_attn
|
| 31 |
+
self.reference_adain = reference_adain
|
| 32 |
+
self.fusion_blocks = fusion_blocks
|
| 33 |
+
self.register_reference_hooks(
|
| 34 |
+
mode,
|
| 35 |
+
do_classifier_free_guidance,
|
| 36 |
+
attention_auto_machine_weight,
|
| 37 |
+
gn_auto_machine_weight,
|
| 38 |
+
style_fidelity,
|
| 39 |
+
reference_attn,
|
| 40 |
+
reference_adain,
|
| 41 |
+
fusion_blocks,
|
| 42 |
+
batch_size=batch_size,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
def register_reference_hooks(
|
| 46 |
+
self,
|
| 47 |
+
mode,
|
| 48 |
+
do_classifier_free_guidance,
|
| 49 |
+
attention_auto_machine_weight,
|
| 50 |
+
gn_auto_machine_weight,
|
| 51 |
+
style_fidelity,
|
| 52 |
+
reference_attn,
|
| 53 |
+
reference_adain,
|
| 54 |
+
dtype=torch.float16,
|
| 55 |
+
batch_size=1,
|
| 56 |
+
num_images_per_prompt=1,
|
| 57 |
+
device=torch.device("cpu"),
|
| 58 |
+
fusion_blocks='midup',
|
| 59 |
+
):
|
| 60 |
+
MODE = mode
|
| 61 |
+
do_classifier_free_guidance = do_classifier_free_guidance
|
| 62 |
+
attention_auto_machine_weight = attention_auto_machine_weight
|
| 63 |
+
gn_auto_machine_weight = gn_auto_machine_weight
|
| 64 |
+
style_fidelity = style_fidelity
|
| 65 |
+
reference_attn = reference_attn
|
| 66 |
+
reference_adain = reference_adain
|
| 67 |
+
fusion_blocks = fusion_blocks
|
| 68 |
+
num_images_per_prompt = num_images_per_prompt
|
| 69 |
+
dtype = dtype
|
| 70 |
+
if do_classifier_free_guidance:
|
| 71 |
+
uc_mask = (
|
| 72 |
+
torch.Tensor(
|
| 73 |
+
[1] * batch_size * num_images_per_prompt * 16 + [0] * batch_size * num_images_per_prompt * 16)
|
| 74 |
+
.to(device)
|
| 75 |
+
.bool()
|
| 76 |
+
)
|
| 77 |
+
else:
|
| 78 |
+
uc_mask = (
|
| 79 |
+
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
|
| 80 |
+
.to(device)
|
| 81 |
+
.bool()
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def hacked_basic_transformer_inner_forward(
|
| 85 |
+
self,
|
| 86 |
+
hidden_states: torch.FloatTensor,
|
| 87 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 88 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 89 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 90 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 91 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 92 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 93 |
+
):
|
| 94 |
+
if self.use_ada_layer_norm:
|
| 95 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 96 |
+
elif self.use_ada_layer_norm_zero:
|
| 97 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 98 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 99 |
+
)
|
| 100 |
+
else:
|
| 101 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 102 |
+
|
| 103 |
+
# 1. Self-Attention
|
| 104 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 105 |
+
if self.only_cross_attention:
|
| 106 |
+
attn_output = self.attn1(
|
| 107 |
+
norm_hidden_states,
|
| 108 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 109 |
+
attention_mask=attention_mask,
|
| 110 |
+
**cross_attention_kwargs,
|
| 111 |
+
)
|
| 112 |
+
else:
|
| 113 |
+
if MODE == "write":
|
| 114 |
+
self.bank.append(norm_hidden_states.clone())
|
| 115 |
+
attn_output = self.attn1(
|
| 116 |
+
norm_hidden_states,
|
| 117 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 118 |
+
attention_mask=attention_mask,
|
| 119 |
+
**cross_attention_kwargs,
|
| 120 |
+
)
|
| 121 |
+
if MODE == "read":
|
| 122 |
+
hidden_states_uc = self.attn1(norm_hidden_states,
|
| 123 |
+
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank,
|
| 124 |
+
dim=1),
|
| 125 |
+
attention_mask=attention_mask) + hidden_states
|
| 126 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 127 |
+
_uc_mask = uc_mask.clone()
|
| 128 |
+
if do_classifier_free_guidance:
|
| 129 |
+
if hidden_states.shape[0] != _uc_mask.shape[0]:
|
| 130 |
+
_uc_mask = (
|
| 131 |
+
torch.Tensor([1] * (hidden_states.shape[0] // 2) + [0] * (hidden_states.shape[0] // 2))
|
| 132 |
+
.to(device)
|
| 133 |
+
.bool()
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
hidden_states_c[_uc_mask] = self.attn1(
|
| 137 |
+
norm_hidden_states[_uc_mask],
|
| 138 |
+
encoder_hidden_states=norm_hidden_states[_uc_mask],
|
| 139 |
+
attention_mask=attention_mask,
|
| 140 |
+
) + hidden_states[_uc_mask]
|
| 141 |
+
hidden_states = hidden_states_c.clone()
|
| 142 |
+
|
| 143 |
+
self.bank.clear()
|
| 144 |
+
if self.attn2 is not None:
|
| 145 |
+
# Cross-Attention
|
| 146 |
+
norm_hidden_states = (
|
| 147 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(
|
| 148 |
+
hidden_states)
|
| 149 |
+
)
|
| 150 |
+
hidden_states = (
|
| 151 |
+
self.attn2(
|
| 152 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states,
|
| 153 |
+
attention_mask=attention_mask
|
| 154 |
+
)
|
| 155 |
+
+ hidden_states
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Feed-forward
|
| 159 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 160 |
+
|
| 161 |
+
return hidden_states
|
| 162 |
+
|
| 163 |
+
if self.use_ada_layer_norm_zero:
|
| 164 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 165 |
+
hidden_states = attn_output + hidden_states
|
| 166 |
+
|
| 167 |
+
if self.attn2 is not None:
|
| 168 |
+
norm_hidden_states = (
|
| 169 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# 2. Cross-Attention
|
| 173 |
+
attn_output = self.attn2(
|
| 174 |
+
norm_hidden_states,
|
| 175 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 176 |
+
attention_mask=encoder_attention_mask,
|
| 177 |
+
**cross_attention_kwargs,
|
| 178 |
+
)
|
| 179 |
+
hidden_states = attn_output + hidden_states
|
| 180 |
+
|
| 181 |
+
# 3. Feed-forward
|
| 182 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 183 |
+
|
| 184 |
+
if self.use_ada_layer_norm_zero:
|
| 185 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 186 |
+
|
| 187 |
+
ff_output = self.ff(norm_hidden_states)
|
| 188 |
+
|
| 189 |
+
if self.use_ada_layer_norm_zero:
|
| 190 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 191 |
+
|
| 192 |
+
hidden_states = ff_output + hidden_states
|
| 193 |
+
|
| 194 |
+
return hidden_states
|
| 195 |
+
|
| 196 |
+
def hacked_mid_forward(self, *args, **kwargs):
|
| 197 |
+
eps = 1e-6
|
| 198 |
+
x = self.original_forward(*args, **kwargs)
|
| 199 |
+
if MODE == "write":
|
| 200 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 201 |
+
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
| 202 |
+
self.mean_bank.append(mean)
|
| 203 |
+
self.var_bank.append(var)
|
| 204 |
+
if MODE == "read":
|
| 205 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 206 |
+
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
|
| 207 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 208 |
+
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
|
| 209 |
+
var_acc = sum(self.var_bank) / float(len(self.var_bank))
|
| 210 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 211 |
+
x_uc = (((x - mean) / std) * std_acc) + mean_acc
|
| 212 |
+
x_c = x_uc.clone()
|
| 213 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 214 |
+
x_c[uc_mask] = x[uc_mask]
|
| 215 |
+
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
|
| 216 |
+
self.mean_bank = []
|
| 217 |
+
self.var_bank = []
|
| 218 |
+
return x
|
| 219 |
+
|
| 220 |
+
def hack_CrossAttnDownBlock2D_forward(
|
| 221 |
+
self,
|
| 222 |
+
hidden_states: torch.FloatTensor,
|
| 223 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 224 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 225 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 226 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 227 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 228 |
+
):
|
| 229 |
+
eps = 1e-6
|
| 230 |
+
|
| 231 |
+
# TODO(Patrick, William) - attention face_hair_mask is not used
|
| 232 |
+
output_states = ()
|
| 233 |
+
|
| 234 |
+
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
| 235 |
+
hidden_states = resnet(hidden_states, temb)
|
| 236 |
+
hidden_states = attn(
|
| 237 |
+
hidden_states,
|
| 238 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 239 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 240 |
+
attention_mask=attention_mask,
|
| 241 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 242 |
+
return_dict=False,
|
| 243 |
+
)[0]
|
| 244 |
+
if MODE == "write":
|
| 245 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 246 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 247 |
+
self.mean_bank.append([mean])
|
| 248 |
+
self.var_bank.append([var])
|
| 249 |
+
if MODE == "read":
|
| 250 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 251 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 252 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 253 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 254 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 255 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 256 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 257 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 258 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 259 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
|
| 260 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 261 |
+
|
| 262 |
+
output_states = output_states + (hidden_states,)
|
| 263 |
+
|
| 264 |
+
if MODE == "read":
|
| 265 |
+
self.mean_bank = []
|
| 266 |
+
self.var_bank = []
|
| 267 |
+
|
| 268 |
+
if self.downsamplers is not None:
|
| 269 |
+
for downsampler in self.downsamplers:
|
| 270 |
+
hidden_states = downsampler(hidden_states)
|
| 271 |
+
|
| 272 |
+
output_states = output_states + (hidden_states,)
|
| 273 |
+
|
| 274 |
+
return hidden_states, output_states
|
| 275 |
+
|
| 276 |
+
def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
|
| 277 |
+
eps = 1e-6
|
| 278 |
+
|
| 279 |
+
output_states = ()
|
| 280 |
+
|
| 281 |
+
for i, resnet in enumerate(self.resnets):
|
| 282 |
+
hidden_states = resnet(hidden_states, temb)
|
| 283 |
+
|
| 284 |
+
if MODE == "write":
|
| 285 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 286 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 287 |
+
self.mean_bank.append([mean])
|
| 288 |
+
self.var_bank.append([var])
|
| 289 |
+
if MODE == "read":
|
| 290 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 291 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 292 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 293 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 294 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 295 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 296 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 297 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 298 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 299 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
|
| 300 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 301 |
+
|
| 302 |
+
output_states = output_states + (hidden_states,)
|
| 303 |
+
|
| 304 |
+
if MODE == "read":
|
| 305 |
+
self.mean_bank = []
|
| 306 |
+
self.var_bank = []
|
| 307 |
+
|
| 308 |
+
if self.downsamplers is not None:
|
| 309 |
+
for downsampler in self.downsamplers:
|
| 310 |
+
hidden_states = downsampler(hidden_states)
|
| 311 |
+
|
| 312 |
+
output_states = output_states + (hidden_states,)
|
| 313 |
+
|
| 314 |
+
return hidden_states, output_states
|
| 315 |
+
|
| 316 |
+
def hacked_CrossAttnUpBlock2D_forward(
|
| 317 |
+
self,
|
| 318 |
+
hidden_states: torch.FloatTensor,
|
| 319 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 320 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 321 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 322 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 323 |
+
upsample_size: Optional[int] = None,
|
| 324 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 325 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 326 |
+
):
|
| 327 |
+
eps = 1e-6
|
| 328 |
+
# TODO(Patrick, William) - attention face_hair_mask is not used
|
| 329 |
+
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
|
| 330 |
+
# pop res hidden states
|
| 331 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 332 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 333 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 334 |
+
hidden_states = resnet(hidden_states, temb)
|
| 335 |
+
hidden_states = attn(
|
| 336 |
+
hidden_states,
|
| 337 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 338 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 339 |
+
attention_mask=attention_mask,
|
| 340 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 341 |
+
return_dict=False,
|
| 342 |
+
)[0]
|
| 343 |
+
|
| 344 |
+
if MODE == "write":
|
| 345 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 346 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 347 |
+
self.mean_bank.append([mean])
|
| 348 |
+
self.var_bank.append([var])
|
| 349 |
+
if MODE == "read":
|
| 350 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 351 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 352 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 353 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 354 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 355 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 356 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 357 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 358 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 359 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
|
| 360 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 361 |
+
|
| 362 |
+
if MODE == "read":
|
| 363 |
+
self.mean_bank = []
|
| 364 |
+
self.var_bank = []
|
| 365 |
+
|
| 366 |
+
if self.upsamplers is not None:
|
| 367 |
+
for upsampler in self.upsamplers:
|
| 368 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 369 |
+
|
| 370 |
+
return hidden_states
|
| 371 |
+
|
| 372 |
+
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
| 373 |
+
eps = 1e-6
|
| 374 |
+
for i, resnet in enumerate(self.resnets):
|
| 375 |
+
# pop res hidden states
|
| 376 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 377 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 378 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 379 |
+
hidden_states = resnet(hidden_states, temb)
|
| 380 |
+
|
| 381 |
+
if MODE == "write":
|
| 382 |
+
if gn_auto_machine_weight >= self.gn_weight:
|
| 383 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 384 |
+
self.mean_bank.append([mean])
|
| 385 |
+
self.var_bank.append([var])
|
| 386 |
+
if MODE == "read":
|
| 387 |
+
if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
|
| 388 |
+
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
|
| 389 |
+
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
|
| 390 |
+
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
|
| 391 |
+
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
|
| 392 |
+
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
|
| 393 |
+
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
|
| 394 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 395 |
+
if do_classifier_free_guidance and style_fidelity > 0:
|
| 396 |
+
hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
|
| 397 |
+
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
|
| 398 |
+
|
| 399 |
+
if MODE == "read":
|
| 400 |
+
self.mean_bank = []
|
| 401 |
+
self.var_bank = []
|
| 402 |
+
|
| 403 |
+
if self.upsamplers is not None:
|
| 404 |
+
for upsampler in self.upsamplers:
|
| 405 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 406 |
+
|
| 407 |
+
return hidden_states
|
| 408 |
+
|
| 409 |
+
if self.reference_attn:
|
| 410 |
+
if self.fusion_blocks == "midup":
|
| 411 |
+
attn_modules = [module for module in (torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks))
|
| 412 |
+
if isinstance(module, BasicTransformerBlock)]
|
| 413 |
+
elif self.fusion_blocks == "full":
|
| 414 |
+
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
|
| 415 |
+
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
| 416 |
+
|
| 417 |
+
for i, module in enumerate(attn_modules):
|
| 418 |
+
module._original_inner_forward = module.forward
|
| 419 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
|
| 420 |
+
module.bank = []
|
| 421 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
| 422 |
+
|
| 423 |
+
if self.reference_adain:
|
| 424 |
+
gn_modules = [self.unet.mid_block]
|
| 425 |
+
self.unet.mid_block.gn_weight = 0
|
| 426 |
+
|
| 427 |
+
down_blocks = self.unet.down_blocks
|
| 428 |
+
for w, module in enumerate(down_blocks):
|
| 429 |
+
module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
|
| 430 |
+
gn_modules.append(module)
|
| 431 |
+
|
| 432 |
+
up_blocks = self.unet.up_blocks
|
| 433 |
+
for w, module in enumerate(up_blocks):
|
| 434 |
+
module.gn_weight = float(w) / float(len(up_blocks))
|
| 435 |
+
gn_modules.append(module)
|
| 436 |
+
|
| 437 |
+
for i, module in enumerate(gn_modules):
|
| 438 |
+
if getattr(module, "original_forward", None) is None:
|
| 439 |
+
module.original_forward = module.forward
|
| 440 |
+
if i == 0:
|
| 441 |
+
# mid_block
|
| 442 |
+
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
|
| 443 |
+
elif isinstance(module, CrossAttnDownBlock2D):
|
| 444 |
+
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
|
| 445 |
+
elif isinstance(module, DownBlock2D):
|
| 446 |
+
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
|
| 447 |
+
elif isinstance(module, CrossAttnUpBlock2D):
|
| 448 |
+
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
|
| 449 |
+
elif isinstance(module, UpBlock2D):
|
| 450 |
+
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
|
| 451 |
+
module.mean_bank = []
|
| 452 |
+
module.var_bank = []
|
| 453 |
+
module.gn_weight *= 2
|
| 454 |
+
|
| 455 |
+
def update(self, writer, dtype=torch.float16):
|
| 456 |
+
if self.reference_attn:
|
| 457 |
+
if self.fusion_blocks == "midup":
|
| 458 |
+
reader_attn_modules = [module for module in
|
| 459 |
+
(torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)) if
|
| 460 |
+
isinstance(module, BasicTransformerBlock)]
|
| 461 |
+
writer_attn_modules = [module for module in
|
| 462 |
+
(torch_dfs(writer.unet.mid_block) + torch_dfs(writer.unet.up_blocks)) if
|
| 463 |
+
isinstance(module, BasicTransformerBlock)]
|
| 464 |
+
elif self.fusion_blocks == "full":
|
| 465 |
+
reader_attn_modules = [module for module in torch_dfs(self.unet) if
|
| 466 |
+
isinstance(module, BasicTransformerBlock)]
|
| 467 |
+
writer_attn_modules = [module for module in torch_dfs(writer.unet) if
|
| 468 |
+
isinstance(module, BasicTransformerBlock)]
|
| 469 |
+
reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
| 470 |
+
writer_attn_modules = sorted(writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
| 471 |
+
for r, w in zip(reader_attn_modules, writer_attn_modules):
|
| 472 |
+
r.bank = [v.clone().to(dtype) for v in w.bank]
|
| 473 |
+
|
| 474 |
+
if self.reference_adain:
|
| 475 |
+
reader_gn_modules = [self.unet.mid_block]
|
| 476 |
+
|
| 477 |
+
down_blocks = self.unet.down_blocks
|
| 478 |
+
for w, module in enumerate(down_blocks):
|
| 479 |
+
reader_gn_modules.append(module)
|
| 480 |
+
|
| 481 |
+
up_blocks = self.unet.up_blocks
|
| 482 |
+
for w, module in enumerate(up_blocks):
|
| 483 |
+
reader_gn_modules.append(module)
|
| 484 |
+
|
| 485 |
+
writer_gn_modules = [writer.unet.mid_block]
|
| 486 |
+
|
| 487 |
+
down_blocks = writer.unet.down_blocks
|
| 488 |
+
for w, module in enumerate(down_blocks):
|
| 489 |
+
writer_gn_modules.append(module)
|
| 490 |
+
|
| 491 |
+
up_blocks = writer.unet.up_blocks
|
| 492 |
+
for w, module in enumerate(up_blocks):
|
| 493 |
+
writer_gn_modules.append(module)
|
| 494 |
+
|
| 495 |
+
for r, w in zip(reader_gn_modules, writer_gn_modules):
|
| 496 |
+
if len(w.mean_bank) > 0 and isinstance(w.mean_bank[0], list):
|
| 497 |
+
r.mean_bank = [[v.clone().to(dtype) for v in vl] for vl in w.mean_bank]
|
| 498 |
+
r.var_bank = [[v.clone().to(dtype) for v in vl] for vl in w.var_bank]
|
| 499 |
+
else:
|
| 500 |
+
r.mean_bank = [v.clone().to(dtype) for v in w.mean_bank]
|
| 501 |
+
r.var_bank = [v.clone().to(dtype) for v in w.var_bank]
|
| 502 |
+
|
| 503 |
+
def clear(self):
|
| 504 |
+
if self.reference_attn:
|
| 505 |
+
if self.fusion_blocks == "midup":
|
| 506 |
+
reader_attn_modules = [module for module in
|
| 507 |
+
(torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)) if
|
| 508 |
+
isinstance(module, BasicTransformerBlock)]
|
| 509 |
+
elif self.fusion_blocks == "full":
|
| 510 |
+
reader_attn_modules = [module for module in torch_dfs(self.unet) if
|
| 511 |
+
isinstance(module, BasicTransformerBlock)]
|
| 512 |
+
reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
|
| 513 |
+
for r in reader_attn_modules:
|
| 514 |
+
r.bank.clear()
|
| 515 |
+
if self.reference_adain:
|
| 516 |
+
reader_gn_modules = [self.unet.mid_block]
|
| 517 |
+
|
| 518 |
+
down_blocks = self.unet.down_blocks
|
| 519 |
+
for w, module in enumerate(down_blocks):
|
| 520 |
+
reader_gn_modules.append(module)
|
| 521 |
+
|
| 522 |
+
up_blocks = self.unet.up_blocks
|
| 523 |
+
for w, module in enumerate(up_blocks):
|
| 524 |
+
reader_gn_modules.append(module)
|
| 525 |
+
|
| 526 |
+
for r in reader_gn_modules:
|
| 527 |
+
r.mean_bank.clear()
|
| 528 |
+
r.var_bank.clear()
|
ref_encoder/reference_unet.py
ADDED
|
@@ -0,0 +1,1053 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.utils.checkpoint
|
| 7 |
+
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
| 10 |
+
from diffusers.utils import BaseOutput, logging
|
| 11 |
+
from diffusers.models.activations import get_activation
|
| 12 |
+
from diffusers.models.attention_processor import (
|
| 13 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 14 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 15 |
+
AttentionProcessor,
|
| 16 |
+
AttnAddedKVProcessor,
|
| 17 |
+
AttnProcessor,
|
| 18 |
+
)
|
| 19 |
+
from diffusers.models.lora import LoRALinearLayer
|
| 20 |
+
from diffusers.models.embeddings import (
|
| 21 |
+
GaussianFourierProjection,
|
| 22 |
+
ImageHintTimeEmbedding,
|
| 23 |
+
ImageProjection,
|
| 24 |
+
ImageTimeEmbedding,
|
| 25 |
+
PositionNet,
|
| 26 |
+
TextImageProjection,
|
| 27 |
+
TextImageTimeEmbedding,
|
| 28 |
+
TextTimeEmbedding,
|
| 29 |
+
TimestepEmbedding,
|
| 30 |
+
Timesteps,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 33 |
+
from diffusers.models.unet_2d_blocks import (
|
| 34 |
+
UNetMidBlock2DCrossAttn,
|
| 35 |
+
UNetMidBlock2DSimpleCrossAttn,
|
| 36 |
+
get_down_block,
|
| 37 |
+
get_up_block,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class CCProjection(ModelMixin, ConfigMixin):
|
| 44 |
+
def __init__(self, in_channel=772, out_channel=768):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.in_channel = in_channel
|
| 47 |
+
self.out_channel = out_channel
|
| 48 |
+
self.projection = torch.nn.Linear(in_channel, out_channel)
|
| 49 |
+
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
return self.projection(x)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class Identity(torch.nn.Module):
|
| 55 |
+
def __init__(self, scale=None, *args, **kwargs) -> None:
|
| 56 |
+
super(Identity, self).__init__()
|
| 57 |
+
def forward(self, input, *args, **kwargs):
|
| 58 |
+
return input
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class _LoRACompatibleLinear(nn.Module):
|
| 62 |
+
"""
|
| 63 |
+
A Linear layer that can be used with LoRA.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
|
| 67 |
+
super().__init__(*args, **kwargs)
|
| 68 |
+
self.lora_layer = lora_layer
|
| 69 |
+
|
| 70 |
+
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
|
| 71 |
+
self.lora_layer = lora_layer
|
| 72 |
+
|
| 73 |
+
def _fuse_lora(self):
|
| 74 |
+
pass
|
| 75 |
+
|
| 76 |
+
def _unfuse_lora(self):
|
| 77 |
+
pass
|
| 78 |
+
|
| 79 |
+
def forward(self, hidden_states, scale=None, lora_scale: int = 1):
|
| 80 |
+
return hidden_states
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@dataclass
|
| 84 |
+
class UNet2DConditionOutput(BaseOutput):
|
| 85 |
+
"""
|
| 86 |
+
The output of [`UNet2DConditionModel`].
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 90 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
sample: torch.FloatTensor = None
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class ref_unet(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
| 97 |
+
r"""
|
| 98 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
| 99 |
+
shaped output.
|
| 100 |
+
|
| 101 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 102 |
+
for all models (such as downloading or saving).
|
| 103 |
+
|
| 104 |
+
Parameters:
|
| 105 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
| 106 |
+
Height and width of input/output sample.
|
| 107 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
| 108 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
| 109 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 110 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
| 111 |
+
Whether to flip the sin to cos in the time embedding.
|
| 112 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 113 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 114 |
+
The tuple of downsample blocks to use.
|
| 115 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
| 116 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
| 117 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
| 118 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
| 119 |
+
The tuple of upsample blocks to use.
|
| 120 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
| 121 |
+
Whether to include self-attention in the basic transformer blocks, see
|
| 122 |
+
[`~models.attention.BasicTransformerBlock`].
|
| 123 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 124 |
+
The tuple of output channels for each block.
|
| 125 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
| 126 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
| 127 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
| 128 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 129 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
| 130 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
| 131 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
| 132 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
| 133 |
+
The dimension of the cross attention features.
|
| 134 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 135 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 136 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 137 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 138 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 139 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 140 |
+
dimension to `cross_attention_dim`.
|
| 141 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 142 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 143 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 144 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
| 145 |
+
num_attention_heads (`int`, *optional*):
|
| 146 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
| 147 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
| 148 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
| 149 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 150 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
| 151 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 152 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 153 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 154 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 155 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
| 156 |
+
Dimension for the timestep embeddings.
|
| 157 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
| 158 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 159 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 160 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
| 161 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
| 162 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
| 163 |
+
An optional override for the dimension of the projected time embedding.
|
| 164 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
| 165 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
| 166 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
| 167 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
| 168 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
| 169 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
| 170 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
| 171 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
| 172 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
| 173 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
| 174 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
| 175 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
| 176 |
+
embeddings with the class embeddings.
|
| 177 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
| 178 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
| 179 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
| 180 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
| 181 |
+
otherwise.
|
| 182 |
+
"""
|
| 183 |
+
|
| 184 |
+
_supports_gradient_checkpointing = True
|
| 185 |
+
|
| 186 |
+
@register_to_config
|
| 187 |
+
def __init__(
|
| 188 |
+
self,
|
| 189 |
+
sample_size: Optional[int] = None,
|
| 190 |
+
in_channels: int = 4,
|
| 191 |
+
out_channels: int = 4,
|
| 192 |
+
center_input_sample: bool = False,
|
| 193 |
+
flip_sin_to_cos: bool = True,
|
| 194 |
+
freq_shift: int = 0,
|
| 195 |
+
down_block_types: Tuple[str] = (
|
| 196 |
+
"CrossAttnDownBlock2D",
|
| 197 |
+
"CrossAttnDownBlock2D",
|
| 198 |
+
"CrossAttnDownBlock2D",
|
| 199 |
+
"DownBlock2D",
|
| 200 |
+
),
|
| 201 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 202 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
| 203 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 204 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 205 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 206 |
+
downsample_padding: int = 1,
|
| 207 |
+
mid_block_scale_factor: float = 1,
|
| 208 |
+
act_fn: str = "silu",
|
| 209 |
+
norm_num_groups: Optional[int] = 32,
|
| 210 |
+
norm_eps: float = 1e-5,
|
| 211 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
| 212 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 213 |
+
encoder_hid_dim: Optional[int] = None,
|
| 214 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 215 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 216 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
| 217 |
+
dual_cross_attention: bool = False,
|
| 218 |
+
use_linear_projection: bool = False,
|
| 219 |
+
class_embed_type: Optional[str] = None,
|
| 220 |
+
addition_embed_type: Optional[str] = None,
|
| 221 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 222 |
+
num_class_embeds: Optional[int] = None,
|
| 223 |
+
upcast_attention: bool = False,
|
| 224 |
+
resnet_time_scale_shift: str = "default",
|
| 225 |
+
resnet_skip_time_act: bool = False,
|
| 226 |
+
resnet_out_scale_factor: int = 1.0,
|
| 227 |
+
time_embedding_type: str = "positional",
|
| 228 |
+
time_embedding_dim: Optional[int] = None,
|
| 229 |
+
time_embedding_act_fn: Optional[str] = None,
|
| 230 |
+
timestep_post_act: Optional[str] = None,
|
| 231 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 232 |
+
conv_in_kernel: int = 3,
|
| 233 |
+
conv_out_kernel: int = 3,
|
| 234 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 235 |
+
attention_type: str = "default",
|
| 236 |
+
class_embeddings_concat: bool = False,
|
| 237 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
| 238 |
+
cross_attention_norm: Optional[str] = None,
|
| 239 |
+
addition_embed_type_num_heads=64,
|
| 240 |
+
):
|
| 241 |
+
super().__init__()
|
| 242 |
+
|
| 243 |
+
self.sample_size = sample_size
|
| 244 |
+
|
| 245 |
+
if num_attention_heads is not None:
|
| 246 |
+
raise ValueError(
|
| 247 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 251 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 252 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 253 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 254 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 255 |
+
# which is why we correct for the naming here.
|
| 256 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 257 |
+
|
| 258 |
+
# Check inputs
|
| 259 |
+
if len(down_block_types) != len(up_block_types):
|
| 260 |
+
raise ValueError(
|
| 261 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
if len(block_out_channels) != len(down_block_types):
|
| 265 |
+
raise ValueError(
|
| 266 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 270 |
+
raise ValueError(
|
| 271 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 275 |
+
raise ValueError(
|
| 276 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
| 280 |
+
raise ValueError(
|
| 281 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
| 285 |
+
raise ValueError(
|
| 286 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
| 290 |
+
raise ValueError(
|
| 291 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# input
|
| 295 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 296 |
+
self.conv_in = nn.Conv2d(
|
| 297 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
self.add_time_proj = Timesteps(256, True, downscale_freq_shift=0)
|
| 301 |
+
self.add_angle_proj = Timesteps(512, True, downscale_freq_shift=0) # encode camera angles
|
| 302 |
+
self.add_embedding = TimestepEmbedding(1280, 1280)
|
| 303 |
+
|
| 304 |
+
# time
|
| 305 |
+
if time_embedding_type == "fourier":
|
| 306 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
| 307 |
+
if time_embed_dim % 2 != 0:
|
| 308 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
| 309 |
+
self.time_proj = GaussianFourierProjection(
|
| 310 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
| 311 |
+
)
|
| 312 |
+
timestep_input_dim = time_embed_dim
|
| 313 |
+
elif time_embedding_type == "positional":
|
| 314 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
| 315 |
+
|
| 316 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 317 |
+
timestep_input_dim = block_out_channels[0]
|
| 318 |
+
else:
|
| 319 |
+
raise ValueError(
|
| 320 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
self.time_embedding = TimestepEmbedding(
|
| 324 |
+
timestep_input_dim,
|
| 325 |
+
time_embed_dim,
|
| 326 |
+
act_fn=act_fn,
|
| 327 |
+
post_act_fn=timestep_post_act,
|
| 328 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 332 |
+
encoder_hid_dim_type = "text_proj"
|
| 333 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 334 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
| 335 |
+
|
| 336 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 337 |
+
raise ValueError(
|
| 338 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
if encoder_hid_dim_type == "text_proj":
|
| 342 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 343 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 344 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 345 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 346 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
| 347 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 348 |
+
text_embed_dim=encoder_hid_dim,
|
| 349 |
+
image_embed_dim=cross_attention_dim,
|
| 350 |
+
cross_attention_dim=cross_attention_dim,
|
| 351 |
+
)
|
| 352 |
+
elif encoder_hid_dim_type == "image_proj":
|
| 353 |
+
# Kandinsky 2.2
|
| 354 |
+
self.encoder_hid_proj = ImageProjection(
|
| 355 |
+
image_embed_dim=encoder_hid_dim,
|
| 356 |
+
cross_attention_dim=cross_attention_dim,
|
| 357 |
+
)
|
| 358 |
+
elif encoder_hid_dim_type is not None:
|
| 359 |
+
raise ValueError(
|
| 360 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 361 |
+
)
|
| 362 |
+
else:
|
| 363 |
+
self.encoder_hid_proj = None
|
| 364 |
+
|
| 365 |
+
# class embedding
|
| 366 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 367 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 368 |
+
elif class_embed_type == "timestep":
|
| 369 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
| 370 |
+
elif class_embed_type == "identity":
|
| 371 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 372 |
+
elif class_embed_type == "projection":
|
| 373 |
+
if projection_class_embeddings_input_dim is None:
|
| 374 |
+
raise ValueError(
|
| 375 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 376 |
+
)
|
| 377 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 378 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 379 |
+
# 2. it projects from an arbitrary input dimension.
|
| 380 |
+
#
|
| 381 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 382 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 383 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 384 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 385 |
+
elif class_embed_type == "simple_projection":
|
| 386 |
+
if projection_class_embeddings_input_dim is None:
|
| 387 |
+
raise ValueError(
|
| 388 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
| 389 |
+
)
|
| 390 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
| 391 |
+
else:
|
| 392 |
+
self.class_embedding = None
|
| 393 |
+
|
| 394 |
+
if addition_embed_type == "text":
|
| 395 |
+
if encoder_hid_dim is not None:
|
| 396 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 397 |
+
else:
|
| 398 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 399 |
+
|
| 400 |
+
self.add_embedding = TextTimeEmbedding(
|
| 401 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 402 |
+
)
|
| 403 |
+
elif addition_embed_type == "text_image":
|
| 404 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 405 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 406 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
| 407 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 408 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 409 |
+
)
|
| 410 |
+
elif addition_embed_type == "text_time":
|
| 411 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 412 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 413 |
+
elif addition_embed_type == "image":
|
| 414 |
+
# Kandinsky 2.2
|
| 415 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
| 416 |
+
elif addition_embed_type == "image_hint":
|
| 417 |
+
# Kandinsky 2.2 ControlNet
|
| 418 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
| 419 |
+
elif addition_embed_type is not None:
|
| 420 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 421 |
+
|
| 422 |
+
if time_embedding_act_fn is None:
|
| 423 |
+
self.time_embed_act = None
|
| 424 |
+
else:
|
| 425 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
| 426 |
+
|
| 427 |
+
self.down_blocks = nn.ModuleList([])
|
| 428 |
+
self.up_blocks = nn.ModuleList([])
|
| 429 |
+
|
| 430 |
+
if isinstance(only_cross_attention, bool):
|
| 431 |
+
if mid_block_only_cross_attention is None:
|
| 432 |
+
mid_block_only_cross_attention = only_cross_attention
|
| 433 |
+
|
| 434 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 435 |
+
|
| 436 |
+
if mid_block_only_cross_attention is None:
|
| 437 |
+
mid_block_only_cross_attention = False
|
| 438 |
+
|
| 439 |
+
if isinstance(num_attention_heads, int):
|
| 440 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 441 |
+
|
| 442 |
+
if isinstance(attention_head_dim, int):
|
| 443 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 444 |
+
|
| 445 |
+
if isinstance(cross_attention_dim, int):
|
| 446 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
| 447 |
+
|
| 448 |
+
if isinstance(layers_per_block, int):
|
| 449 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
| 450 |
+
|
| 451 |
+
if isinstance(transformer_layers_per_block, int):
|
| 452 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 453 |
+
|
| 454 |
+
if class_embeddings_concat:
|
| 455 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
| 456 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
| 457 |
+
# regular time embeddings
|
| 458 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
| 459 |
+
else:
|
| 460 |
+
blocks_time_embed_dim = time_embed_dim
|
| 461 |
+
|
| 462 |
+
# down
|
| 463 |
+
output_channel = block_out_channels[0]
|
| 464 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 465 |
+
input_channel = output_channel
|
| 466 |
+
output_channel = block_out_channels[i]
|
| 467 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 468 |
+
|
| 469 |
+
down_block = get_down_block(
|
| 470 |
+
down_block_type,
|
| 471 |
+
num_layers=layers_per_block[i],
|
| 472 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 473 |
+
in_channels=input_channel,
|
| 474 |
+
out_channels=output_channel,
|
| 475 |
+
temb_channels=blocks_time_embed_dim,
|
| 476 |
+
add_downsample=not is_final_block,
|
| 477 |
+
resnet_eps=norm_eps,
|
| 478 |
+
resnet_act_fn=act_fn,
|
| 479 |
+
resnet_groups=norm_num_groups,
|
| 480 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 481 |
+
num_attention_heads=num_attention_heads[i],
|
| 482 |
+
downsample_padding=downsample_padding,
|
| 483 |
+
dual_cross_attention=dual_cross_attention,
|
| 484 |
+
use_linear_projection=use_linear_projection,
|
| 485 |
+
only_cross_attention=only_cross_attention[i],
|
| 486 |
+
upcast_attention=upcast_attention,
|
| 487 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 488 |
+
attention_type=attention_type,
|
| 489 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 490 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 491 |
+
cross_attention_norm=cross_attention_norm,
|
| 492 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 493 |
+
)
|
| 494 |
+
self.down_blocks.append(down_block)
|
| 495 |
+
|
| 496 |
+
# mid
|
| 497 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 498 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 499 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 500 |
+
in_channels=block_out_channels[-1],
|
| 501 |
+
temb_channels=blocks_time_embed_dim,
|
| 502 |
+
resnet_eps=norm_eps,
|
| 503 |
+
resnet_act_fn=act_fn,
|
| 504 |
+
output_scale_factor=mid_block_scale_factor,
|
| 505 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 506 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 507 |
+
num_attention_heads=num_attention_heads[-1],
|
| 508 |
+
resnet_groups=norm_num_groups,
|
| 509 |
+
dual_cross_attention=dual_cross_attention,
|
| 510 |
+
use_linear_projection=use_linear_projection,
|
| 511 |
+
upcast_attention=upcast_attention,
|
| 512 |
+
attention_type=attention_type,
|
| 513 |
+
)
|
| 514 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
| 515 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
| 516 |
+
in_channels=block_out_channels[-1],
|
| 517 |
+
temb_channels=blocks_time_embed_dim,
|
| 518 |
+
resnet_eps=norm_eps,
|
| 519 |
+
resnet_act_fn=act_fn,
|
| 520 |
+
output_scale_factor=mid_block_scale_factor,
|
| 521 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 522 |
+
attention_head_dim=attention_head_dim[-1],
|
| 523 |
+
resnet_groups=norm_num_groups,
|
| 524 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 525 |
+
skip_time_act=resnet_skip_time_act,
|
| 526 |
+
only_cross_attention=mid_block_only_cross_attention,
|
| 527 |
+
cross_attention_norm=cross_attention_norm,
|
| 528 |
+
)
|
| 529 |
+
elif mid_block_type is None:
|
| 530 |
+
self.mid_block = None
|
| 531 |
+
else:
|
| 532 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 533 |
+
|
| 534 |
+
# count how many layers upsample the images
|
| 535 |
+
self.num_upsamplers = 0
|
| 536 |
+
|
| 537 |
+
# up
|
| 538 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 539 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
| 540 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
| 541 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 542 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
| 543 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 544 |
+
|
| 545 |
+
output_channel = reversed_block_out_channels[0]
|
| 546 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 547 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 548 |
+
|
| 549 |
+
prev_output_channel = output_channel
|
| 550 |
+
output_channel = reversed_block_out_channels[i]
|
| 551 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 552 |
+
|
| 553 |
+
# add upsample block for all BUT final layer
|
| 554 |
+
if not is_final_block:
|
| 555 |
+
add_upsample = True
|
| 556 |
+
self.num_upsamplers += 1
|
| 557 |
+
else:
|
| 558 |
+
add_upsample = False
|
| 559 |
+
|
| 560 |
+
up_block = get_up_block(
|
| 561 |
+
up_block_type,
|
| 562 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
| 563 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
| 564 |
+
in_channels=input_channel,
|
| 565 |
+
out_channels=output_channel,
|
| 566 |
+
prev_output_channel=prev_output_channel,
|
| 567 |
+
temb_channels=blocks_time_embed_dim,
|
| 568 |
+
add_upsample=add_upsample,
|
| 569 |
+
resnet_eps=norm_eps,
|
| 570 |
+
resnet_act_fn=act_fn,
|
| 571 |
+
resnet_groups=norm_num_groups,
|
| 572 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
| 573 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
| 574 |
+
dual_cross_attention=dual_cross_attention,
|
| 575 |
+
use_linear_projection=use_linear_projection,
|
| 576 |
+
only_cross_attention=only_cross_attention[i],
|
| 577 |
+
upcast_attention=upcast_attention,
|
| 578 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 579 |
+
attention_type=attention_type,
|
| 580 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 581 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 582 |
+
cross_attention_norm=cross_attention_norm,
|
| 583 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 584 |
+
)
|
| 585 |
+
self.up_blocks.append(up_block)
|
| 586 |
+
prev_output_channel = output_channel
|
| 587 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_q = _LoRACompatibleLinear()
|
| 588 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_k = _LoRACompatibleLinear()
|
| 589 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_v = _LoRACompatibleLinear()
|
| 590 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_out = nn.ModuleList([Identity(), Identity()])
|
| 591 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm2 = Identity()
|
| 592 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn2 = None
|
| 593 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm3 = Identity()
|
| 594 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].ff = Identity()
|
| 595 |
+
self.up_blocks[3].attentions[2].proj_out = Identity()
|
| 596 |
+
|
| 597 |
+
if attention_type in ["gated", "gated-text-image"]:
|
| 598 |
+
positive_len = 768
|
| 599 |
+
if isinstance(cross_attention_dim, int):
|
| 600 |
+
positive_len = cross_attention_dim
|
| 601 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
| 602 |
+
positive_len = cross_attention_dim[0]
|
| 603 |
+
|
| 604 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
| 605 |
+
self.position_net = PositionNet(
|
| 606 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
@property
|
| 610 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 611 |
+
r"""
|
| 612 |
+
Returns:
|
| 613 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 614 |
+
indexed by its weight name.
|
| 615 |
+
"""
|
| 616 |
+
# set recursively
|
| 617 |
+
processors = {}
|
| 618 |
+
|
| 619 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 620 |
+
if hasattr(module, "get_processor"):
|
| 621 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 622 |
+
|
| 623 |
+
for sub_name, child in module.named_children():
|
| 624 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 625 |
+
|
| 626 |
+
return processors
|
| 627 |
+
|
| 628 |
+
for name, module in self.named_children():
|
| 629 |
+
fn_recursive_add_processors(name, module, processors)
|
| 630 |
+
|
| 631 |
+
return processors
|
| 632 |
+
|
| 633 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 634 |
+
r"""
|
| 635 |
+
Sets the attention processor to use to compute attention.
|
| 636 |
+
|
| 637 |
+
Parameters:
|
| 638 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 639 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 640 |
+
for **all** `Attention` layers.
|
| 641 |
+
|
| 642 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 643 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 644 |
+
|
| 645 |
+
"""
|
| 646 |
+
count = len(self.attn_processors.keys())
|
| 647 |
+
|
| 648 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 649 |
+
raise ValueError(
|
| 650 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 651 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 655 |
+
if hasattr(module, "set_processor"):
|
| 656 |
+
if not isinstance(processor, dict):
|
| 657 |
+
module.set_processor(processor)
|
| 658 |
+
else:
|
| 659 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 660 |
+
|
| 661 |
+
for sub_name, child in module.named_children():
|
| 662 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 663 |
+
|
| 664 |
+
for name, module in self.named_children():
|
| 665 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 666 |
+
|
| 667 |
+
def set_default_attn_processor(self):
|
| 668 |
+
"""
|
| 669 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 670 |
+
"""
|
| 671 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 672 |
+
processor = AttnAddedKVProcessor()
|
| 673 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 674 |
+
processor = AttnProcessor()
|
| 675 |
+
else:
|
| 676 |
+
raise ValueError(
|
| 677 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
self.set_attn_processor(processor)
|
| 681 |
+
|
| 682 |
+
def set_attention_slice(self, slice_size):
|
| 683 |
+
r"""
|
| 684 |
+
Enable sliced attention computation.
|
| 685 |
+
|
| 686 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 687 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 691 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 692 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 693 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 694 |
+
must be a multiple of `slice_size`.
|
| 695 |
+
"""
|
| 696 |
+
sliceable_head_dims = []
|
| 697 |
+
|
| 698 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 699 |
+
if hasattr(module, "set_attention_slice"):
|
| 700 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 701 |
+
|
| 702 |
+
for child in module.children():
|
| 703 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 704 |
+
|
| 705 |
+
# retrieve number of attention layers
|
| 706 |
+
for module in self.children():
|
| 707 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 708 |
+
|
| 709 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 710 |
+
|
| 711 |
+
if slice_size == "auto":
|
| 712 |
+
# half the attention head size is usually a good trade-off between
|
| 713 |
+
# speed and memory
|
| 714 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 715 |
+
elif slice_size == "max":
|
| 716 |
+
# make smallest slice possible
|
| 717 |
+
slice_size = num_sliceable_layers * [1]
|
| 718 |
+
|
| 719 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 720 |
+
|
| 721 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 722 |
+
raise ValueError(
|
| 723 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 724 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
for i in range(len(slice_size)):
|
| 728 |
+
size = slice_size[i]
|
| 729 |
+
dim = sliceable_head_dims[i]
|
| 730 |
+
if size is not None and size > dim:
|
| 731 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 732 |
+
|
| 733 |
+
# Recursively walk through all the children.
|
| 734 |
+
# Any children which exposes the set_attention_slice method
|
| 735 |
+
# gets the message
|
| 736 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 737 |
+
if hasattr(module, "set_attention_slice"):
|
| 738 |
+
module.set_attention_slice(slice_size.pop())
|
| 739 |
+
|
| 740 |
+
for child in module.children():
|
| 741 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 742 |
+
|
| 743 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 744 |
+
for module in self.children():
|
| 745 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 746 |
+
|
| 747 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 748 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 749 |
+
module.gradient_checkpointing = value
|
| 750 |
+
|
| 751 |
+
def forward(
|
| 752 |
+
self,
|
| 753 |
+
sample: torch.FloatTensor,
|
| 754 |
+
timestep: Union[torch.Tensor, float, int],
|
| 755 |
+
encoder_hidden_states: torch.Tensor,
|
| 756 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 757 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 758 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 759 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 760 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 761 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 762 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 763 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 764 |
+
return_dict: bool = True,
|
| 765 |
+
add_time_ids: List=None,
|
| 766 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 767 |
+
r"""
|
| 768 |
+
The [`UNet2DConditionModel`] forward method.
|
| 769 |
+
|
| 770 |
+
Args:
|
| 771 |
+
sample (`torch.FloatTensor`):
|
| 772 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
| 773 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
| 774 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
| 775 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
| 776 |
+
encoder_attention_mask (`torch.Tensor`):
|
| 777 |
+
A cross-attention face_hair_mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
| 778 |
+
`True` the face_hair_mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
| 779 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
| 780 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 781 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 782 |
+
tuple.
|
| 783 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 784 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
| 785 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 786 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
| 787 |
+
are passed along to the UNet blocks.
|
| 788 |
+
|
| 789 |
+
Returns:
|
| 790 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 791 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
| 792 |
+
a `tuple` is returned where the first element is the sample tensor.
|
| 793 |
+
"""
|
| 794 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 795 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 796 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 797 |
+
# on the fly if necessary.
|
| 798 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 799 |
+
|
| 800 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 801 |
+
forward_upsample_size = False
|
| 802 |
+
upsample_size = None
|
| 803 |
+
|
| 804 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 805 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 806 |
+
forward_upsample_size = True
|
| 807 |
+
|
| 808 |
+
if attention_mask is not None:
|
| 809 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 810 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 811 |
+
|
| 812 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 813 |
+
if encoder_attention_mask is not None:
|
| 814 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
| 815 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 816 |
+
|
| 817 |
+
# 0. center input if necessary
|
| 818 |
+
if self.config.center_input_sample:
|
| 819 |
+
sample = 2 * sample - 1.0
|
| 820 |
+
|
| 821 |
+
# 1. time
|
| 822 |
+
timesteps = timestep
|
| 823 |
+
if not torch.is_tensor(timesteps):
|
| 824 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 825 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 826 |
+
is_mps = sample.device.type == "mps"
|
| 827 |
+
if isinstance(timestep, float):
|
| 828 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 829 |
+
else:
|
| 830 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 831 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 832 |
+
elif len(timesteps.shape) == 0:
|
| 833 |
+
timesteps = timesteps[None].to(sample.device)
|
| 834 |
+
|
| 835 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 836 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 837 |
+
|
| 838 |
+
t_emb = self.time_proj(timesteps)
|
| 839 |
+
|
| 840 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 841 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 842 |
+
# there might be better ways to encapsulate this.
|
| 843 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 844 |
+
|
| 845 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 846 |
+
aug_emb = None
|
| 847 |
+
|
| 848 |
+
if self.class_embedding is not None:
|
| 849 |
+
if class_labels is None:
|
| 850 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 851 |
+
|
| 852 |
+
if self.config.class_embed_type == "timestep":
|
| 853 |
+
class_labels = self.time_proj(class_labels)
|
| 854 |
+
|
| 855 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 856 |
+
# there might be better ways to encapsulate this.
|
| 857 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 858 |
+
|
| 859 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
| 860 |
+
|
| 861 |
+
if self.config.class_embeddings_concat:
|
| 862 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 863 |
+
else:
|
| 864 |
+
emb = emb + class_emb
|
| 865 |
+
|
| 866 |
+
if self.config.addition_embed_type == "text":
|
| 867 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 868 |
+
elif self.config.addition_embed_type == "text_image":
|
| 869 |
+
# Kandinsky 2.1 - style
|
| 870 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 871 |
+
raise ValueError(
|
| 872 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 873 |
+
)
|
| 874 |
+
|
| 875 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 876 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
| 877 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
| 878 |
+
elif self.config.addition_embed_type == "text_time":
|
| 879 |
+
# SDXL - style
|
| 880 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 881 |
+
raise ValueError(
|
| 882 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 883 |
+
)
|
| 884 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 885 |
+
if "time_ids" not in added_cond_kwargs:
|
| 886 |
+
raise ValueError(
|
| 887 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 888 |
+
)
|
| 889 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 890 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 891 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 892 |
+
|
| 893 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 894 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 895 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 896 |
+
elif self.config.addition_embed_type == "image":
|
| 897 |
+
# Kandinsky 2.2 - style
|
| 898 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 899 |
+
raise ValueError(
|
| 900 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 901 |
+
)
|
| 902 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 903 |
+
aug_emb = self.add_embedding(image_embs)
|
| 904 |
+
elif self.config.addition_embed_type == "image_hint":
|
| 905 |
+
# Kandinsky 2.2 - style
|
| 906 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
| 907 |
+
raise ValueError(
|
| 908 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
| 909 |
+
)
|
| 910 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 911 |
+
hint = added_cond_kwargs.get("hint")
|
| 912 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
| 913 |
+
sample = torch.cat([sample, hint], dim=1)
|
| 914 |
+
|
| 915 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 916 |
+
|
| 917 |
+
if add_time_ids is not None:
|
| 918 |
+
cond_aug, polars, azimuths = add_time_ids
|
| 919 |
+
cond_aug_emb = self.add_time_proj(cond_aug.flatten())
|
| 920 |
+
polars_emb = self.add_angle_proj(polars.flatten())
|
| 921 |
+
azimuths_emb = self.add_angle_proj(azimuths.flatten())
|
| 922 |
+
time_embeds = torch.cat([cond_aug_emb, polars_emb, azimuths_emb],dim=1)
|
| 923 |
+
time_embeds = time_embeds.to(emb.dtype)
|
| 924 |
+
aug_emb = self.add_embedding(time_embeds)
|
| 925 |
+
emb = emb + aug_emb
|
| 926 |
+
|
| 927 |
+
if self.time_embed_act is not None:
|
| 928 |
+
emb = self.time_embed_act(emb)
|
| 929 |
+
|
| 930 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
| 931 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 932 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
| 933 |
+
# Kadinsky 2.1 - style
|
| 934 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 935 |
+
raise ValueError(
|
| 936 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 940 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
| 941 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
| 942 |
+
# Kandinsky 2.2 - style
|
| 943 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 944 |
+
raise ValueError(
|
| 945 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 946 |
+
)
|
| 947 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 948 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
| 949 |
+
# 2. pre-process
|
| 950 |
+
sample = self.conv_in(sample)
|
| 951 |
+
|
| 952 |
+
# 2.5 GLIGEN position net
|
| 953 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
| 954 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
| 955 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
| 956 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
| 957 |
+
|
| 958 |
+
# 3. down
|
| 959 |
+
|
| 960 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
| 961 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
| 962 |
+
|
| 963 |
+
down_block_res_samples = (sample,)
|
| 964 |
+
for downsample_block in self.down_blocks:
|
| 965 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 966 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
| 967 |
+
additional_residuals = {}
|
| 968 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
| 969 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
| 970 |
+
|
| 971 |
+
sample, res_samples = downsample_block(
|
| 972 |
+
hidden_states=sample,
|
| 973 |
+
temb=emb,
|
| 974 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 975 |
+
attention_mask=attention_mask,
|
| 976 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 977 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 978 |
+
**additional_residuals,
|
| 979 |
+
)
|
| 980 |
+
else:
|
| 981 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 982 |
+
|
| 983 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
| 984 |
+
sample += down_block_additional_residuals.pop(0)
|
| 985 |
+
|
| 986 |
+
down_block_res_samples += res_samples
|
| 987 |
+
|
| 988 |
+
if is_controlnet:
|
| 989 |
+
new_down_block_res_samples = ()
|
| 990 |
+
|
| 991 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 992 |
+
down_block_res_samples, down_block_additional_residuals
|
| 993 |
+
):
|
| 994 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
| 995 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
| 996 |
+
|
| 997 |
+
down_block_res_samples = new_down_block_res_samples
|
| 998 |
+
|
| 999 |
+
# 4. mid
|
| 1000 |
+
if self.mid_block is not None:
|
| 1001 |
+
sample = self.mid_block(
|
| 1002 |
+
sample,
|
| 1003 |
+
emb,
|
| 1004 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1005 |
+
attention_mask=attention_mask,
|
| 1006 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1007 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1008 |
+
)
|
| 1009 |
+
# To support T2I-Adapter-XL
|
| 1010 |
+
if (
|
| 1011 |
+
is_adapter
|
| 1012 |
+
and len(down_block_additional_residuals) > 0
|
| 1013 |
+
and sample.shape == down_block_additional_residuals[0].shape
|
| 1014 |
+
):
|
| 1015 |
+
sample += down_block_additional_residuals.pop(0)
|
| 1016 |
+
|
| 1017 |
+
if is_controlnet:
|
| 1018 |
+
sample = sample + mid_block_additional_residual
|
| 1019 |
+
|
| 1020 |
+
# 5. up
|
| 1021 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1022 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 1023 |
+
|
| 1024 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 1025 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 1026 |
+
|
| 1027 |
+
# if we have not reached the final block and need to forward the
|
| 1028 |
+
# upsample size, we do it here
|
| 1029 |
+
if not is_final_block and forward_upsample_size:
|
| 1030 |
+
|
| 1031 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 1032 |
+
|
| 1033 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 1034 |
+
|
| 1035 |
+
sample = upsample_block(
|
| 1036 |
+
hidden_states=sample,
|
| 1037 |
+
temb=emb,
|
| 1038 |
+
res_hidden_states_tuple=res_samples,
|
| 1039 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1040 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1041 |
+
upsample_size=upsample_size,
|
| 1042 |
+
attention_mask=attention_mask,
|
| 1043 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1044 |
+
)
|
| 1045 |
+
else:
|
| 1046 |
+
sample = upsample_block(
|
| 1047 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 1048 |
+
)
|
| 1049 |
+
|
| 1050 |
+
if not return_dict:
|
| 1051 |
+
return (sample,)
|
| 1052 |
+
|
| 1053 |
+
return UNet2DConditionOutput(sample=sample)
|
ref_encoder/reference_unetv2.py
ADDED
|
@@ -0,0 +1,1037 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.utils.checkpoint
|
| 7 |
+
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
| 10 |
+
from diffusers.utils import BaseOutput, logging
|
| 11 |
+
from diffusers.models.activations import get_activation
|
| 12 |
+
from diffusers.models.attention_processor import (
|
| 13 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 14 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 15 |
+
AttentionProcessor,
|
| 16 |
+
AttnAddedKVProcessor,
|
| 17 |
+
AttnProcessor,
|
| 18 |
+
)
|
| 19 |
+
from diffusers.models.lora import LoRALinearLayer
|
| 20 |
+
from diffusers.models.embeddings import (
|
| 21 |
+
GaussianFourierProjection,
|
| 22 |
+
ImageHintTimeEmbedding,
|
| 23 |
+
ImageProjection,
|
| 24 |
+
ImageTimeEmbedding,
|
| 25 |
+
PositionNet,
|
| 26 |
+
TextImageProjection,
|
| 27 |
+
TextImageTimeEmbedding,
|
| 28 |
+
TextTimeEmbedding,
|
| 29 |
+
TimestepEmbedding,
|
| 30 |
+
Timesteps,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 33 |
+
from diffusers.models.unet_2d_blocks import (
|
| 34 |
+
UNetMidBlock2DCrossAttn,
|
| 35 |
+
UNetMidBlock2DSimpleCrossAttn,
|
| 36 |
+
get_down_block,
|
| 37 |
+
get_up_block,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class CCProjection(ModelMixin, ConfigMixin):
|
| 45 |
+
def __init__(self, in_channel=772, out_channel=768):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.in_channel = in_channel
|
| 48 |
+
self.out_channel = out_channel
|
| 49 |
+
self.projection = torch.nn.Linear(in_channel, out_channel)
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
return self.projection(x)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class Identity(torch.nn.Module):
|
| 56 |
+
def __init__(self, scale=None, *args, **kwargs) -> None:
|
| 57 |
+
super(Identity, self).__init__()
|
| 58 |
+
def forward(self, input, *args, **kwargs):
|
| 59 |
+
return input
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class _LoRACompatibleLinear(nn.Module):
|
| 63 |
+
"""
|
| 64 |
+
A Linear layer that can be used with LoRA.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
|
| 68 |
+
super().__init__(*args, **kwargs)
|
| 69 |
+
self.lora_layer = lora_layer
|
| 70 |
+
|
| 71 |
+
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
|
| 72 |
+
self.lora_layer = lora_layer
|
| 73 |
+
|
| 74 |
+
def _fuse_lora(self):
|
| 75 |
+
pass
|
| 76 |
+
|
| 77 |
+
def _unfuse_lora(self):
|
| 78 |
+
pass
|
| 79 |
+
|
| 80 |
+
def forward(self, hidden_states, scale=None, lora_scale: int = 1):
|
| 81 |
+
return hidden_states
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@dataclass
|
| 85 |
+
class UNet2DConditionOutput(BaseOutput):
|
| 86 |
+
"""
|
| 87 |
+
The output of [`UNet2DConditionModel`].
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 91 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
sample: torch.FloatTensor = None
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class ref_unet(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
| 98 |
+
r"""
|
| 99 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
| 100 |
+
shaped output.
|
| 101 |
+
|
| 102 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 103 |
+
for all models (such as downloading or saving).
|
| 104 |
+
|
| 105 |
+
Parameters:
|
| 106 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
| 107 |
+
Height and width of input/output sample.
|
| 108 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
| 109 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
| 110 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 111 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
| 112 |
+
Whether to flip the sin to cos in the time embedding.
|
| 113 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 114 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 115 |
+
The tuple of downsample blocks to use.
|
| 116 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
| 117 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
| 118 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
| 119 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
| 120 |
+
The tuple of upsample blocks to use.
|
| 121 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
| 122 |
+
Whether to include self-attention in the basic transformer blocks, see
|
| 123 |
+
[`~models.attention.BasicTransformerBlock`].
|
| 124 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 125 |
+
The tuple of output channels for each block.
|
| 126 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
| 127 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
| 128 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
| 129 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 130 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
| 131 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
| 132 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
| 133 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
| 134 |
+
The dimension of the cross attention features.
|
| 135 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 136 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 137 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 138 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 139 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 140 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 141 |
+
dimension to `cross_attention_dim`.
|
| 142 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 143 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 144 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 145 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
| 146 |
+
num_attention_heads (`int`, *optional*):
|
| 147 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
| 148 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
| 149 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
| 150 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 151 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
| 152 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 153 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 154 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 155 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 156 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
| 157 |
+
Dimension for the timestep embeddings.
|
| 158 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
| 159 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 160 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 161 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
| 162 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
| 163 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
| 164 |
+
An optional override for the dimension of the projected time embedding.
|
| 165 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
| 166 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
| 167 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
| 168 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
| 169 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
| 170 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
| 171 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
| 172 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
| 173 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
| 174 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
| 175 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
| 176 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
| 177 |
+
embeddings with the class embeddings.
|
| 178 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
| 179 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
| 180 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
| 181 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
| 182 |
+
otherwise.
|
| 183 |
+
"""
|
| 184 |
+
|
| 185 |
+
_supports_gradient_checkpointing = True
|
| 186 |
+
|
| 187 |
+
@register_to_config
|
| 188 |
+
def __init__(
|
| 189 |
+
self,
|
| 190 |
+
sample_size: Optional[int] = None,
|
| 191 |
+
in_channels: int = 4,
|
| 192 |
+
out_channels: int = 4,
|
| 193 |
+
center_input_sample: bool = False,
|
| 194 |
+
flip_sin_to_cos: bool = True,
|
| 195 |
+
freq_shift: int = 0,
|
| 196 |
+
down_block_types: Tuple[str] = (
|
| 197 |
+
"CrossAttnDownBlock2D",
|
| 198 |
+
"CrossAttnDownBlock2D",
|
| 199 |
+
"CrossAttnDownBlock2D",
|
| 200 |
+
"DownBlock2D",
|
| 201 |
+
),
|
| 202 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 203 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
| 204 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 205 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 206 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 207 |
+
downsample_padding: int = 1,
|
| 208 |
+
mid_block_scale_factor: float = 1,
|
| 209 |
+
act_fn: str = "silu",
|
| 210 |
+
norm_num_groups: Optional[int] = 32,
|
| 211 |
+
norm_eps: float = 1e-5,
|
| 212 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
| 213 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 214 |
+
encoder_hid_dim: Optional[int] = None,
|
| 215 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 216 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 217 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
| 218 |
+
dual_cross_attention: bool = False,
|
| 219 |
+
use_linear_projection: bool = False,
|
| 220 |
+
class_embed_type: Optional[str] = None,
|
| 221 |
+
addition_embed_type: Optional[str] = None,
|
| 222 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 223 |
+
num_class_embeds: Optional[int] = None,
|
| 224 |
+
upcast_attention: bool = False,
|
| 225 |
+
resnet_time_scale_shift: str = "default",
|
| 226 |
+
resnet_skip_time_act: bool = False,
|
| 227 |
+
resnet_out_scale_factor: int = 1.0,
|
| 228 |
+
time_embedding_type: str = "positional",
|
| 229 |
+
time_embedding_dim: Optional[int] = None,
|
| 230 |
+
time_embedding_act_fn: Optional[str] = None,
|
| 231 |
+
timestep_post_act: Optional[str] = None,
|
| 232 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 233 |
+
conv_in_kernel: int = 3,
|
| 234 |
+
conv_out_kernel: int = 3,
|
| 235 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 236 |
+
attention_type: str = "default",
|
| 237 |
+
class_embeddings_concat: bool = False,
|
| 238 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
| 239 |
+
cross_attention_norm: Optional[str] = None,
|
| 240 |
+
addition_embed_type_num_heads=64,
|
| 241 |
+
):
|
| 242 |
+
super().__init__()
|
| 243 |
+
|
| 244 |
+
self.sample_size = sample_size
|
| 245 |
+
|
| 246 |
+
if num_attention_heads is not None:
|
| 247 |
+
raise ValueError(
|
| 248 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 252 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 253 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 254 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 255 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 256 |
+
# which is why we correct for the naming here.
|
| 257 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 258 |
+
|
| 259 |
+
# Check inputs
|
| 260 |
+
if len(down_block_types) != len(up_block_types):
|
| 261 |
+
raise ValueError(
|
| 262 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if len(block_out_channels) != len(down_block_types):
|
| 266 |
+
raise ValueError(
|
| 267 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 271 |
+
raise ValueError(
|
| 272 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 276 |
+
raise ValueError(
|
| 277 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
| 281 |
+
raise ValueError(
|
| 282 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
| 286 |
+
raise ValueError(
|
| 287 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
| 291 |
+
raise ValueError(
|
| 292 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# input
|
| 296 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 297 |
+
self.conv_in = nn.Conv2d(
|
| 298 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# time
|
| 302 |
+
if time_embedding_type == "fourier":
|
| 303 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
| 304 |
+
if time_embed_dim % 2 != 0:
|
| 305 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
| 306 |
+
self.time_proj = GaussianFourierProjection(
|
| 307 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
| 308 |
+
)
|
| 309 |
+
timestep_input_dim = time_embed_dim
|
| 310 |
+
elif time_embedding_type == "positional":
|
| 311 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
| 312 |
+
|
| 313 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 314 |
+
timestep_input_dim = block_out_channels[0]
|
| 315 |
+
else:
|
| 316 |
+
raise ValueError(
|
| 317 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
self.time_embedding = TimestepEmbedding(
|
| 321 |
+
timestep_input_dim,
|
| 322 |
+
time_embed_dim,
|
| 323 |
+
act_fn=act_fn,
|
| 324 |
+
post_act_fn=timestep_post_act,
|
| 325 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 329 |
+
encoder_hid_dim_type = "text_proj"
|
| 330 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 331 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
| 332 |
+
|
| 333 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 334 |
+
raise ValueError(
|
| 335 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
if encoder_hid_dim_type == "text_proj":
|
| 339 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 340 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 341 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 342 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 343 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
| 344 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 345 |
+
text_embed_dim=encoder_hid_dim,
|
| 346 |
+
image_embed_dim=cross_attention_dim,
|
| 347 |
+
cross_attention_dim=cross_attention_dim,
|
| 348 |
+
)
|
| 349 |
+
elif encoder_hid_dim_type == "image_proj":
|
| 350 |
+
# Kandinsky 2.2
|
| 351 |
+
self.encoder_hid_proj = ImageProjection(
|
| 352 |
+
image_embed_dim=encoder_hid_dim,
|
| 353 |
+
cross_attention_dim=cross_attention_dim,
|
| 354 |
+
)
|
| 355 |
+
elif encoder_hid_dim_type is not None:
|
| 356 |
+
raise ValueError(
|
| 357 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 358 |
+
)
|
| 359 |
+
else:
|
| 360 |
+
self.encoder_hid_proj = None
|
| 361 |
+
|
| 362 |
+
# class embedding
|
| 363 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 364 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 365 |
+
elif class_embed_type == "timestep":
|
| 366 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
| 367 |
+
elif class_embed_type == "identity":
|
| 368 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 369 |
+
elif class_embed_type == "projection":
|
| 370 |
+
if projection_class_embeddings_input_dim is None:
|
| 371 |
+
raise ValueError(
|
| 372 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 373 |
+
)
|
| 374 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 375 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 376 |
+
# 2. it projects from an arbitrary input dimension.
|
| 377 |
+
#
|
| 378 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 379 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 380 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 381 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 382 |
+
elif class_embed_type == "simple_projection":
|
| 383 |
+
if projection_class_embeddings_input_dim is None:
|
| 384 |
+
raise ValueError(
|
| 385 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
| 386 |
+
)
|
| 387 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
| 388 |
+
else:
|
| 389 |
+
self.class_embedding = None
|
| 390 |
+
|
| 391 |
+
if addition_embed_type == "text":
|
| 392 |
+
if encoder_hid_dim is not None:
|
| 393 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 394 |
+
else:
|
| 395 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 396 |
+
|
| 397 |
+
self.add_embedding = TextTimeEmbedding(
|
| 398 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 399 |
+
)
|
| 400 |
+
elif addition_embed_type == "text_image":
|
| 401 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 402 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 403 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
| 404 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 405 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 406 |
+
)
|
| 407 |
+
elif addition_embed_type == "text_time":
|
| 408 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 409 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 410 |
+
elif addition_embed_type == "image":
|
| 411 |
+
# Kandinsky 2.2
|
| 412 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
| 413 |
+
elif addition_embed_type == "image_hint":
|
| 414 |
+
# Kandinsky 2.2 ControlNet
|
| 415 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
| 416 |
+
elif addition_embed_type is not None:
|
| 417 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 418 |
+
|
| 419 |
+
if time_embedding_act_fn is None:
|
| 420 |
+
self.time_embed_act = None
|
| 421 |
+
else:
|
| 422 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
| 423 |
+
|
| 424 |
+
self.down_blocks = nn.ModuleList([])
|
| 425 |
+
self.up_blocks = nn.ModuleList([])
|
| 426 |
+
|
| 427 |
+
if isinstance(only_cross_attention, bool):
|
| 428 |
+
if mid_block_only_cross_attention is None:
|
| 429 |
+
mid_block_only_cross_attention = only_cross_attention
|
| 430 |
+
|
| 431 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 432 |
+
|
| 433 |
+
if mid_block_only_cross_attention is None:
|
| 434 |
+
mid_block_only_cross_attention = False
|
| 435 |
+
|
| 436 |
+
if isinstance(num_attention_heads, int):
|
| 437 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 438 |
+
|
| 439 |
+
if isinstance(attention_head_dim, int):
|
| 440 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 441 |
+
|
| 442 |
+
if isinstance(cross_attention_dim, int):
|
| 443 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
| 444 |
+
|
| 445 |
+
if isinstance(layers_per_block, int):
|
| 446 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
| 447 |
+
|
| 448 |
+
if isinstance(transformer_layers_per_block, int):
|
| 449 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 450 |
+
|
| 451 |
+
if class_embeddings_concat:
|
| 452 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
| 453 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
| 454 |
+
# regular time embeddings
|
| 455 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
| 456 |
+
else:
|
| 457 |
+
blocks_time_embed_dim = time_embed_dim
|
| 458 |
+
|
| 459 |
+
# down
|
| 460 |
+
output_channel = block_out_channels[0]
|
| 461 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 462 |
+
input_channel = output_channel
|
| 463 |
+
output_channel = block_out_channels[i]
|
| 464 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 465 |
+
|
| 466 |
+
down_block = get_down_block(
|
| 467 |
+
down_block_type,
|
| 468 |
+
num_layers=layers_per_block[i],
|
| 469 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 470 |
+
in_channels=input_channel,
|
| 471 |
+
out_channels=output_channel,
|
| 472 |
+
temb_channels=blocks_time_embed_dim,
|
| 473 |
+
add_downsample=not is_final_block,
|
| 474 |
+
resnet_eps=norm_eps,
|
| 475 |
+
resnet_act_fn=act_fn,
|
| 476 |
+
resnet_groups=norm_num_groups,
|
| 477 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 478 |
+
num_attention_heads=num_attention_heads[i],
|
| 479 |
+
downsample_padding=downsample_padding,
|
| 480 |
+
dual_cross_attention=dual_cross_attention,
|
| 481 |
+
use_linear_projection=use_linear_projection,
|
| 482 |
+
only_cross_attention=only_cross_attention[i],
|
| 483 |
+
upcast_attention=upcast_attention,
|
| 484 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 485 |
+
attention_type=attention_type,
|
| 486 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 487 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 488 |
+
cross_attention_norm=cross_attention_norm,
|
| 489 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 490 |
+
)
|
| 491 |
+
self.down_blocks.append(down_block)
|
| 492 |
+
|
| 493 |
+
# mid
|
| 494 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 495 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 496 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 497 |
+
in_channels=block_out_channels[-1],
|
| 498 |
+
temb_channels=blocks_time_embed_dim,
|
| 499 |
+
resnet_eps=norm_eps,
|
| 500 |
+
resnet_act_fn=act_fn,
|
| 501 |
+
output_scale_factor=mid_block_scale_factor,
|
| 502 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 503 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 504 |
+
num_attention_heads=num_attention_heads[-1],
|
| 505 |
+
resnet_groups=norm_num_groups,
|
| 506 |
+
dual_cross_attention=dual_cross_attention,
|
| 507 |
+
use_linear_projection=use_linear_projection,
|
| 508 |
+
upcast_attention=upcast_attention,
|
| 509 |
+
attention_type=attention_type,
|
| 510 |
+
)
|
| 511 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
| 512 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
| 513 |
+
in_channels=block_out_channels[-1],
|
| 514 |
+
temb_channels=blocks_time_embed_dim,
|
| 515 |
+
resnet_eps=norm_eps,
|
| 516 |
+
resnet_act_fn=act_fn,
|
| 517 |
+
output_scale_factor=mid_block_scale_factor,
|
| 518 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 519 |
+
attention_head_dim=attention_head_dim[-1],
|
| 520 |
+
resnet_groups=norm_num_groups,
|
| 521 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 522 |
+
skip_time_act=resnet_skip_time_act,
|
| 523 |
+
only_cross_attention=mid_block_only_cross_attention,
|
| 524 |
+
cross_attention_norm=cross_attention_norm,
|
| 525 |
+
)
|
| 526 |
+
elif mid_block_type is None:
|
| 527 |
+
self.mid_block = None
|
| 528 |
+
else:
|
| 529 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 530 |
+
|
| 531 |
+
# count how many layers upsample the images
|
| 532 |
+
self.num_upsamplers = 0
|
| 533 |
+
|
| 534 |
+
# up
|
| 535 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 536 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
| 537 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
| 538 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 539 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
| 540 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 541 |
+
|
| 542 |
+
output_channel = reversed_block_out_channels[0]
|
| 543 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 544 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 545 |
+
|
| 546 |
+
prev_output_channel = output_channel
|
| 547 |
+
output_channel = reversed_block_out_channels[i]
|
| 548 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 549 |
+
|
| 550 |
+
# add upsample block for all BUT final layer
|
| 551 |
+
if not is_final_block:
|
| 552 |
+
add_upsample = True
|
| 553 |
+
self.num_upsamplers += 1
|
| 554 |
+
else:
|
| 555 |
+
add_upsample = False
|
| 556 |
+
|
| 557 |
+
up_block = get_up_block(
|
| 558 |
+
up_block_type,
|
| 559 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
| 560 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
| 561 |
+
in_channels=input_channel,
|
| 562 |
+
out_channels=output_channel,
|
| 563 |
+
prev_output_channel=prev_output_channel,
|
| 564 |
+
temb_channels=blocks_time_embed_dim,
|
| 565 |
+
add_upsample=add_upsample,
|
| 566 |
+
resnet_eps=norm_eps,
|
| 567 |
+
resnet_act_fn=act_fn,
|
| 568 |
+
resnet_groups=norm_num_groups,
|
| 569 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
| 570 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
| 571 |
+
dual_cross_attention=dual_cross_attention,
|
| 572 |
+
use_linear_projection=use_linear_projection,
|
| 573 |
+
only_cross_attention=only_cross_attention[i],
|
| 574 |
+
upcast_attention=upcast_attention,
|
| 575 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 576 |
+
attention_type=attention_type,
|
| 577 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 578 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 579 |
+
cross_attention_norm=cross_attention_norm,
|
| 580 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 581 |
+
)
|
| 582 |
+
self.up_blocks.append(up_block)
|
| 583 |
+
prev_output_channel = output_channel
|
| 584 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_q = _LoRACompatibleLinear()
|
| 585 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_k = _LoRACompatibleLinear()
|
| 586 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_v = _LoRACompatibleLinear()
|
| 587 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_out = nn.ModuleList([Identity(), Identity()])
|
| 588 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm2 = Identity()
|
| 589 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].attn2 = None
|
| 590 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].norm3 = Identity()
|
| 591 |
+
self.up_blocks[3].attentions[2].transformer_blocks[0].ff = Identity()
|
| 592 |
+
self.up_blocks[3].attentions[2].proj_out = Identity()
|
| 593 |
+
|
| 594 |
+
if attention_type in ["gated", "gated-text-image"]:
|
| 595 |
+
positive_len = 768
|
| 596 |
+
if isinstance(cross_attention_dim, int):
|
| 597 |
+
positive_len = cross_attention_dim
|
| 598 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
| 599 |
+
positive_len = cross_attention_dim[0]
|
| 600 |
+
|
| 601 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
| 602 |
+
self.position_net = PositionNet(
|
| 603 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
@property
|
| 607 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 608 |
+
r"""
|
| 609 |
+
Returns:
|
| 610 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 611 |
+
indexed by its weight name.
|
| 612 |
+
"""
|
| 613 |
+
# set recursively
|
| 614 |
+
processors = {}
|
| 615 |
+
|
| 616 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 617 |
+
if hasattr(module, "get_processor"):
|
| 618 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 619 |
+
|
| 620 |
+
for sub_name, child in module.named_children():
|
| 621 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 622 |
+
|
| 623 |
+
return processors
|
| 624 |
+
|
| 625 |
+
for name, module in self.named_children():
|
| 626 |
+
fn_recursive_add_processors(name, module, processors)
|
| 627 |
+
|
| 628 |
+
return processors
|
| 629 |
+
|
| 630 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 631 |
+
r"""
|
| 632 |
+
Sets the attention processor to use to compute attention.
|
| 633 |
+
|
| 634 |
+
Parameters:
|
| 635 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 636 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 637 |
+
for **all** `Attention` layers.
|
| 638 |
+
|
| 639 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 640 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 641 |
+
|
| 642 |
+
"""
|
| 643 |
+
count = len(self.attn_processors.keys())
|
| 644 |
+
|
| 645 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 646 |
+
raise ValueError(
|
| 647 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 648 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 652 |
+
if hasattr(module, "set_processor"):
|
| 653 |
+
if not isinstance(processor, dict):
|
| 654 |
+
module.set_processor(processor)
|
| 655 |
+
else:
|
| 656 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 657 |
+
|
| 658 |
+
for sub_name, child in module.named_children():
|
| 659 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 660 |
+
|
| 661 |
+
for name, module in self.named_children():
|
| 662 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 663 |
+
|
| 664 |
+
def set_default_attn_processor(self):
|
| 665 |
+
"""
|
| 666 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 667 |
+
"""
|
| 668 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 669 |
+
processor = AttnAddedKVProcessor()
|
| 670 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 671 |
+
processor = AttnProcessor()
|
| 672 |
+
else:
|
| 673 |
+
raise ValueError(
|
| 674 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
self.set_attn_processor(processor)
|
| 678 |
+
|
| 679 |
+
def set_attention_slice(self, slice_size):
|
| 680 |
+
r"""
|
| 681 |
+
Enable sliced attention computation.
|
| 682 |
+
|
| 683 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 684 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 685 |
+
|
| 686 |
+
Args:
|
| 687 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 688 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 689 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 690 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 691 |
+
must be a multiple of `slice_size`.
|
| 692 |
+
"""
|
| 693 |
+
sliceable_head_dims = []
|
| 694 |
+
|
| 695 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 696 |
+
if hasattr(module, "set_attention_slice"):
|
| 697 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 698 |
+
|
| 699 |
+
for child in module.children():
|
| 700 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 701 |
+
|
| 702 |
+
# retrieve number of attention layers
|
| 703 |
+
for module in self.children():
|
| 704 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 705 |
+
|
| 706 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 707 |
+
|
| 708 |
+
if slice_size == "auto":
|
| 709 |
+
# half the attention head size is usually a good trade-off between
|
| 710 |
+
# speed and memory
|
| 711 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 712 |
+
elif slice_size == "max":
|
| 713 |
+
# make smallest slice possible
|
| 714 |
+
slice_size = num_sliceable_layers * [1]
|
| 715 |
+
|
| 716 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 717 |
+
|
| 718 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 719 |
+
raise ValueError(
|
| 720 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 721 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 722 |
+
)
|
| 723 |
+
|
| 724 |
+
for i in range(len(slice_size)):
|
| 725 |
+
size = slice_size[i]
|
| 726 |
+
dim = sliceable_head_dims[i]
|
| 727 |
+
if size is not None and size > dim:
|
| 728 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 729 |
+
|
| 730 |
+
# Recursively walk through all the children.
|
| 731 |
+
# Any children which exposes the set_attention_slice method
|
| 732 |
+
# gets the message
|
| 733 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 734 |
+
if hasattr(module, "set_attention_slice"):
|
| 735 |
+
module.set_attention_slice(slice_size.pop())
|
| 736 |
+
|
| 737 |
+
for child in module.children():
|
| 738 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 739 |
+
|
| 740 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 741 |
+
for module in self.children():
|
| 742 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 743 |
+
|
| 744 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 745 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 746 |
+
module.gradient_checkpointing = value
|
| 747 |
+
|
| 748 |
+
def forward(
|
| 749 |
+
self,
|
| 750 |
+
sample: torch.FloatTensor,
|
| 751 |
+
timestep: Union[torch.Tensor, float, int],
|
| 752 |
+
encoder_hidden_states: torch.Tensor,
|
| 753 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 754 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 755 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 756 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 757 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 758 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 759 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 760 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 761 |
+
return_dict: bool = True,
|
| 762 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 763 |
+
r"""
|
| 764 |
+
The [`UNet2DConditionModel`] forward method.
|
| 765 |
+
|
| 766 |
+
Args:
|
| 767 |
+
sample (`torch.FloatTensor`):
|
| 768 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
| 769 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
| 770 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
| 771 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
| 772 |
+
encoder_attention_mask (`torch.Tensor`):
|
| 773 |
+
A cross-attention face_hair_mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
| 774 |
+
`True` the face_hair_mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
| 775 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
| 776 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 777 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 778 |
+
tuple.
|
| 779 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 780 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
| 781 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 782 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
| 783 |
+
are passed along to the UNet blocks.
|
| 784 |
+
|
| 785 |
+
Returns:
|
| 786 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 787 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
| 788 |
+
a `tuple` is returned where the first element is the sample tensor.
|
| 789 |
+
"""
|
| 790 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 791 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 792 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 793 |
+
# on the fly if necessary.
|
| 794 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 795 |
+
|
| 796 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 797 |
+
forward_upsample_size = False
|
| 798 |
+
upsample_size = None
|
| 799 |
+
|
| 800 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 801 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 802 |
+
forward_upsample_size = True
|
| 803 |
+
|
| 804 |
+
if attention_mask is not None:
|
| 805 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 806 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 807 |
+
|
| 808 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 809 |
+
if encoder_attention_mask is not None:
|
| 810 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
| 811 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 812 |
+
|
| 813 |
+
# 0. center input if necessary
|
| 814 |
+
if self.config.center_input_sample:
|
| 815 |
+
sample = 2 * sample - 1.0
|
| 816 |
+
|
| 817 |
+
# 1. time
|
| 818 |
+
timesteps = timestep
|
| 819 |
+
if not torch.is_tensor(timesteps):
|
| 820 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 821 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 822 |
+
is_mps = sample.device.type == "mps"
|
| 823 |
+
if isinstance(timestep, float):
|
| 824 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 825 |
+
else:
|
| 826 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 827 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 828 |
+
elif len(timesteps.shape) == 0:
|
| 829 |
+
timesteps = timesteps[None].to(sample.device)
|
| 830 |
+
|
| 831 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 832 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 833 |
+
|
| 834 |
+
t_emb = self.time_proj(timesteps)
|
| 835 |
+
|
| 836 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 837 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 838 |
+
# there might be better ways to encapsulate this.
|
| 839 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 840 |
+
|
| 841 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 842 |
+
aug_emb = None
|
| 843 |
+
|
| 844 |
+
if self.class_embedding is not None:
|
| 845 |
+
if class_labels is None:
|
| 846 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 847 |
+
|
| 848 |
+
if self.config.class_embed_type == "timestep":
|
| 849 |
+
class_labels = self.time_proj(class_labels)
|
| 850 |
+
|
| 851 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 852 |
+
# there might be better ways to encapsulate this.
|
| 853 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 854 |
+
|
| 855 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
| 856 |
+
|
| 857 |
+
if self.config.class_embeddings_concat:
|
| 858 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 859 |
+
else:
|
| 860 |
+
emb = emb + class_emb
|
| 861 |
+
|
| 862 |
+
if self.config.addition_embed_type == "text":
|
| 863 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 864 |
+
elif self.config.addition_embed_type == "text_image":
|
| 865 |
+
# Kandinsky 2.1 - style
|
| 866 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 867 |
+
raise ValueError(
|
| 868 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 869 |
+
)
|
| 870 |
+
|
| 871 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 872 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
| 873 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
| 874 |
+
elif self.config.addition_embed_type == "text_time":
|
| 875 |
+
# SDXL - style
|
| 876 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 877 |
+
raise ValueError(
|
| 878 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 879 |
+
)
|
| 880 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 881 |
+
if "time_ids" not in added_cond_kwargs:
|
| 882 |
+
raise ValueError(
|
| 883 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 884 |
+
)
|
| 885 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 886 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 887 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 888 |
+
|
| 889 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 890 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 891 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 892 |
+
elif self.config.addition_embed_type == "image":
|
| 893 |
+
# Kandinsky 2.2 - style
|
| 894 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 895 |
+
raise ValueError(
|
| 896 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 897 |
+
)
|
| 898 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 899 |
+
aug_emb = self.add_embedding(image_embs)
|
| 900 |
+
elif self.config.addition_embed_type == "image_hint":
|
| 901 |
+
# Kandinsky 2.2 - style
|
| 902 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
| 903 |
+
raise ValueError(
|
| 904 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
| 905 |
+
)
|
| 906 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 907 |
+
hint = added_cond_kwargs.get("hint")
|
| 908 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
| 909 |
+
sample = torch.cat([sample, hint], dim=1)
|
| 910 |
+
|
| 911 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 912 |
+
|
| 913 |
+
if self.time_embed_act is not None:
|
| 914 |
+
emb = self.time_embed_act(emb)
|
| 915 |
+
|
| 916 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
| 917 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 918 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
| 919 |
+
# Kadinsky 2.1 - style
|
| 920 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 921 |
+
raise ValueError(
|
| 922 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 923 |
+
)
|
| 924 |
+
|
| 925 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 926 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
| 927 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
| 928 |
+
# Kandinsky 2.2 - style
|
| 929 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 930 |
+
raise ValueError(
|
| 931 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 932 |
+
)
|
| 933 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 934 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
| 935 |
+
# 2. pre-process
|
| 936 |
+
sample = self.conv_in(sample)
|
| 937 |
+
|
| 938 |
+
# 2.5 GLIGEN position net
|
| 939 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
| 940 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
| 941 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
| 942 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
| 943 |
+
|
| 944 |
+
# 3. down
|
| 945 |
+
|
| 946 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
| 947 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
| 948 |
+
|
| 949 |
+
down_block_res_samples = (sample,)
|
| 950 |
+
for downsample_block in self.down_blocks:
|
| 951 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 952 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
| 953 |
+
additional_residuals = {}
|
| 954 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
| 955 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
| 956 |
+
|
| 957 |
+
sample, res_samples = downsample_block(
|
| 958 |
+
hidden_states=sample,
|
| 959 |
+
temb=emb,
|
| 960 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 961 |
+
attention_mask=attention_mask,
|
| 962 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 963 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 964 |
+
**additional_residuals,
|
| 965 |
+
)
|
| 966 |
+
else:
|
| 967 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 968 |
+
|
| 969 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
| 970 |
+
sample += down_block_additional_residuals.pop(0)
|
| 971 |
+
|
| 972 |
+
down_block_res_samples += res_samples
|
| 973 |
+
|
| 974 |
+
if is_controlnet:
|
| 975 |
+
new_down_block_res_samples = ()
|
| 976 |
+
|
| 977 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 978 |
+
down_block_res_samples, down_block_additional_residuals
|
| 979 |
+
):
|
| 980 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
| 981 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
| 982 |
+
|
| 983 |
+
down_block_res_samples = new_down_block_res_samples
|
| 984 |
+
|
| 985 |
+
# 4. mid
|
| 986 |
+
if self.mid_block is not None:
|
| 987 |
+
sample = self.mid_block(
|
| 988 |
+
sample,
|
| 989 |
+
emb,
|
| 990 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 991 |
+
attention_mask=attention_mask,
|
| 992 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 993 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 994 |
+
)
|
| 995 |
+
# To support T2I-Adapter-XL
|
| 996 |
+
if (
|
| 997 |
+
is_adapter
|
| 998 |
+
and len(down_block_additional_residuals) > 0
|
| 999 |
+
and sample.shape == down_block_additional_residuals[0].shape
|
| 1000 |
+
):
|
| 1001 |
+
sample += down_block_additional_residuals.pop(0)
|
| 1002 |
+
|
| 1003 |
+
if is_controlnet:
|
| 1004 |
+
sample = sample + mid_block_additional_residual
|
| 1005 |
+
|
| 1006 |
+
# 5. up
|
| 1007 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1008 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 1009 |
+
|
| 1010 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 1011 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 1012 |
+
|
| 1013 |
+
# if we have not reached the final block and need to forward the
|
| 1014 |
+
# upsample size, we do it here
|
| 1015 |
+
if not is_final_block and forward_upsample_size:
|
| 1016 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 1017 |
+
|
| 1018 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 1019 |
+
sample = upsample_block(
|
| 1020 |
+
hidden_states=sample,
|
| 1021 |
+
temb=emb,
|
| 1022 |
+
res_hidden_states_tuple=res_samples,
|
| 1023 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1024 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1025 |
+
upsample_size=upsample_size,
|
| 1026 |
+
attention_mask=attention_mask,
|
| 1027 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1028 |
+
)
|
| 1029 |
+
else:
|
| 1030 |
+
sample = upsample_block(
|
| 1031 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 1032 |
+
)
|
| 1033 |
+
|
| 1034 |
+
if not return_dict:
|
| 1035 |
+
return (sample,)
|
| 1036 |
+
|
| 1037 |
+
return UNet2DConditionOutput(sample=sample)
|
ref_encoder/resnet.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class InflatedConv3d(nn.Conv2d):
|
| 10 |
+
def forward(self, x):
|
| 11 |
+
video_length = x.shape[2]
|
| 12 |
+
|
| 13 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
| 14 |
+
x = super().forward(x)
|
| 15 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
| 16 |
+
|
| 17 |
+
return x
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
video_length = x.shape[2]
|
| 23 |
+
|
| 24 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
| 25 |
+
x = super().forward(x)
|
| 26 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
| 27 |
+
|
| 28 |
+
return x
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Upsample3D(nn.Module):
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
channels,
|
| 35 |
+
use_conv=False,
|
| 36 |
+
use_conv_transpose=False,
|
| 37 |
+
out_channels=None,
|
| 38 |
+
name="conv",
|
| 39 |
+
):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.channels = channels
|
| 42 |
+
self.out_channels = out_channels or channels
|
| 43 |
+
self.use_conv = use_conv
|
| 44 |
+
self.use_conv_transpose = use_conv_transpose
|
| 45 |
+
self.name = name
|
| 46 |
+
|
| 47 |
+
conv = None
|
| 48 |
+
if use_conv_transpose:
|
| 49 |
+
raise NotImplementedError
|
| 50 |
+
elif use_conv:
|
| 51 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
| 52 |
+
|
| 53 |
+
def forward(self, hidden_states, output_size=None):
|
| 54 |
+
assert hidden_states.shape[1] == self.channels
|
| 55 |
+
|
| 56 |
+
if self.use_conv_transpose:
|
| 57 |
+
raise NotImplementedError
|
| 58 |
+
|
| 59 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 60 |
+
dtype = hidden_states.dtype
|
| 61 |
+
if dtype == torch.bfloat16:
|
| 62 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 63 |
+
|
| 64 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 65 |
+
if hidden_states.shape[0] >= 64:
|
| 66 |
+
hidden_states = hidden_states.contiguous()
|
| 67 |
+
|
| 68 |
+
# if `output_size` is passed we force the interpolation output
|
| 69 |
+
# size and do not make use of `scale_factor=2`
|
| 70 |
+
if output_size is None:
|
| 71 |
+
hidden_states = F.interpolate(
|
| 72 |
+
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest"
|
| 73 |
+
)
|
| 74 |
+
else:
|
| 75 |
+
hidden_states = F.interpolate(
|
| 76 |
+
hidden_states, size=output_size, mode="nearest"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# If the input is bfloat16, we cast back to bfloat16
|
| 80 |
+
if dtype == torch.bfloat16:
|
| 81 |
+
hidden_states = hidden_states.to(dtype)
|
| 82 |
+
|
| 83 |
+
# if self.use_conv:
|
| 84 |
+
# if self.name == "conv":
|
| 85 |
+
# hidden_states = self.conv(hidden_states)
|
| 86 |
+
# else:
|
| 87 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
| 88 |
+
hidden_states = self.conv(hidden_states)
|
| 89 |
+
|
| 90 |
+
return hidden_states
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class Downsample3D(nn.Module):
|
| 94 |
+
def __init__(
|
| 95 |
+
self, channels, use_conv=False, out_channels=None, padding=1, name="conv"
|
| 96 |
+
):
|
| 97 |
+
super().__init__()
|
| 98 |
+
self.channels = channels
|
| 99 |
+
self.out_channels = out_channels or channels
|
| 100 |
+
self.use_conv = use_conv
|
| 101 |
+
self.padding = padding
|
| 102 |
+
stride = 2
|
| 103 |
+
self.name = name
|
| 104 |
+
|
| 105 |
+
if use_conv:
|
| 106 |
+
self.conv = InflatedConv3d(
|
| 107 |
+
self.channels, self.out_channels, 3, stride=stride, padding=padding
|
| 108 |
+
)
|
| 109 |
+
else:
|
| 110 |
+
raise NotImplementedError
|
| 111 |
+
|
| 112 |
+
def forward(self, hidden_states):
|
| 113 |
+
assert hidden_states.shape[1] == self.channels
|
| 114 |
+
if self.use_conv and self.padding == 0:
|
| 115 |
+
raise NotImplementedError
|
| 116 |
+
|
| 117 |
+
assert hidden_states.shape[1] == self.channels
|
| 118 |
+
hidden_states = self.conv(hidden_states)
|
| 119 |
+
|
| 120 |
+
return hidden_states
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class ResnetBlock3D(nn.Module):
|
| 124 |
+
def __init__(
|
| 125 |
+
self,
|
| 126 |
+
*,
|
| 127 |
+
in_channels,
|
| 128 |
+
out_channels=None,
|
| 129 |
+
conv_shortcut=False,
|
| 130 |
+
dropout=0.0,
|
| 131 |
+
temb_channels=512,
|
| 132 |
+
groups=32,
|
| 133 |
+
groups_out=None,
|
| 134 |
+
pre_norm=True,
|
| 135 |
+
eps=1e-6,
|
| 136 |
+
non_linearity="swish",
|
| 137 |
+
time_embedding_norm="default",
|
| 138 |
+
output_scale_factor=1.0,
|
| 139 |
+
use_in_shortcut=None,
|
| 140 |
+
use_inflated_groupnorm=None,
|
| 141 |
+
):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.pre_norm = pre_norm
|
| 144 |
+
self.pre_norm = True
|
| 145 |
+
self.in_channels = in_channels
|
| 146 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 147 |
+
self.out_channels = out_channels
|
| 148 |
+
self.use_conv_shortcut = conv_shortcut
|
| 149 |
+
self.time_embedding_norm = time_embedding_norm
|
| 150 |
+
self.output_scale_factor = output_scale_factor
|
| 151 |
+
|
| 152 |
+
if groups_out is None:
|
| 153 |
+
groups_out = groups
|
| 154 |
+
|
| 155 |
+
assert use_inflated_groupnorm != None
|
| 156 |
+
if use_inflated_groupnorm:
|
| 157 |
+
self.norm1 = InflatedGroupNorm(
|
| 158 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
| 159 |
+
)
|
| 160 |
+
else:
|
| 161 |
+
self.norm1 = torch.nn.GroupNorm(
|
| 162 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
self.conv1 = InflatedConv3d(
|
| 166 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
if temb_channels is not None:
|
| 170 |
+
if self.time_embedding_norm == "default":
|
| 171 |
+
time_emb_proj_out_channels = out_channels
|
| 172 |
+
elif self.time_embedding_norm == "scale_shift":
|
| 173 |
+
time_emb_proj_out_channels = out_channels * 2
|
| 174 |
+
else:
|
| 175 |
+
raise ValueError(
|
| 176 |
+
f"unknown time_embedding_norm : {self.time_embedding_norm} "
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
self.time_emb_proj = torch.nn.Linear(
|
| 180 |
+
temb_channels, time_emb_proj_out_channels
|
| 181 |
+
)
|
| 182 |
+
else:
|
| 183 |
+
self.time_emb_proj = None
|
| 184 |
+
|
| 185 |
+
if use_inflated_groupnorm:
|
| 186 |
+
self.norm2 = InflatedGroupNorm(
|
| 187 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
| 188 |
+
)
|
| 189 |
+
else:
|
| 190 |
+
self.norm2 = torch.nn.GroupNorm(
|
| 191 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
| 192 |
+
)
|
| 193 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 194 |
+
self.conv2 = InflatedConv3d(
|
| 195 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
if non_linearity == "swish":
|
| 199 |
+
self.nonlinearity = lambda x: F.silu(x)
|
| 200 |
+
elif non_linearity == "mish":
|
| 201 |
+
self.nonlinearity = Mish()
|
| 202 |
+
elif non_linearity == "silu":
|
| 203 |
+
self.nonlinearity = nn.SiLU()
|
| 204 |
+
|
| 205 |
+
self.use_in_shortcut = (
|
| 206 |
+
self.in_channels != self.out_channels
|
| 207 |
+
if use_in_shortcut is None
|
| 208 |
+
else use_in_shortcut
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
self.conv_shortcut = None
|
| 212 |
+
if self.use_in_shortcut:
|
| 213 |
+
self.conv_shortcut = InflatedConv3d(
|
| 214 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
def forward(self, input_tensor, temb):
|
| 218 |
+
hidden_states = input_tensor
|
| 219 |
+
|
| 220 |
+
video_length = input_tensor.shape[2]
|
| 221 |
+
batch_size = input_tensor.shape[0]
|
| 222 |
+
hidden_states = self.norm1(hidden_states)
|
| 223 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 224 |
+
|
| 225 |
+
hidden_states = self.conv1(hidden_states)
|
| 226 |
+
|
| 227 |
+
if temb is not None:
|
| 228 |
+
temb_shape = temb.shape[0]
|
| 229 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
| 230 |
+
if temb_shape>batch_size:
|
| 231 |
+
temb = temb.permute(2, 1, 0, 3, 4)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 236 |
+
if hidden_states.shape[0]>1 and temb.shape[2]==hidden_states.shape[0]*hidden_states.shape[2]:
|
| 237 |
+
temb = temb.reshape(temb.shape[0], temb.shape[1], hidden_states.shape[0], -1, temb.shape[-2], temb.shape[-1])
|
| 238 |
+
temb = temb.permute(2, 0, 1, 3, 4, 5)
|
| 239 |
+
temb = temb.reshape(temb.shape[0], -1, temb.shape[3], temb.shape[4], temb.shape[5])
|
| 240 |
+
hidden_states = hidden_states + temb
|
| 241 |
+
|
| 242 |
+
hidden_states = self.norm2(hidden_states)
|
| 243 |
+
|
| 244 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 245 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 246 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 247 |
+
|
| 248 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 249 |
+
|
| 250 |
+
hidden_states = self.dropout(hidden_states)
|
| 251 |
+
hidden_states = self.conv2(hidden_states)
|
| 252 |
+
|
| 253 |
+
if self.conv_shortcut is not None:
|
| 254 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 255 |
+
|
| 256 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
| 257 |
+
|
| 258 |
+
return output_tensor
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class Mish(torch.nn.Module):
|
| 262 |
+
def forward(self, hidden_states):
|
| 263 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
ref_encoder/transformer_2d.py
ADDED
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Any, Dict, Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 7 |
+
from diffusers.models.embeddings import CaptionProjection
|
| 8 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
| 9 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 10 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
| 11 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
from .attention import BasicTransformerBlock
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class Transformer2DModelOutput(BaseOutput):
|
| 19 |
+
"""
|
| 20 |
+
The output of [`Transformer2DModel`].
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
| 24 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
| 25 |
+
distributions for the unnoised latent pixels.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
sample: torch.FloatTensor
|
| 29 |
+
ref_feature: torch.FloatTensor
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
| 33 |
+
"""
|
| 34 |
+
A 2D Transformer model for image-like data.
|
| 35 |
+
|
| 36 |
+
Parameters:
|
| 37 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 38 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 39 |
+
in_channels (`int`, *optional*):
|
| 40 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
| 41 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 42 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 43 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 44 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
| 45 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
| 46 |
+
num_vector_embeds (`int`, *optional*):
|
| 47 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
| 48 |
+
Includes the class for the masked latent pixel.
|
| 49 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
| 50 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
| 51 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
| 52 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
| 53 |
+
added to the hidden states.
|
| 54 |
+
|
| 55 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
| 56 |
+
attention_bias (`bool`, *optional*):
|
| 57 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
_supports_gradient_checkpointing = True
|
| 61 |
+
|
| 62 |
+
@register_to_config
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
num_attention_heads: int = 16,
|
| 66 |
+
attention_head_dim: int = 88,
|
| 67 |
+
in_channels: Optional[int] = None,
|
| 68 |
+
out_channels: Optional[int] = None,
|
| 69 |
+
num_layers: int = 1,
|
| 70 |
+
dropout: float = 0.0,
|
| 71 |
+
norm_num_groups: int = 32,
|
| 72 |
+
cross_attention_dim: Optional[int] = None,
|
| 73 |
+
attention_bias: bool = False,
|
| 74 |
+
sample_size: Optional[int] = None,
|
| 75 |
+
num_vector_embeds: Optional[int] = None,
|
| 76 |
+
patch_size: Optional[int] = None,
|
| 77 |
+
activation_fn: str = "geglu",
|
| 78 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 79 |
+
use_linear_projection: bool = False,
|
| 80 |
+
only_cross_attention: bool = False,
|
| 81 |
+
double_self_attention: bool = False,
|
| 82 |
+
upcast_attention: bool = False,
|
| 83 |
+
norm_type: str = "layer_norm",
|
| 84 |
+
norm_elementwise_affine: bool = True,
|
| 85 |
+
norm_eps: float = 1e-5,
|
| 86 |
+
attention_type: str = "default",
|
| 87 |
+
caption_channels: int = None,
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.use_linear_projection = use_linear_projection
|
| 91 |
+
self.num_attention_heads = num_attention_heads
|
| 92 |
+
self.attention_head_dim = attention_head_dim
|
| 93 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 94 |
+
|
| 95 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
| 96 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
| 97 |
+
|
| 98 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
| 99 |
+
# Define whether input is continuous or discrete depending on configuration
|
| 100 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
| 101 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
| 102 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
| 103 |
+
|
| 104 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
| 105 |
+
deprecation_message = (
|
| 106 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
| 107 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
| 108 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
| 109 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
| 110 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
| 111 |
+
)
|
| 112 |
+
deprecate(
|
| 113 |
+
"norm_type!=num_embeds_ada_norm",
|
| 114 |
+
"1.0.0",
|
| 115 |
+
deprecation_message,
|
| 116 |
+
standard_warn=False,
|
| 117 |
+
)
|
| 118 |
+
norm_type = "ada_norm"
|
| 119 |
+
|
| 120 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
| 121 |
+
raise ValueError(
|
| 122 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
| 123 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
| 124 |
+
)
|
| 125 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
| 126 |
+
raise ValueError(
|
| 127 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
| 128 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
| 129 |
+
)
|
| 130 |
+
elif (
|
| 131 |
+
not self.is_input_continuous
|
| 132 |
+
and not self.is_input_vectorized
|
| 133 |
+
and not self.is_input_patches
|
| 134 |
+
):
|
| 135 |
+
raise ValueError(
|
| 136 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
| 137 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# 2. Define input layers
|
| 141 |
+
self.in_channels = in_channels
|
| 142 |
+
|
| 143 |
+
self.norm = torch.nn.GroupNorm(
|
| 144 |
+
num_groups=norm_num_groups,
|
| 145 |
+
num_channels=in_channels,
|
| 146 |
+
eps=1e-6,
|
| 147 |
+
affine=True,
|
| 148 |
+
)
|
| 149 |
+
if use_linear_projection:
|
| 150 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
| 151 |
+
else:
|
| 152 |
+
self.proj_in = conv_cls(
|
| 153 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# 3. Define transformers blocks
|
| 157 |
+
self.transformer_blocks = nn.ModuleList(
|
| 158 |
+
[
|
| 159 |
+
BasicTransformerBlock(
|
| 160 |
+
inner_dim,
|
| 161 |
+
num_attention_heads,
|
| 162 |
+
attention_head_dim,
|
| 163 |
+
dropout=dropout,
|
| 164 |
+
cross_attention_dim=cross_attention_dim,
|
| 165 |
+
activation_fn=activation_fn,
|
| 166 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 167 |
+
attention_bias=attention_bias,
|
| 168 |
+
only_cross_attention=only_cross_attention,
|
| 169 |
+
double_self_attention=double_self_attention,
|
| 170 |
+
upcast_attention=upcast_attention,
|
| 171 |
+
norm_type=norm_type,
|
| 172 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 173 |
+
norm_eps=norm_eps,
|
| 174 |
+
attention_type=attention_type,
|
| 175 |
+
)
|
| 176 |
+
for d in range(num_layers)
|
| 177 |
+
]
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# 4. Define output layers
|
| 181 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 182 |
+
# TODO: should use out_channels for continuous projections
|
| 183 |
+
if use_linear_projection:
|
| 184 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
| 185 |
+
else:
|
| 186 |
+
self.proj_out = conv_cls(
|
| 187 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# 5. PixArt-Alpha blocks.
|
| 191 |
+
self.adaln_single = None
|
| 192 |
+
self.use_additional_conditions = False
|
| 193 |
+
if norm_type == "ada_norm_single":
|
| 194 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
| 195 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
| 196 |
+
# additional conditions until we find better name
|
| 197 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 198 |
+
inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
self.caption_projection = None
|
| 202 |
+
if caption_channels is not None:
|
| 203 |
+
self.caption_projection = CaptionProjection(
|
| 204 |
+
in_features=caption_channels, hidden_size=inner_dim
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
self.gradient_checkpointing = False
|
| 208 |
+
|
| 209 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 210 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 211 |
+
module.gradient_checkpointing = value
|
| 212 |
+
|
| 213 |
+
def forward(
|
| 214 |
+
self,
|
| 215 |
+
hidden_states: torch.Tensor,
|
| 216 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 217 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 218 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 219 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 220 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 222 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 223 |
+
return_dict: bool = True,
|
| 224 |
+
):
|
| 225 |
+
"""
|
| 226 |
+
The [`Transformer2DModel`] forward method.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
| 230 |
+
Input `hidden_states`.
|
| 231 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 232 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 233 |
+
self-attention.
|
| 234 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 235 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 236 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
| 237 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
| 238 |
+
`AdaLayerZeroNorm`.
|
| 239 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 240 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 241 |
+
`self.processor` in
|
| 242 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 243 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
| 244 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 245 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 246 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 247 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 248 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 249 |
+
|
| 250 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 251 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 252 |
+
|
| 253 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 254 |
+
above. This bias will be added to the cross-attention scores.
|
| 255 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 256 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 257 |
+
tuple.
|
| 258 |
+
|
| 259 |
+
Returns:
|
| 260 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 261 |
+
`tuple` where the first element is the sample tensor.
|
| 262 |
+
"""
|
| 263 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 264 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 265 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 266 |
+
# expects mask of shape:
|
| 267 |
+
# [batch, key_tokens]
|
| 268 |
+
# adds singleton query_tokens dimension:
|
| 269 |
+
# [batch, 1, key_tokens]
|
| 270 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 271 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 272 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 273 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 274 |
+
# assume that mask is expressed as:
|
| 275 |
+
# (1 = keep, 0 = discard)
|
| 276 |
+
# convert mask into a bias that can be added to attention scores:
|
| 277 |
+
# (keep = +0, discard = -10000.0)
|
| 278 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 279 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 280 |
+
|
| 281 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 282 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 283 |
+
encoder_attention_mask = (
|
| 284 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
| 285 |
+
) * -10000.0
|
| 286 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 287 |
+
|
| 288 |
+
# Retrieve lora scale.
|
| 289 |
+
lora_scale = (
|
| 290 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 291 |
+
if cross_attention_kwargs is not None
|
| 292 |
+
else 1.0
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# 1. Input
|
| 296 |
+
batch, _, height, width = hidden_states.shape
|
| 297 |
+
residual = hidden_states
|
| 298 |
+
|
| 299 |
+
hidden_states = self.norm(hidden_states)
|
| 300 |
+
if not self.use_linear_projection:
|
| 301 |
+
hidden_states = (
|
| 302 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
| 303 |
+
if not USE_PEFT_BACKEND
|
| 304 |
+
else self.proj_in(hidden_states)
|
| 305 |
+
)
|
| 306 |
+
inner_dim = hidden_states.shape[1]
|
| 307 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 308 |
+
batch, height * width, inner_dim
|
| 309 |
+
)
|
| 310 |
+
else:
|
| 311 |
+
inner_dim = hidden_states.shape[1]
|
| 312 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 313 |
+
batch, height * width, inner_dim
|
| 314 |
+
)
|
| 315 |
+
hidden_states = (
|
| 316 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
| 317 |
+
if not USE_PEFT_BACKEND
|
| 318 |
+
else self.proj_in(hidden_states)
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# 2. Blocks
|
| 322 |
+
if self.caption_projection is not None:
|
| 323 |
+
batch_size = hidden_states.shape[0]
|
| 324 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 325 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 326 |
+
batch_size, -1, hidden_states.shape[-1]
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
ref_feature = hidden_states.reshape(batch, height, width, inner_dim)
|
| 330 |
+
for block in self.transformer_blocks:
|
| 331 |
+
if self.training and self.gradient_checkpointing:
|
| 332 |
+
|
| 333 |
+
def create_custom_forward(module, return_dict=None):
|
| 334 |
+
def custom_forward(*inputs):
|
| 335 |
+
if return_dict is not None:
|
| 336 |
+
return module(*inputs, return_dict=return_dict)
|
| 337 |
+
else:
|
| 338 |
+
return module(*inputs)
|
| 339 |
+
|
| 340 |
+
return custom_forward
|
| 341 |
+
|
| 342 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 343 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 344 |
+
)
|
| 345 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 346 |
+
create_custom_forward(block),
|
| 347 |
+
hidden_states,
|
| 348 |
+
attention_mask,
|
| 349 |
+
encoder_hidden_states,
|
| 350 |
+
encoder_attention_mask,
|
| 351 |
+
timestep,
|
| 352 |
+
cross_attention_kwargs,
|
| 353 |
+
class_labels,
|
| 354 |
+
**ckpt_kwargs,
|
| 355 |
+
)
|
| 356 |
+
else:
|
| 357 |
+
hidden_states = block(
|
| 358 |
+
hidden_states,
|
| 359 |
+
attention_mask=attention_mask,
|
| 360 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 361 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 362 |
+
timestep=timestep,
|
| 363 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 364 |
+
class_labels=class_labels,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# 3. Output
|
| 368 |
+
if self.is_input_continuous:
|
| 369 |
+
if not self.use_linear_projection:
|
| 370 |
+
hidden_states = (
|
| 371 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
| 372 |
+
.permute(0, 3, 1, 2)
|
| 373 |
+
.contiguous()
|
| 374 |
+
)
|
| 375 |
+
hidden_states = (
|
| 376 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
| 377 |
+
if not USE_PEFT_BACKEND
|
| 378 |
+
else self.proj_out(hidden_states)
|
| 379 |
+
)
|
| 380 |
+
else:
|
| 381 |
+
hidden_states = (
|
| 382 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
| 383 |
+
if not USE_PEFT_BACKEND
|
| 384 |
+
else self.proj_out(hidden_states)
|
| 385 |
+
)
|
| 386 |
+
hidden_states = (
|
| 387 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
| 388 |
+
.permute(0, 3, 1, 2)
|
| 389 |
+
.contiguous()
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
output = hidden_states + residual
|
| 393 |
+
if not return_dict:
|
| 394 |
+
return (output, ref_feature)
|
| 395 |
+
|
| 396 |
+
return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
|
ref_encoder/transformer_3d.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 6 |
+
from diffusers.models import ModelMixin
|
| 7 |
+
from diffusers.utils import BaseOutput
|
| 8 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
from .attention import TemporalBasicTransformerBlock
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class Transformer3DModelOutput(BaseOutput):
|
| 17 |
+
sample: torch.FloatTensor
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if is_xformers_available():
|
| 21 |
+
import xformers
|
| 22 |
+
import xformers.ops
|
| 23 |
+
else:
|
| 24 |
+
xformers = None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
| 28 |
+
_supports_gradient_checkpointing = True
|
| 29 |
+
|
| 30 |
+
@register_to_config
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
num_attention_heads: int = 16,
|
| 34 |
+
attention_head_dim: int = 88,
|
| 35 |
+
in_channels: Optional[int] = None,
|
| 36 |
+
num_layers: int = 1,
|
| 37 |
+
dropout: float = 0.0,
|
| 38 |
+
norm_num_groups: int = 32,
|
| 39 |
+
cross_attention_dim: Optional[int] = None,
|
| 40 |
+
attention_bias: bool = False,
|
| 41 |
+
activation_fn: str = "geglu",
|
| 42 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 43 |
+
use_linear_projection: bool = False,
|
| 44 |
+
only_cross_attention: bool = False,
|
| 45 |
+
upcast_attention: bool = False,
|
| 46 |
+
unet_use_cross_frame_attention=None,
|
| 47 |
+
unet_use_temporal_attention=None,
|
| 48 |
+
name=None,
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.use_linear_projection = use_linear_projection
|
| 52 |
+
self.num_attention_heads = num_attention_heads
|
| 53 |
+
self.attention_head_dim = attention_head_dim
|
| 54 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 55 |
+
|
| 56 |
+
# Define input layers
|
| 57 |
+
self.in_channels = in_channels
|
| 58 |
+
self.name=name
|
| 59 |
+
|
| 60 |
+
self.norm = torch.nn.GroupNorm(
|
| 61 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
| 62 |
+
)
|
| 63 |
+
if use_linear_projection:
|
| 64 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 65 |
+
else:
|
| 66 |
+
self.proj_in = nn.Conv2d(
|
| 67 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Define transformers blocks
|
| 71 |
+
self.transformer_blocks = nn.ModuleList(
|
| 72 |
+
[
|
| 73 |
+
TemporalBasicTransformerBlock(
|
| 74 |
+
inner_dim,
|
| 75 |
+
num_attention_heads,
|
| 76 |
+
attention_head_dim,
|
| 77 |
+
dropout=dropout,
|
| 78 |
+
cross_attention_dim=cross_attention_dim,
|
| 79 |
+
activation_fn=activation_fn,
|
| 80 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 81 |
+
attention_bias=attention_bias,
|
| 82 |
+
only_cross_attention=only_cross_attention,
|
| 83 |
+
upcast_attention=upcast_attention,
|
| 84 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 85 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 86 |
+
name=f"{self.name}_{d}_TransformerBlock" if self.name else None,
|
| 87 |
+
)
|
| 88 |
+
for d in range(num_layers)
|
| 89 |
+
]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# 4. Define output layers
|
| 93 |
+
if use_linear_projection:
|
| 94 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
| 95 |
+
else:
|
| 96 |
+
self.proj_out = nn.Conv2d(
|
| 97 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.gradient_checkpointing = False
|
| 101 |
+
|
| 102 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 103 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 104 |
+
module.gradient_checkpointing = value
|
| 105 |
+
|
| 106 |
+
def forward(
|
| 107 |
+
self,
|
| 108 |
+
hidden_states,
|
| 109 |
+
encoder_hidden_states=None,
|
| 110 |
+
self_attention_additional_feats=None,
|
| 111 |
+
mode=None,
|
| 112 |
+
timestep=None,
|
| 113 |
+
return_dict: bool = True,
|
| 114 |
+
):
|
| 115 |
+
# Input
|
| 116 |
+
assert (
|
| 117 |
+
hidden_states.dim() == 5
|
| 118 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
| 119 |
+
video_length = hidden_states.shape[2]
|
| 120 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
| 121 |
+
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
|
| 122 |
+
encoder_hidden_states = repeat(
|
| 123 |
+
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
batch, channel, height, weight = hidden_states.shape
|
| 127 |
+
residual = hidden_states
|
| 128 |
+
|
| 129 |
+
hidden_states = self.norm(hidden_states)
|
| 130 |
+
if not self.use_linear_projection:
|
| 131 |
+
hidden_states = self.proj_in(hidden_states)
|
| 132 |
+
inner_dim = hidden_states.shape[1]
|
| 133 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 134 |
+
batch, height * weight, inner_dim
|
| 135 |
+
)
|
| 136 |
+
else:
|
| 137 |
+
inner_dim = hidden_states.shape[1]
|
| 138 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 139 |
+
batch, height * weight, inner_dim
|
| 140 |
+
)
|
| 141 |
+
hidden_states = self.proj_in(hidden_states)
|
| 142 |
+
|
| 143 |
+
# Blocks
|
| 144 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 145 |
+
|
| 146 |
+
if self.training and self.gradient_checkpointing:
|
| 147 |
+
|
| 148 |
+
def create_custom_forward(module, return_dict=None):
|
| 149 |
+
def custom_forward(*inputs):
|
| 150 |
+
if return_dict is not None:
|
| 151 |
+
return module(*inputs, return_dict=return_dict)
|
| 152 |
+
else:
|
| 153 |
+
return module(*inputs)
|
| 154 |
+
|
| 155 |
+
return custom_forward
|
| 156 |
+
|
| 157 |
+
# if hasattr(self.block, 'bank') and len(self.block.bank) > 0:
|
| 158 |
+
# hidden_states
|
| 159 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 160 |
+
create_custom_forward(block),
|
| 161 |
+
hidden_states,
|
| 162 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 163 |
+
timestep=timestep,
|
| 164 |
+
attention_mask=None,
|
| 165 |
+
video_length=video_length,
|
| 166 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 167 |
+
mode=mode,
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
|
| 171 |
+
hidden_states = block(
|
| 172 |
+
hidden_states,
|
| 173 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 174 |
+
timestep=timestep,
|
| 175 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 176 |
+
mode=mode,
|
| 177 |
+
video_length=video_length,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Output
|
| 181 |
+
if not self.use_linear_projection:
|
| 182 |
+
hidden_states = (
|
| 183 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
| 184 |
+
.permute(0, 3, 1, 2)
|
| 185 |
+
.contiguous()
|
| 186 |
+
)
|
| 187 |
+
hidden_states = self.proj_out(hidden_states)
|
| 188 |
+
else:
|
| 189 |
+
hidden_states = self.proj_out(hidden_states)
|
| 190 |
+
hidden_states = (
|
| 191 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
| 192 |
+
.permute(0, 3, 1, 2)
|
| 193 |
+
.contiguous()
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
output = hidden_states + residual
|
| 197 |
+
|
| 198 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
| 199 |
+
if not return_dict:
|
| 200 |
+
return (output,)
|
| 201 |
+
|
| 202 |
+
return Transformer3DModelOutput(sample=output)
|
ref_encoder/unet_2d_blocks.py
ADDED
|
@@ -0,0 +1,1074 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
| 2 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from diffusers.models.activations import get_activation
|
| 8 |
+
from diffusers.models.attention_processor import Attention
|
| 9 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
| 10 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
| 11 |
+
from diffusers.utils import is_torch_version, logging
|
| 12 |
+
from diffusers.utils.torch_utils import apply_freeu
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
from .transformer_2d import Transformer2DModel
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_down_block(
|
| 21 |
+
down_block_type: str,
|
| 22 |
+
num_layers: int,
|
| 23 |
+
in_channels: int,
|
| 24 |
+
out_channels: int,
|
| 25 |
+
temb_channels: int,
|
| 26 |
+
add_downsample: bool,
|
| 27 |
+
resnet_eps: float,
|
| 28 |
+
resnet_act_fn: str,
|
| 29 |
+
transformer_layers_per_block: int = 1,
|
| 30 |
+
num_attention_heads: Optional[int] = None,
|
| 31 |
+
resnet_groups: Optional[int] = None,
|
| 32 |
+
cross_attention_dim: Optional[int] = None,
|
| 33 |
+
downsample_padding: Optional[int] = None,
|
| 34 |
+
dual_cross_attention: bool = False,
|
| 35 |
+
use_linear_projection: bool = False,
|
| 36 |
+
only_cross_attention: bool = False,
|
| 37 |
+
upcast_attention: bool = False,
|
| 38 |
+
resnet_time_scale_shift: str = "default",
|
| 39 |
+
attention_type: str = "default",
|
| 40 |
+
resnet_skip_time_act: bool = False,
|
| 41 |
+
resnet_out_scale_factor: float = 1.0,
|
| 42 |
+
cross_attention_norm: Optional[str] = None,
|
| 43 |
+
attention_head_dim: Optional[int] = None,
|
| 44 |
+
downsample_type: Optional[str] = None,
|
| 45 |
+
dropout: float = 0.0,
|
| 46 |
+
):
|
| 47 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 48 |
+
if attention_head_dim is None:
|
| 49 |
+
logger.warn(
|
| 50 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 51 |
+
)
|
| 52 |
+
attention_head_dim = num_attention_heads
|
| 53 |
+
|
| 54 |
+
down_block_type = (
|
| 55 |
+
down_block_type[7:]
|
| 56 |
+
if down_block_type.startswith("UNetRes")
|
| 57 |
+
else down_block_type
|
| 58 |
+
)
|
| 59 |
+
if down_block_type == "DownBlock2D":
|
| 60 |
+
return DownBlock2D(
|
| 61 |
+
num_layers=num_layers,
|
| 62 |
+
in_channels=in_channels,
|
| 63 |
+
out_channels=out_channels,
|
| 64 |
+
temb_channels=temb_channels,
|
| 65 |
+
dropout=dropout,
|
| 66 |
+
add_downsample=add_downsample,
|
| 67 |
+
resnet_eps=resnet_eps,
|
| 68 |
+
resnet_act_fn=resnet_act_fn,
|
| 69 |
+
resnet_groups=resnet_groups,
|
| 70 |
+
downsample_padding=downsample_padding,
|
| 71 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 72 |
+
)
|
| 73 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
| 74 |
+
if cross_attention_dim is None:
|
| 75 |
+
raise ValueError(
|
| 76 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
|
| 77 |
+
)
|
| 78 |
+
return CrossAttnDownBlock2D(
|
| 79 |
+
num_layers=num_layers,
|
| 80 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 81 |
+
in_channels=in_channels,
|
| 82 |
+
out_channels=out_channels,
|
| 83 |
+
temb_channels=temb_channels,
|
| 84 |
+
dropout=dropout,
|
| 85 |
+
add_downsample=add_downsample,
|
| 86 |
+
resnet_eps=resnet_eps,
|
| 87 |
+
resnet_act_fn=resnet_act_fn,
|
| 88 |
+
resnet_groups=resnet_groups,
|
| 89 |
+
downsample_padding=downsample_padding,
|
| 90 |
+
cross_attention_dim=cross_attention_dim,
|
| 91 |
+
num_attention_heads=num_attention_heads,
|
| 92 |
+
dual_cross_attention=dual_cross_attention,
|
| 93 |
+
use_linear_projection=use_linear_projection,
|
| 94 |
+
only_cross_attention=only_cross_attention,
|
| 95 |
+
upcast_attention=upcast_attention,
|
| 96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 97 |
+
attention_type=attention_type,
|
| 98 |
+
)
|
| 99 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_up_block(
|
| 103 |
+
up_block_type: str,
|
| 104 |
+
num_layers: int,
|
| 105 |
+
in_channels: int,
|
| 106 |
+
out_channels: int,
|
| 107 |
+
prev_output_channel: int,
|
| 108 |
+
temb_channels: int,
|
| 109 |
+
add_upsample: bool,
|
| 110 |
+
resnet_eps: float,
|
| 111 |
+
resnet_act_fn: str,
|
| 112 |
+
resolution_idx: Optional[int] = None,
|
| 113 |
+
transformer_layers_per_block: int = 1,
|
| 114 |
+
num_attention_heads: Optional[int] = None,
|
| 115 |
+
resnet_groups: Optional[int] = None,
|
| 116 |
+
cross_attention_dim: Optional[int] = None,
|
| 117 |
+
dual_cross_attention: bool = False,
|
| 118 |
+
use_linear_projection: bool = False,
|
| 119 |
+
only_cross_attention: bool = False,
|
| 120 |
+
upcast_attention: bool = False,
|
| 121 |
+
resnet_time_scale_shift: str = "default",
|
| 122 |
+
attention_type: str = "default",
|
| 123 |
+
resnet_skip_time_act: bool = False,
|
| 124 |
+
resnet_out_scale_factor: float = 1.0,
|
| 125 |
+
cross_attention_norm: Optional[str] = None,
|
| 126 |
+
attention_head_dim: Optional[int] = None,
|
| 127 |
+
upsample_type: Optional[str] = None,
|
| 128 |
+
dropout: float = 0.0,
|
| 129 |
+
) -> nn.Module:
|
| 130 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 131 |
+
if attention_head_dim is None:
|
| 132 |
+
logger.warn(
|
| 133 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 134 |
+
)
|
| 135 |
+
attention_head_dim = num_attention_heads
|
| 136 |
+
|
| 137 |
+
up_block_type = (
|
| 138 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 139 |
+
)
|
| 140 |
+
if up_block_type == "UpBlock2D":
|
| 141 |
+
return UpBlock2D(
|
| 142 |
+
num_layers=num_layers,
|
| 143 |
+
in_channels=in_channels,
|
| 144 |
+
out_channels=out_channels,
|
| 145 |
+
prev_output_channel=prev_output_channel,
|
| 146 |
+
temb_channels=temb_channels,
|
| 147 |
+
resolution_idx=resolution_idx,
|
| 148 |
+
dropout=dropout,
|
| 149 |
+
add_upsample=add_upsample,
|
| 150 |
+
resnet_eps=resnet_eps,
|
| 151 |
+
resnet_act_fn=resnet_act_fn,
|
| 152 |
+
resnet_groups=resnet_groups,
|
| 153 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 154 |
+
)
|
| 155 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
| 156 |
+
if cross_attention_dim is None:
|
| 157 |
+
raise ValueError(
|
| 158 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
|
| 159 |
+
)
|
| 160 |
+
return CrossAttnUpBlock2D(
|
| 161 |
+
num_layers=num_layers,
|
| 162 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 163 |
+
in_channels=in_channels,
|
| 164 |
+
out_channels=out_channels,
|
| 165 |
+
prev_output_channel=prev_output_channel,
|
| 166 |
+
temb_channels=temb_channels,
|
| 167 |
+
resolution_idx=resolution_idx,
|
| 168 |
+
dropout=dropout,
|
| 169 |
+
add_upsample=add_upsample,
|
| 170 |
+
resnet_eps=resnet_eps,
|
| 171 |
+
resnet_act_fn=resnet_act_fn,
|
| 172 |
+
resnet_groups=resnet_groups,
|
| 173 |
+
cross_attention_dim=cross_attention_dim,
|
| 174 |
+
num_attention_heads=num_attention_heads,
|
| 175 |
+
dual_cross_attention=dual_cross_attention,
|
| 176 |
+
use_linear_projection=use_linear_projection,
|
| 177 |
+
only_cross_attention=only_cross_attention,
|
| 178 |
+
upcast_attention=upcast_attention,
|
| 179 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 180 |
+
attention_type=attention_type,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class AutoencoderTinyBlock(nn.Module):
|
| 187 |
+
"""
|
| 188 |
+
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
| 189 |
+
blocks.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
in_channels (`int`): The number of input channels.
|
| 193 |
+
out_channels (`int`): The number of output channels.
|
| 194 |
+
act_fn (`str`):
|
| 195 |
+
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
| 199 |
+
`out_channels`.
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
| 203 |
+
super().__init__()
|
| 204 |
+
act_fn = get_activation(act_fn)
|
| 205 |
+
self.conv = nn.Sequential(
|
| 206 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
| 207 |
+
act_fn,
|
| 208 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
| 209 |
+
act_fn,
|
| 210 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
| 211 |
+
)
|
| 212 |
+
self.skip = (
|
| 213 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
| 214 |
+
if in_channels != out_channels
|
| 215 |
+
else nn.Identity()
|
| 216 |
+
)
|
| 217 |
+
self.fuse = nn.ReLU()
|
| 218 |
+
|
| 219 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 220 |
+
return self.fuse(self.conv(x) + self.skip(x))
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class UNetMidBlock2D(nn.Module):
|
| 224 |
+
"""
|
| 225 |
+
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
in_channels (`int`): The number of input channels.
|
| 229 |
+
temb_channels (`int`): The number of temporal embedding channels.
|
| 230 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
| 231 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
| 232 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
| 233 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
| 234 |
+
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
| 235 |
+
model on tasks with long-range temporal dependencies.
|
| 236 |
+
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
| 237 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
| 238 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
| 239 |
+
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
| 240 |
+
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
| 241 |
+
Whether to use pre-normalization for the resnet blocks.
|
| 242 |
+
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
| 243 |
+
attention_head_dim (`int`, *optional*, defaults to 1):
|
| 244 |
+
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
| 245 |
+
the number of input channels.
|
| 246 |
+
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
| 247 |
+
|
| 248 |
+
Returns:
|
| 249 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
| 250 |
+
in_channels, height, width)`.
|
| 251 |
+
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
def __init__(
|
| 255 |
+
self,
|
| 256 |
+
in_channels: int,
|
| 257 |
+
temb_channels: int,
|
| 258 |
+
dropout: float = 0.0,
|
| 259 |
+
num_layers: int = 1,
|
| 260 |
+
resnet_eps: float = 1e-6,
|
| 261 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
| 262 |
+
resnet_act_fn: str = "swish",
|
| 263 |
+
resnet_groups: int = 32,
|
| 264 |
+
attn_groups: Optional[int] = None,
|
| 265 |
+
resnet_pre_norm: bool = True,
|
| 266 |
+
add_attention: bool = True,
|
| 267 |
+
attention_head_dim: int = 1,
|
| 268 |
+
output_scale_factor: float = 1.0,
|
| 269 |
+
):
|
| 270 |
+
super().__init__()
|
| 271 |
+
resnet_groups = (
|
| 272 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 273 |
+
)
|
| 274 |
+
self.add_attention = add_attention
|
| 275 |
+
|
| 276 |
+
if attn_groups is None:
|
| 277 |
+
attn_groups = (
|
| 278 |
+
resnet_groups if resnet_time_scale_shift == "default" else None
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# there is always at least one resnet
|
| 282 |
+
resnets = [
|
| 283 |
+
ResnetBlock2D(
|
| 284 |
+
in_channels=in_channels,
|
| 285 |
+
out_channels=in_channels,
|
| 286 |
+
temb_channels=temb_channels,
|
| 287 |
+
eps=resnet_eps,
|
| 288 |
+
groups=resnet_groups,
|
| 289 |
+
dropout=dropout,
|
| 290 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 291 |
+
non_linearity=resnet_act_fn,
|
| 292 |
+
output_scale_factor=output_scale_factor,
|
| 293 |
+
pre_norm=resnet_pre_norm,
|
| 294 |
+
)
|
| 295 |
+
]
|
| 296 |
+
attentions = []
|
| 297 |
+
|
| 298 |
+
if attention_head_dim is None:
|
| 299 |
+
logger.warn(
|
| 300 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
| 301 |
+
)
|
| 302 |
+
attention_head_dim = in_channels
|
| 303 |
+
|
| 304 |
+
for _ in range(num_layers):
|
| 305 |
+
if self.add_attention:
|
| 306 |
+
attentions.append(
|
| 307 |
+
Attention(
|
| 308 |
+
in_channels,
|
| 309 |
+
heads=in_channels // attention_head_dim,
|
| 310 |
+
dim_head=attention_head_dim,
|
| 311 |
+
rescale_output_factor=output_scale_factor,
|
| 312 |
+
eps=resnet_eps,
|
| 313 |
+
norm_num_groups=attn_groups,
|
| 314 |
+
spatial_norm_dim=temb_channels
|
| 315 |
+
if resnet_time_scale_shift == "spatial"
|
| 316 |
+
else None,
|
| 317 |
+
residual_connection=True,
|
| 318 |
+
bias=True,
|
| 319 |
+
upcast_softmax=True,
|
| 320 |
+
_from_deprecated_attn_block=True,
|
| 321 |
+
)
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
attentions.append(None)
|
| 325 |
+
|
| 326 |
+
resnets.append(
|
| 327 |
+
ResnetBlock2D(
|
| 328 |
+
in_channels=in_channels,
|
| 329 |
+
out_channels=in_channels,
|
| 330 |
+
temb_channels=temb_channels,
|
| 331 |
+
eps=resnet_eps,
|
| 332 |
+
groups=resnet_groups,
|
| 333 |
+
dropout=dropout,
|
| 334 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 335 |
+
non_linearity=resnet_act_fn,
|
| 336 |
+
output_scale_factor=output_scale_factor,
|
| 337 |
+
pre_norm=resnet_pre_norm,
|
| 338 |
+
)
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
self.attentions = nn.ModuleList(attentions)
|
| 342 |
+
self.resnets = nn.ModuleList(resnets)
|
| 343 |
+
|
| 344 |
+
def forward(
|
| 345 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
|
| 346 |
+
) -> torch.FloatTensor:
|
| 347 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 348 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 349 |
+
if attn is not None:
|
| 350 |
+
hidden_states = attn(hidden_states, temb=temb)
|
| 351 |
+
hidden_states = resnet(hidden_states, temb)
|
| 352 |
+
|
| 353 |
+
return hidden_states
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
| 357 |
+
def __init__(
|
| 358 |
+
self,
|
| 359 |
+
in_channels: int,
|
| 360 |
+
temb_channels: int,
|
| 361 |
+
dropout: float = 0.0,
|
| 362 |
+
num_layers: int = 1,
|
| 363 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 364 |
+
resnet_eps: float = 1e-6,
|
| 365 |
+
resnet_time_scale_shift: str = "default",
|
| 366 |
+
resnet_act_fn: str = "swish",
|
| 367 |
+
resnet_groups: int = 32,
|
| 368 |
+
resnet_pre_norm: bool = True,
|
| 369 |
+
num_attention_heads: int = 1,
|
| 370 |
+
output_scale_factor: float = 1.0,
|
| 371 |
+
cross_attention_dim: int = 1280,
|
| 372 |
+
dual_cross_attention: bool = False,
|
| 373 |
+
use_linear_projection: bool = False,
|
| 374 |
+
upcast_attention: bool = False,
|
| 375 |
+
attention_type: str = "default",
|
| 376 |
+
):
|
| 377 |
+
super().__init__()
|
| 378 |
+
|
| 379 |
+
self.has_cross_attention = True
|
| 380 |
+
self.num_attention_heads = num_attention_heads
|
| 381 |
+
resnet_groups = (
|
| 382 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# support for variable transformer layers per block
|
| 386 |
+
if isinstance(transformer_layers_per_block, int):
|
| 387 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 388 |
+
|
| 389 |
+
# there is always at least one resnet
|
| 390 |
+
resnets = [
|
| 391 |
+
ResnetBlock2D(
|
| 392 |
+
in_channels=in_channels,
|
| 393 |
+
out_channels=in_channels,
|
| 394 |
+
temb_channels=temb_channels,
|
| 395 |
+
eps=resnet_eps,
|
| 396 |
+
groups=resnet_groups,
|
| 397 |
+
dropout=dropout,
|
| 398 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 399 |
+
non_linearity=resnet_act_fn,
|
| 400 |
+
output_scale_factor=output_scale_factor,
|
| 401 |
+
pre_norm=resnet_pre_norm,
|
| 402 |
+
)
|
| 403 |
+
]
|
| 404 |
+
attentions = []
|
| 405 |
+
|
| 406 |
+
for i in range(num_layers):
|
| 407 |
+
if not dual_cross_attention:
|
| 408 |
+
attentions.append(
|
| 409 |
+
Transformer2DModel(
|
| 410 |
+
num_attention_heads,
|
| 411 |
+
in_channels // num_attention_heads,
|
| 412 |
+
in_channels=in_channels,
|
| 413 |
+
num_layers=transformer_layers_per_block[i],
|
| 414 |
+
cross_attention_dim=cross_attention_dim,
|
| 415 |
+
norm_num_groups=resnet_groups,
|
| 416 |
+
use_linear_projection=use_linear_projection,
|
| 417 |
+
upcast_attention=upcast_attention,
|
| 418 |
+
attention_type=attention_type,
|
| 419 |
+
)
|
| 420 |
+
)
|
| 421 |
+
else:
|
| 422 |
+
attentions.append(
|
| 423 |
+
DualTransformer2DModel(
|
| 424 |
+
num_attention_heads,
|
| 425 |
+
in_channels // num_attention_heads,
|
| 426 |
+
in_channels=in_channels,
|
| 427 |
+
num_layers=1,
|
| 428 |
+
cross_attention_dim=cross_attention_dim,
|
| 429 |
+
norm_num_groups=resnet_groups,
|
| 430 |
+
)
|
| 431 |
+
)
|
| 432 |
+
resnets.append(
|
| 433 |
+
ResnetBlock2D(
|
| 434 |
+
in_channels=in_channels,
|
| 435 |
+
out_channels=in_channels,
|
| 436 |
+
temb_channels=temb_channels,
|
| 437 |
+
eps=resnet_eps,
|
| 438 |
+
groups=resnet_groups,
|
| 439 |
+
dropout=dropout,
|
| 440 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 441 |
+
non_linearity=resnet_act_fn,
|
| 442 |
+
output_scale_factor=output_scale_factor,
|
| 443 |
+
pre_norm=resnet_pre_norm,
|
| 444 |
+
)
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
self.attentions = nn.ModuleList(attentions)
|
| 448 |
+
self.resnets = nn.ModuleList(resnets)
|
| 449 |
+
|
| 450 |
+
self.gradient_checkpointing = False
|
| 451 |
+
|
| 452 |
+
def forward(
|
| 453 |
+
self,
|
| 454 |
+
hidden_states: torch.FloatTensor,
|
| 455 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 456 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 457 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 458 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 459 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 460 |
+
) -> torch.FloatTensor:
|
| 461 |
+
lora_scale = (
|
| 462 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 463 |
+
if cross_attention_kwargs is not None
|
| 464 |
+
else 1.0
|
| 465 |
+
)
|
| 466 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
| 467 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 468 |
+
if self.training and self.gradient_checkpointing:
|
| 469 |
+
|
| 470 |
+
def create_custom_forward(module, return_dict=None):
|
| 471 |
+
def custom_forward(*inputs):
|
| 472 |
+
if return_dict is not None:
|
| 473 |
+
return module(*inputs, return_dict=return_dict)
|
| 474 |
+
else:
|
| 475 |
+
return module(*inputs)
|
| 476 |
+
|
| 477 |
+
return custom_forward
|
| 478 |
+
|
| 479 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 480 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 481 |
+
)
|
| 482 |
+
hidden_states, ref_feature = attn(
|
| 483 |
+
hidden_states,
|
| 484 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 485 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 486 |
+
attention_mask=attention_mask,
|
| 487 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 488 |
+
return_dict=False,
|
| 489 |
+
)
|
| 490 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 491 |
+
create_custom_forward(resnet),
|
| 492 |
+
hidden_states,
|
| 493 |
+
temb,
|
| 494 |
+
**ckpt_kwargs,
|
| 495 |
+
)
|
| 496 |
+
else:
|
| 497 |
+
hidden_states, ref_feature = attn(
|
| 498 |
+
hidden_states,
|
| 499 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 500 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 501 |
+
attention_mask=attention_mask,
|
| 502 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 503 |
+
return_dict=False,
|
| 504 |
+
)
|
| 505 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
| 506 |
+
|
| 507 |
+
return hidden_states
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
class CrossAttnDownBlock2D(nn.Module):
|
| 511 |
+
def __init__(
|
| 512 |
+
self,
|
| 513 |
+
in_channels: int,
|
| 514 |
+
out_channels: int,
|
| 515 |
+
temb_channels: int,
|
| 516 |
+
dropout: float = 0.0,
|
| 517 |
+
num_layers: int = 1,
|
| 518 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 519 |
+
resnet_eps: float = 1e-6,
|
| 520 |
+
resnet_time_scale_shift: str = "default",
|
| 521 |
+
resnet_act_fn: str = "swish",
|
| 522 |
+
resnet_groups: int = 32,
|
| 523 |
+
resnet_pre_norm: bool = True,
|
| 524 |
+
num_attention_heads: int = 1,
|
| 525 |
+
cross_attention_dim: int = 1280,
|
| 526 |
+
output_scale_factor: float = 1.0,
|
| 527 |
+
downsample_padding: int = 1,
|
| 528 |
+
add_downsample: bool = True,
|
| 529 |
+
dual_cross_attention: bool = False,
|
| 530 |
+
use_linear_projection: bool = False,
|
| 531 |
+
only_cross_attention: bool = False,
|
| 532 |
+
upcast_attention: bool = False,
|
| 533 |
+
attention_type: str = "default",
|
| 534 |
+
):
|
| 535 |
+
super().__init__()
|
| 536 |
+
resnets = []
|
| 537 |
+
attentions = []
|
| 538 |
+
|
| 539 |
+
self.has_cross_attention = True
|
| 540 |
+
self.num_attention_heads = num_attention_heads
|
| 541 |
+
if isinstance(transformer_layers_per_block, int):
|
| 542 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 543 |
+
|
| 544 |
+
for i in range(num_layers):
|
| 545 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 546 |
+
resnets.append(
|
| 547 |
+
ResnetBlock2D(
|
| 548 |
+
in_channels=in_channels,
|
| 549 |
+
out_channels=out_channels,
|
| 550 |
+
temb_channels=temb_channels,
|
| 551 |
+
eps=resnet_eps,
|
| 552 |
+
groups=resnet_groups,
|
| 553 |
+
dropout=dropout,
|
| 554 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 555 |
+
non_linearity=resnet_act_fn,
|
| 556 |
+
output_scale_factor=output_scale_factor,
|
| 557 |
+
pre_norm=resnet_pre_norm,
|
| 558 |
+
)
|
| 559 |
+
)
|
| 560 |
+
if not dual_cross_attention:
|
| 561 |
+
attentions.append(
|
| 562 |
+
Transformer2DModel(
|
| 563 |
+
num_attention_heads,
|
| 564 |
+
out_channels // num_attention_heads,
|
| 565 |
+
in_channels=out_channels,
|
| 566 |
+
num_layers=transformer_layers_per_block[i],
|
| 567 |
+
cross_attention_dim=cross_attention_dim,
|
| 568 |
+
norm_num_groups=resnet_groups,
|
| 569 |
+
use_linear_projection=use_linear_projection,
|
| 570 |
+
only_cross_attention=only_cross_attention,
|
| 571 |
+
upcast_attention=upcast_attention,
|
| 572 |
+
attention_type=attention_type,
|
| 573 |
+
)
|
| 574 |
+
)
|
| 575 |
+
else:
|
| 576 |
+
attentions.append(
|
| 577 |
+
DualTransformer2DModel(
|
| 578 |
+
num_attention_heads,
|
| 579 |
+
out_channels // num_attention_heads,
|
| 580 |
+
in_channels=out_channels,
|
| 581 |
+
num_layers=1,
|
| 582 |
+
cross_attention_dim=cross_attention_dim,
|
| 583 |
+
norm_num_groups=resnet_groups,
|
| 584 |
+
)
|
| 585 |
+
)
|
| 586 |
+
self.attentions = nn.ModuleList(attentions)
|
| 587 |
+
self.resnets = nn.ModuleList(resnets)
|
| 588 |
+
|
| 589 |
+
if add_downsample:
|
| 590 |
+
self.downsamplers = nn.ModuleList(
|
| 591 |
+
[
|
| 592 |
+
Downsample2D(
|
| 593 |
+
out_channels,
|
| 594 |
+
use_conv=True,
|
| 595 |
+
out_channels=out_channels,
|
| 596 |
+
padding=downsample_padding,
|
| 597 |
+
name="op",
|
| 598 |
+
)
|
| 599 |
+
]
|
| 600 |
+
)
|
| 601 |
+
else:
|
| 602 |
+
self.downsamplers = None
|
| 603 |
+
|
| 604 |
+
self.gradient_checkpointing = False
|
| 605 |
+
|
| 606 |
+
def forward(
|
| 607 |
+
self,
|
| 608 |
+
hidden_states: torch.FloatTensor,
|
| 609 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 613 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 614 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
| 615 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
| 616 |
+
output_states = ()
|
| 617 |
+
|
| 618 |
+
lora_scale = (
|
| 619 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 620 |
+
if cross_attention_kwargs is not None
|
| 621 |
+
else 1.0
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
blocks = list(zip(self.resnets, self.attentions))
|
| 625 |
+
|
| 626 |
+
for i, (resnet, attn) in enumerate(blocks):
|
| 627 |
+
if self.training and self.gradient_checkpointing:
|
| 628 |
+
|
| 629 |
+
def create_custom_forward(module, return_dict=None):
|
| 630 |
+
def custom_forward(*inputs):
|
| 631 |
+
if return_dict is not None:
|
| 632 |
+
return module(*inputs, return_dict=return_dict)
|
| 633 |
+
else:
|
| 634 |
+
return module(*inputs)
|
| 635 |
+
|
| 636 |
+
return custom_forward
|
| 637 |
+
|
| 638 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 639 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 640 |
+
)
|
| 641 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 642 |
+
create_custom_forward(resnet),
|
| 643 |
+
hidden_states,
|
| 644 |
+
temb,
|
| 645 |
+
**ckpt_kwargs,
|
| 646 |
+
)
|
| 647 |
+
hidden_states, ref_feature = attn(
|
| 648 |
+
hidden_states,
|
| 649 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 650 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 651 |
+
attention_mask=attention_mask,
|
| 652 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 653 |
+
return_dict=False,
|
| 654 |
+
)
|
| 655 |
+
else:
|
| 656 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
| 657 |
+
hidden_states, ref_feature = attn(
|
| 658 |
+
hidden_states,
|
| 659 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 660 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 661 |
+
attention_mask=attention_mask,
|
| 662 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 663 |
+
return_dict=False,
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
| 667 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
| 668 |
+
hidden_states = hidden_states + additional_residuals
|
| 669 |
+
|
| 670 |
+
output_states = output_states + (hidden_states,)
|
| 671 |
+
|
| 672 |
+
if self.downsamplers is not None:
|
| 673 |
+
for downsampler in self.downsamplers:
|
| 674 |
+
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
| 675 |
+
|
| 676 |
+
output_states = output_states + (hidden_states,)
|
| 677 |
+
|
| 678 |
+
return hidden_states, output_states
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
class DownBlock2D(nn.Module):
|
| 682 |
+
def __init__(
|
| 683 |
+
self,
|
| 684 |
+
in_channels: int,
|
| 685 |
+
out_channels: int,
|
| 686 |
+
temb_channels: int,
|
| 687 |
+
dropout: float = 0.0,
|
| 688 |
+
num_layers: int = 1,
|
| 689 |
+
resnet_eps: float = 1e-6,
|
| 690 |
+
resnet_time_scale_shift: str = "default",
|
| 691 |
+
resnet_act_fn: str = "swish",
|
| 692 |
+
resnet_groups: int = 32,
|
| 693 |
+
resnet_pre_norm: bool = True,
|
| 694 |
+
output_scale_factor: float = 1.0,
|
| 695 |
+
add_downsample: bool = True,
|
| 696 |
+
downsample_padding: int = 1,
|
| 697 |
+
):
|
| 698 |
+
super().__init__()
|
| 699 |
+
resnets = []
|
| 700 |
+
|
| 701 |
+
for i in range(num_layers):
|
| 702 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 703 |
+
resnets.append(
|
| 704 |
+
ResnetBlock2D(
|
| 705 |
+
in_channels=in_channels,
|
| 706 |
+
out_channels=out_channels,
|
| 707 |
+
temb_channels=temb_channels,
|
| 708 |
+
eps=resnet_eps,
|
| 709 |
+
groups=resnet_groups,
|
| 710 |
+
dropout=dropout,
|
| 711 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 712 |
+
non_linearity=resnet_act_fn,
|
| 713 |
+
output_scale_factor=output_scale_factor,
|
| 714 |
+
pre_norm=resnet_pre_norm,
|
| 715 |
+
)
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
self.resnets = nn.ModuleList(resnets)
|
| 719 |
+
|
| 720 |
+
if add_downsample:
|
| 721 |
+
self.downsamplers = nn.ModuleList(
|
| 722 |
+
[
|
| 723 |
+
Downsample2D(
|
| 724 |
+
out_channels,
|
| 725 |
+
use_conv=True,
|
| 726 |
+
out_channels=out_channels,
|
| 727 |
+
padding=downsample_padding,
|
| 728 |
+
name="op",
|
| 729 |
+
)
|
| 730 |
+
]
|
| 731 |
+
)
|
| 732 |
+
else:
|
| 733 |
+
self.downsamplers = None
|
| 734 |
+
|
| 735 |
+
self.gradient_checkpointing = False
|
| 736 |
+
|
| 737 |
+
def forward(
|
| 738 |
+
self,
|
| 739 |
+
hidden_states: torch.FloatTensor,
|
| 740 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 741 |
+
scale: float = 1.0,
|
| 742 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
| 743 |
+
output_states = ()
|
| 744 |
+
|
| 745 |
+
for resnet in self.resnets:
|
| 746 |
+
if self.training and self.gradient_checkpointing:
|
| 747 |
+
|
| 748 |
+
def create_custom_forward(module):
|
| 749 |
+
def custom_forward(*inputs):
|
| 750 |
+
return module(*inputs)
|
| 751 |
+
|
| 752 |
+
return custom_forward
|
| 753 |
+
|
| 754 |
+
if is_torch_version(">=", "1.11.0"):
|
| 755 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 756 |
+
create_custom_forward(resnet),
|
| 757 |
+
hidden_states,
|
| 758 |
+
temb,
|
| 759 |
+
use_reentrant=False,
|
| 760 |
+
)
|
| 761 |
+
else:
|
| 762 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 763 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 764 |
+
)
|
| 765 |
+
else:
|
| 766 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
| 767 |
+
|
| 768 |
+
output_states = output_states + (hidden_states,)
|
| 769 |
+
|
| 770 |
+
if self.downsamplers is not None:
|
| 771 |
+
for downsampler in self.downsamplers:
|
| 772 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
| 773 |
+
|
| 774 |
+
output_states = output_states + (hidden_states,)
|
| 775 |
+
|
| 776 |
+
return hidden_states, output_states
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
class CrossAttnUpBlock2D(nn.Module):
|
| 780 |
+
def __init__(
|
| 781 |
+
self,
|
| 782 |
+
in_channels: int,
|
| 783 |
+
out_channels: int,
|
| 784 |
+
prev_output_channel: int,
|
| 785 |
+
temb_channels: int,
|
| 786 |
+
resolution_idx: Optional[int] = None,
|
| 787 |
+
dropout: float = 0.0,
|
| 788 |
+
num_layers: int = 1,
|
| 789 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 790 |
+
resnet_eps: float = 1e-6,
|
| 791 |
+
resnet_time_scale_shift: str = "default",
|
| 792 |
+
resnet_act_fn: str = "swish",
|
| 793 |
+
resnet_groups: int = 32,
|
| 794 |
+
resnet_pre_norm: bool = True,
|
| 795 |
+
num_attention_heads: int = 1,
|
| 796 |
+
cross_attention_dim: int = 1280,
|
| 797 |
+
output_scale_factor: float = 1.0,
|
| 798 |
+
add_upsample: bool = True,
|
| 799 |
+
dual_cross_attention: bool = False,
|
| 800 |
+
use_linear_projection: bool = False,
|
| 801 |
+
only_cross_attention: bool = False,
|
| 802 |
+
upcast_attention: bool = False,
|
| 803 |
+
attention_type: str = "default",
|
| 804 |
+
):
|
| 805 |
+
super().__init__()
|
| 806 |
+
resnets = []
|
| 807 |
+
attentions = []
|
| 808 |
+
|
| 809 |
+
self.has_cross_attention = True
|
| 810 |
+
self.num_attention_heads = num_attention_heads
|
| 811 |
+
|
| 812 |
+
if isinstance(transformer_layers_per_block, int):
|
| 813 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 814 |
+
|
| 815 |
+
for i in range(num_layers):
|
| 816 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 817 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 818 |
+
|
| 819 |
+
resnets.append(
|
| 820 |
+
ResnetBlock2D(
|
| 821 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 822 |
+
out_channels=out_channels,
|
| 823 |
+
temb_channels=temb_channels,
|
| 824 |
+
eps=resnet_eps,
|
| 825 |
+
groups=resnet_groups,
|
| 826 |
+
dropout=dropout,
|
| 827 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 828 |
+
non_linearity=resnet_act_fn,
|
| 829 |
+
output_scale_factor=output_scale_factor,
|
| 830 |
+
pre_norm=resnet_pre_norm,
|
| 831 |
+
)
|
| 832 |
+
)
|
| 833 |
+
if not dual_cross_attention:
|
| 834 |
+
attentions.append(
|
| 835 |
+
Transformer2DModel(
|
| 836 |
+
num_attention_heads,
|
| 837 |
+
out_channels // num_attention_heads,
|
| 838 |
+
in_channels=out_channels,
|
| 839 |
+
num_layers=transformer_layers_per_block[i],
|
| 840 |
+
cross_attention_dim=cross_attention_dim,
|
| 841 |
+
norm_num_groups=resnet_groups,
|
| 842 |
+
use_linear_projection=use_linear_projection,
|
| 843 |
+
only_cross_attention=only_cross_attention,
|
| 844 |
+
upcast_attention=upcast_attention,
|
| 845 |
+
attention_type=attention_type,
|
| 846 |
+
)
|
| 847 |
+
)
|
| 848 |
+
else:
|
| 849 |
+
attentions.append(
|
| 850 |
+
DualTransformer2DModel(
|
| 851 |
+
num_attention_heads,
|
| 852 |
+
out_channels // num_attention_heads,
|
| 853 |
+
in_channels=out_channels,
|
| 854 |
+
num_layers=1,
|
| 855 |
+
cross_attention_dim=cross_attention_dim,
|
| 856 |
+
norm_num_groups=resnet_groups,
|
| 857 |
+
)
|
| 858 |
+
)
|
| 859 |
+
self.attentions = nn.ModuleList(attentions)
|
| 860 |
+
self.resnets = nn.ModuleList(resnets)
|
| 861 |
+
|
| 862 |
+
if add_upsample:
|
| 863 |
+
self.upsamplers = nn.ModuleList(
|
| 864 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 865 |
+
)
|
| 866 |
+
else:
|
| 867 |
+
self.upsamplers = None
|
| 868 |
+
|
| 869 |
+
self.gradient_checkpointing = False
|
| 870 |
+
self.resolution_idx = resolution_idx
|
| 871 |
+
|
| 872 |
+
def forward(
|
| 873 |
+
self,
|
| 874 |
+
hidden_states: torch.FloatTensor,
|
| 875 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 876 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 877 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 878 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 879 |
+
upsample_size: Optional[int] = None,
|
| 880 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 881 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 882 |
+
) -> torch.FloatTensor:
|
| 883 |
+
lora_scale = (
|
| 884 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 885 |
+
if cross_attention_kwargs is not None
|
| 886 |
+
else 1.0
|
| 887 |
+
)
|
| 888 |
+
is_freeu_enabled = (
|
| 889 |
+
getattr(self, "s1", None)
|
| 890 |
+
and getattr(self, "s2", None)
|
| 891 |
+
and getattr(self, "b1", None)
|
| 892 |
+
and getattr(self, "b2", None)
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 896 |
+
# pop res hidden states
|
| 897 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 898 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 899 |
+
|
| 900 |
+
# FreeU: Only operate on the first two stages
|
| 901 |
+
if is_freeu_enabled:
|
| 902 |
+
hidden_states, res_hidden_states = apply_freeu(
|
| 903 |
+
self.resolution_idx,
|
| 904 |
+
hidden_states,
|
| 905 |
+
res_hidden_states,
|
| 906 |
+
s1=self.s1,
|
| 907 |
+
s2=self.s2,
|
| 908 |
+
b1=self.b1,
|
| 909 |
+
b2=self.b2,
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 913 |
+
|
| 914 |
+
if self.training and self.gradient_checkpointing:
|
| 915 |
+
|
| 916 |
+
def create_custom_forward(module, return_dict=None):
|
| 917 |
+
def custom_forward(*inputs):
|
| 918 |
+
if return_dict is not None:
|
| 919 |
+
return module(*inputs, return_dict=return_dict)
|
| 920 |
+
else:
|
| 921 |
+
return module(*inputs)
|
| 922 |
+
|
| 923 |
+
return custom_forward
|
| 924 |
+
|
| 925 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 926 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 927 |
+
)
|
| 928 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 929 |
+
create_custom_forward(resnet),
|
| 930 |
+
hidden_states,
|
| 931 |
+
temb,
|
| 932 |
+
**ckpt_kwargs,
|
| 933 |
+
)
|
| 934 |
+
hidden_states, ref_feature = attn(
|
| 935 |
+
hidden_states,
|
| 936 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 937 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 938 |
+
attention_mask=attention_mask,
|
| 939 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 940 |
+
return_dict=False,
|
| 941 |
+
)
|
| 942 |
+
else:
|
| 943 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
| 944 |
+
hidden_states, ref_feature = attn(
|
| 945 |
+
hidden_states,
|
| 946 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 947 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 948 |
+
attention_mask=attention_mask,
|
| 949 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 950 |
+
return_dict=False,
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
if self.upsamplers is not None:
|
| 954 |
+
for upsampler in self.upsamplers:
|
| 955 |
+
hidden_states = upsampler(
|
| 956 |
+
hidden_states, upsample_size, scale=lora_scale
|
| 957 |
+
)
|
| 958 |
+
|
| 959 |
+
return hidden_states
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
class UpBlock2D(nn.Module):
|
| 963 |
+
def __init__(
|
| 964 |
+
self,
|
| 965 |
+
in_channels: int,
|
| 966 |
+
prev_output_channel: int,
|
| 967 |
+
out_channels: int,
|
| 968 |
+
temb_channels: int,
|
| 969 |
+
resolution_idx: Optional[int] = None,
|
| 970 |
+
dropout: float = 0.0,
|
| 971 |
+
num_layers: int = 1,
|
| 972 |
+
resnet_eps: float = 1e-6,
|
| 973 |
+
resnet_time_scale_shift: str = "default",
|
| 974 |
+
resnet_act_fn: str = "swish",
|
| 975 |
+
resnet_groups: int = 32,
|
| 976 |
+
resnet_pre_norm: bool = True,
|
| 977 |
+
output_scale_factor: float = 1.0,
|
| 978 |
+
add_upsample: bool = True,
|
| 979 |
+
):
|
| 980 |
+
super().__init__()
|
| 981 |
+
resnets = []
|
| 982 |
+
|
| 983 |
+
for i in range(num_layers):
|
| 984 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 985 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 986 |
+
|
| 987 |
+
resnets.append(
|
| 988 |
+
ResnetBlock2D(
|
| 989 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 990 |
+
out_channels=out_channels,
|
| 991 |
+
temb_channels=temb_channels,
|
| 992 |
+
eps=resnet_eps,
|
| 993 |
+
groups=resnet_groups,
|
| 994 |
+
dropout=dropout,
|
| 995 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 996 |
+
non_linearity=resnet_act_fn,
|
| 997 |
+
output_scale_factor=output_scale_factor,
|
| 998 |
+
pre_norm=resnet_pre_norm,
|
| 999 |
+
)
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1003 |
+
|
| 1004 |
+
if add_upsample:
|
| 1005 |
+
self.upsamplers = nn.ModuleList(
|
| 1006 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 1007 |
+
)
|
| 1008 |
+
else:
|
| 1009 |
+
self.upsamplers = None
|
| 1010 |
+
|
| 1011 |
+
self.gradient_checkpointing = False
|
| 1012 |
+
self.resolution_idx = resolution_idx
|
| 1013 |
+
|
| 1014 |
+
def forward(
|
| 1015 |
+
self,
|
| 1016 |
+
hidden_states: torch.FloatTensor,
|
| 1017 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 1018 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 1019 |
+
upsample_size: Optional[int] = None,
|
| 1020 |
+
scale: float = 1.0,
|
| 1021 |
+
) -> torch.FloatTensor:
|
| 1022 |
+
is_freeu_enabled = (
|
| 1023 |
+
getattr(self, "s1", None)
|
| 1024 |
+
and getattr(self, "s2", None)
|
| 1025 |
+
and getattr(self, "b1", None)
|
| 1026 |
+
and getattr(self, "b2", None)
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
for resnet in self.resnets:
|
| 1030 |
+
# pop res hidden states
|
| 1031 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1032 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1033 |
+
|
| 1034 |
+
# FreeU: Only operate on the first two stages
|
| 1035 |
+
if is_freeu_enabled:
|
| 1036 |
+
hidden_states, res_hidden_states = apply_freeu(
|
| 1037 |
+
self.resolution_idx,
|
| 1038 |
+
hidden_states,
|
| 1039 |
+
res_hidden_states,
|
| 1040 |
+
s1=self.s1,
|
| 1041 |
+
s2=self.s2,
|
| 1042 |
+
b1=self.b1,
|
| 1043 |
+
b2=self.b2,
|
| 1044 |
+
)
|
| 1045 |
+
|
| 1046 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1047 |
+
|
| 1048 |
+
if self.training and self.gradient_checkpointing:
|
| 1049 |
+
|
| 1050 |
+
def create_custom_forward(module):
|
| 1051 |
+
def custom_forward(*inputs):
|
| 1052 |
+
return module(*inputs)
|
| 1053 |
+
|
| 1054 |
+
return custom_forward
|
| 1055 |
+
|
| 1056 |
+
if is_torch_version(">=", "1.11.0"):
|
| 1057 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1058 |
+
create_custom_forward(resnet),
|
| 1059 |
+
hidden_states,
|
| 1060 |
+
temb,
|
| 1061 |
+
use_reentrant=False,
|
| 1062 |
+
)
|
| 1063 |
+
else:
|
| 1064 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1065 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 1066 |
+
)
|
| 1067 |
+
else:
|
| 1068 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
| 1069 |
+
|
| 1070 |
+
if self.upsamplers is not None:
|
| 1071 |
+
for upsampler in self.upsamplers:
|
| 1072 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
| 1073 |
+
|
| 1074 |
+
return hidden_states
|
ref_encoder/unet_2d_condition.py
ADDED
|
@@ -0,0 +1,1308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
| 10 |
+
from diffusers.models.activations import get_activation
|
| 11 |
+
from diffusers.models.attention_processor import (
|
| 12 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 13 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 14 |
+
AttentionProcessor,
|
| 15 |
+
AttnAddedKVProcessor,
|
| 16 |
+
AttnProcessor,
|
| 17 |
+
)
|
| 18 |
+
from diffusers.models.embeddings import (
|
| 19 |
+
GaussianFourierProjection,
|
| 20 |
+
ImageHintTimeEmbedding,
|
| 21 |
+
ImageProjection,
|
| 22 |
+
ImageTimeEmbedding,
|
| 23 |
+
PositionNet,
|
| 24 |
+
TextImageProjection,
|
| 25 |
+
TextImageTimeEmbedding,
|
| 26 |
+
TextTimeEmbedding,
|
| 27 |
+
TimestepEmbedding,
|
| 28 |
+
Timesteps,
|
| 29 |
+
)
|
| 30 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 31 |
+
from diffusers.utils import (
|
| 32 |
+
USE_PEFT_BACKEND,
|
| 33 |
+
BaseOutput,
|
| 34 |
+
deprecate,
|
| 35 |
+
logging,
|
| 36 |
+
scale_lora_layers,
|
| 37 |
+
unscale_lora_layers,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
from .unet_2d_blocks import (
|
| 41 |
+
UNetMidBlock2D,
|
| 42 |
+
UNetMidBlock2DCrossAttn,
|
| 43 |
+
get_down_block,
|
| 44 |
+
get_up_block,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@dataclass
|
| 51 |
+
class UNet2DConditionOutput(BaseOutput):
|
| 52 |
+
"""
|
| 53 |
+
The output of [`UNet2DConditionModel`].
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 57 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
sample: torch.FloatTensor = None
|
| 61 |
+
ref_features: Tuple[torch.FloatTensor] = None
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
| 65 |
+
r"""
|
| 66 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
| 67 |
+
shaped output.
|
| 68 |
+
|
| 69 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 70 |
+
for all models (such as downloading or saving).
|
| 71 |
+
|
| 72 |
+
Parameters:
|
| 73 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
| 74 |
+
Height and width of input/output sample.
|
| 75 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
| 76 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
| 77 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 78 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
| 79 |
+
Whether to flip the sin to cos in the time embedding.
|
| 80 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 81 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 82 |
+
The tuple of downsample blocks to use.
|
| 83 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
| 84 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
| 85 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
| 86 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
| 87 |
+
The tuple of upsample blocks to use.
|
| 88 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
| 89 |
+
Whether to include self-attention in the basic transformer blocks, see
|
| 90 |
+
[`~models.attention.BasicTransformerBlock`].
|
| 91 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 92 |
+
The tuple of output channels for each block.
|
| 93 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
| 94 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
| 95 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
| 96 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 97 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 98 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
| 99 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
| 100 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
| 101 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
| 102 |
+
The dimension of the cross attention features.
|
| 103 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
| 104 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 105 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 106 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 107 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
| 108 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
| 109 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
| 110 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 111 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 112 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 113 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 114 |
+
dimension to `cross_attention_dim`.
|
| 115 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 116 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 117 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 118 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
| 119 |
+
num_attention_heads (`int`, *optional*):
|
| 120 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
| 121 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
| 122 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
| 123 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 124 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
| 125 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 126 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 127 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 128 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 129 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
| 130 |
+
Dimension for the timestep embeddings.
|
| 131 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
| 132 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 133 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 134 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
| 135 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
| 136 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
| 137 |
+
An optional override for the dimension of the projected time embedding.
|
| 138 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
| 139 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
| 140 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
| 141 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
| 142 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
| 143 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
| 144 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
| 145 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
| 146 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
| 147 |
+
*optional*): The dimension of the `class_labels` input when
|
| 148 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
| 149 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
| 150 |
+
embeddings with the class embeddings.
|
| 151 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
| 152 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
| 153 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
| 154 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
| 155 |
+
otherwise.
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
_supports_gradient_checkpointing = True
|
| 159 |
+
|
| 160 |
+
@register_to_config
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
sample_size: Optional[int] = None,
|
| 164 |
+
in_channels: int = 4,
|
| 165 |
+
out_channels: int = 4,
|
| 166 |
+
center_input_sample: bool = False,
|
| 167 |
+
flip_sin_to_cos: bool = True,
|
| 168 |
+
freq_shift: int = 0,
|
| 169 |
+
down_block_types: Tuple[str] = (
|
| 170 |
+
"CrossAttnDownBlock2D",
|
| 171 |
+
"CrossAttnDownBlock2D",
|
| 172 |
+
"CrossAttnDownBlock2D",
|
| 173 |
+
"DownBlock2D",
|
| 174 |
+
),
|
| 175 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 176 |
+
up_block_types: Tuple[str] = (
|
| 177 |
+
"UpBlock2D",
|
| 178 |
+
"CrossAttnUpBlock2D",
|
| 179 |
+
"CrossAttnUpBlock2D",
|
| 180 |
+
"CrossAttnUpBlock2D",
|
| 181 |
+
),
|
| 182 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 183 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 184 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 185 |
+
downsample_padding: int = 1,
|
| 186 |
+
mid_block_scale_factor: float = 1,
|
| 187 |
+
dropout: float = 0.0,
|
| 188 |
+
act_fn: str = "silu",
|
| 189 |
+
norm_num_groups: Optional[int] = 32,
|
| 190 |
+
norm_eps: float = 1e-5,
|
| 191 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
| 192 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
| 193 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
| 194 |
+
encoder_hid_dim: Optional[int] = None,
|
| 195 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 196 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 197 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
| 198 |
+
dual_cross_attention: bool = False,
|
| 199 |
+
use_linear_projection: bool = False,
|
| 200 |
+
class_embed_type: Optional[str] = None,
|
| 201 |
+
addition_embed_type: Optional[str] = None,
|
| 202 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 203 |
+
num_class_embeds: Optional[int] = None,
|
| 204 |
+
upcast_attention: bool = False,
|
| 205 |
+
resnet_time_scale_shift: str = "default",
|
| 206 |
+
resnet_skip_time_act: bool = False,
|
| 207 |
+
resnet_out_scale_factor: int = 1.0,
|
| 208 |
+
time_embedding_type: str = "positional",
|
| 209 |
+
time_embedding_dim: Optional[int] = None,
|
| 210 |
+
time_embedding_act_fn: Optional[str] = None,
|
| 211 |
+
timestep_post_act: Optional[str] = None,
|
| 212 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 213 |
+
conv_in_kernel: int = 3,
|
| 214 |
+
conv_out_kernel: int = 3,
|
| 215 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 216 |
+
attention_type: str = "default",
|
| 217 |
+
class_embeddings_concat: bool = False,
|
| 218 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
| 219 |
+
cross_attention_norm: Optional[str] = None,
|
| 220 |
+
addition_embed_type_num_heads=64,
|
| 221 |
+
):
|
| 222 |
+
super().__init__()
|
| 223 |
+
|
| 224 |
+
self.sample_size = sample_size
|
| 225 |
+
|
| 226 |
+
if num_attention_heads is not None:
|
| 227 |
+
raise ValueError(
|
| 228 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 232 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 233 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 234 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 235 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 236 |
+
# which is why we correct for the naming here.
|
| 237 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 238 |
+
|
| 239 |
+
# Check inputs
|
| 240 |
+
if len(down_block_types) != len(up_block_types):
|
| 241 |
+
raise ValueError(
|
| 242 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
if len(block_out_channels) != len(down_block_types):
|
| 246 |
+
raise ValueError(
|
| 247 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
if not isinstance(only_cross_attention, bool) and len(
|
| 251 |
+
only_cross_attention
|
| 252 |
+
) != len(down_block_types):
|
| 253 |
+
raise ValueError(
|
| 254 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
| 258 |
+
down_block_types
|
| 259 |
+
):
|
| 260 |
+
raise ValueError(
|
| 261 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(
|
| 265 |
+
down_block_types
|
| 266 |
+
):
|
| 267 |
+
raise ValueError(
|
| 268 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(
|
| 272 |
+
down_block_types
|
| 273 |
+
):
|
| 274 |
+
raise ValueError(
|
| 275 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(
|
| 279 |
+
down_block_types
|
| 280 |
+
):
|
| 281 |
+
raise ValueError(
|
| 282 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
| 283 |
+
)
|
| 284 |
+
if (
|
| 285 |
+
isinstance(transformer_layers_per_block, list)
|
| 286 |
+
and reverse_transformer_layers_per_block is None
|
| 287 |
+
):
|
| 288 |
+
for layer_number_per_block in transformer_layers_per_block:
|
| 289 |
+
if isinstance(layer_number_per_block, list):
|
| 290 |
+
raise ValueError(
|
| 291 |
+
"Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet."
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# input
|
| 295 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 296 |
+
self.conv_in = nn.Conv2d(
|
| 297 |
+
in_channels,
|
| 298 |
+
block_out_channels[0],
|
| 299 |
+
kernel_size=conv_in_kernel,
|
| 300 |
+
padding=conv_in_padding,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# time
|
| 304 |
+
if time_embedding_type == "fourier":
|
| 305 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
| 306 |
+
if time_embed_dim % 2 != 0:
|
| 307 |
+
raise ValueError(
|
| 308 |
+
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
|
| 309 |
+
)
|
| 310 |
+
self.time_proj = GaussianFourierProjection(
|
| 311 |
+
time_embed_dim // 2,
|
| 312 |
+
set_W_to_weight=False,
|
| 313 |
+
log=False,
|
| 314 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
| 315 |
+
)
|
| 316 |
+
timestep_input_dim = time_embed_dim
|
| 317 |
+
elif time_embedding_type == "positional":
|
| 318 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
| 319 |
+
|
| 320 |
+
self.time_proj = Timesteps(
|
| 321 |
+
block_out_channels[0], flip_sin_to_cos, freq_shift
|
| 322 |
+
)
|
| 323 |
+
timestep_input_dim = block_out_channels[0]
|
| 324 |
+
else:
|
| 325 |
+
raise ValueError(
|
| 326 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
self.time_embedding = TimestepEmbedding(
|
| 330 |
+
timestep_input_dim,
|
| 331 |
+
time_embed_dim,
|
| 332 |
+
act_fn=act_fn,
|
| 333 |
+
post_act_fn=timestep_post_act,
|
| 334 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 338 |
+
encoder_hid_dim_type = "text_proj"
|
| 339 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 340 |
+
logger.info(
|
| 341 |
+
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 345 |
+
raise ValueError(
|
| 346 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if encoder_hid_dim_type == "text_proj":
|
| 350 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 351 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 352 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 353 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 354 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
| 355 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 356 |
+
text_embed_dim=encoder_hid_dim,
|
| 357 |
+
image_embed_dim=cross_attention_dim,
|
| 358 |
+
cross_attention_dim=cross_attention_dim,
|
| 359 |
+
)
|
| 360 |
+
elif encoder_hid_dim_type == "image_proj":
|
| 361 |
+
# Kandinsky 2.2
|
| 362 |
+
self.encoder_hid_proj = ImageProjection(
|
| 363 |
+
image_embed_dim=encoder_hid_dim,
|
| 364 |
+
cross_attention_dim=cross_attention_dim,
|
| 365 |
+
)
|
| 366 |
+
elif encoder_hid_dim_type is not None:
|
| 367 |
+
raise ValueError(
|
| 368 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 369 |
+
)
|
| 370 |
+
else:
|
| 371 |
+
self.encoder_hid_proj = None
|
| 372 |
+
|
| 373 |
+
# class embedding
|
| 374 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 375 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 376 |
+
elif class_embed_type == "timestep":
|
| 377 |
+
self.class_embedding = TimestepEmbedding(
|
| 378 |
+
timestep_input_dim, time_embed_dim, act_fn=act_fn
|
| 379 |
+
)
|
| 380 |
+
elif class_embed_type == "identity":
|
| 381 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 382 |
+
elif class_embed_type == "projection":
|
| 383 |
+
if projection_class_embeddings_input_dim is None:
|
| 384 |
+
raise ValueError(
|
| 385 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 386 |
+
)
|
| 387 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 388 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 389 |
+
# 2. it projects from an arbitrary input dimension.
|
| 390 |
+
#
|
| 391 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 392 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 393 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 394 |
+
self.class_embedding = TimestepEmbedding(
|
| 395 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
| 396 |
+
)
|
| 397 |
+
elif class_embed_type == "simple_projection":
|
| 398 |
+
if projection_class_embeddings_input_dim is None:
|
| 399 |
+
raise ValueError(
|
| 400 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
| 401 |
+
)
|
| 402 |
+
self.class_embedding = nn.Linear(
|
| 403 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
| 404 |
+
)
|
| 405 |
+
else:
|
| 406 |
+
self.class_embedding = None
|
| 407 |
+
|
| 408 |
+
if addition_embed_type == "text":
|
| 409 |
+
if encoder_hid_dim is not None:
|
| 410 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 411 |
+
else:
|
| 412 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 413 |
+
|
| 414 |
+
self.add_embedding = TextTimeEmbedding(
|
| 415 |
+
text_time_embedding_from_dim,
|
| 416 |
+
time_embed_dim,
|
| 417 |
+
num_heads=addition_embed_type_num_heads,
|
| 418 |
+
)
|
| 419 |
+
elif addition_embed_type == "text_image":
|
| 420 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 421 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 422 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
| 423 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 424 |
+
text_embed_dim=cross_attention_dim,
|
| 425 |
+
image_embed_dim=cross_attention_dim,
|
| 426 |
+
time_embed_dim=time_embed_dim,
|
| 427 |
+
)
|
| 428 |
+
elif addition_embed_type == "text_time":
|
| 429 |
+
self.add_time_proj = Timesteps(
|
| 430 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
| 431 |
+
)
|
| 432 |
+
self.add_embedding = TimestepEmbedding(
|
| 433 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
| 434 |
+
)
|
| 435 |
+
elif addition_embed_type == "image":
|
| 436 |
+
# Kandinsky 2.2
|
| 437 |
+
self.add_embedding = ImageTimeEmbedding(
|
| 438 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
| 439 |
+
)
|
| 440 |
+
elif addition_embed_type == "image_hint":
|
| 441 |
+
# Kandinsky 2.2 ControlNet
|
| 442 |
+
self.add_embedding = ImageHintTimeEmbedding(
|
| 443 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
| 444 |
+
)
|
| 445 |
+
elif addition_embed_type is not None:
|
| 446 |
+
raise ValueError(
|
| 447 |
+
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
if time_embedding_act_fn is None:
|
| 451 |
+
self.time_embed_act = None
|
| 452 |
+
else:
|
| 453 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
| 454 |
+
|
| 455 |
+
self.down_blocks = nn.ModuleList([])
|
| 456 |
+
self.up_blocks = nn.ModuleList([])
|
| 457 |
+
|
| 458 |
+
if isinstance(only_cross_attention, bool):
|
| 459 |
+
if mid_block_only_cross_attention is None:
|
| 460 |
+
mid_block_only_cross_attention = only_cross_attention
|
| 461 |
+
|
| 462 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 463 |
+
|
| 464 |
+
if mid_block_only_cross_attention is None:
|
| 465 |
+
mid_block_only_cross_attention = False
|
| 466 |
+
|
| 467 |
+
if isinstance(num_attention_heads, int):
|
| 468 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 469 |
+
|
| 470 |
+
if isinstance(attention_head_dim, int):
|
| 471 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 472 |
+
|
| 473 |
+
if isinstance(cross_attention_dim, int):
|
| 474 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
| 475 |
+
|
| 476 |
+
if isinstance(layers_per_block, int):
|
| 477 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
| 478 |
+
|
| 479 |
+
if isinstance(transformer_layers_per_block, int):
|
| 480 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
| 481 |
+
down_block_types
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
if class_embeddings_concat:
|
| 485 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
| 486 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
| 487 |
+
# regular time embeddings
|
| 488 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
| 489 |
+
else:
|
| 490 |
+
blocks_time_embed_dim = time_embed_dim
|
| 491 |
+
|
| 492 |
+
# down
|
| 493 |
+
output_channel = block_out_channels[0]
|
| 494 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 495 |
+
input_channel = output_channel
|
| 496 |
+
output_channel = block_out_channels[i]
|
| 497 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 498 |
+
|
| 499 |
+
down_block = get_down_block(
|
| 500 |
+
down_block_type,
|
| 501 |
+
num_layers=layers_per_block[i],
|
| 502 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 503 |
+
in_channels=input_channel,
|
| 504 |
+
out_channels=output_channel,
|
| 505 |
+
temb_channels=blocks_time_embed_dim,
|
| 506 |
+
add_downsample=not is_final_block,
|
| 507 |
+
resnet_eps=norm_eps,
|
| 508 |
+
resnet_act_fn=act_fn,
|
| 509 |
+
resnet_groups=norm_num_groups,
|
| 510 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 511 |
+
num_attention_heads=num_attention_heads[i],
|
| 512 |
+
downsample_padding=downsample_padding,
|
| 513 |
+
dual_cross_attention=dual_cross_attention,
|
| 514 |
+
use_linear_projection=use_linear_projection,
|
| 515 |
+
only_cross_attention=only_cross_attention[i],
|
| 516 |
+
upcast_attention=upcast_attention,
|
| 517 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 518 |
+
attention_type=attention_type,
|
| 519 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 520 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 521 |
+
cross_attention_norm=cross_attention_norm,
|
| 522 |
+
attention_head_dim=attention_head_dim[i]
|
| 523 |
+
if attention_head_dim[i] is not None
|
| 524 |
+
else output_channel,
|
| 525 |
+
dropout=dropout,
|
| 526 |
+
)
|
| 527 |
+
self.down_blocks.append(down_block)
|
| 528 |
+
|
| 529 |
+
# mid
|
| 530 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 531 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 532 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 533 |
+
in_channels=block_out_channels[-1],
|
| 534 |
+
temb_channels=blocks_time_embed_dim,
|
| 535 |
+
dropout=dropout,
|
| 536 |
+
resnet_eps=norm_eps,
|
| 537 |
+
resnet_act_fn=act_fn,
|
| 538 |
+
output_scale_factor=mid_block_scale_factor,
|
| 539 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 540 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 541 |
+
num_attention_heads=num_attention_heads[-1],
|
| 542 |
+
resnet_groups=norm_num_groups,
|
| 543 |
+
dual_cross_attention=dual_cross_attention,
|
| 544 |
+
use_linear_projection=use_linear_projection,
|
| 545 |
+
upcast_attention=upcast_attention,
|
| 546 |
+
attention_type=attention_type,
|
| 547 |
+
)
|
| 548 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
| 549 |
+
raise NotImplementedError(f"Unsupport mid_block_type: {mid_block_type}")
|
| 550 |
+
elif mid_block_type == "UNetMidBlock2D":
|
| 551 |
+
self.mid_block = UNetMidBlock2D(
|
| 552 |
+
in_channels=block_out_channels[-1],
|
| 553 |
+
temb_channels=blocks_time_embed_dim,
|
| 554 |
+
dropout=dropout,
|
| 555 |
+
num_layers=0,
|
| 556 |
+
resnet_eps=norm_eps,
|
| 557 |
+
resnet_act_fn=act_fn,
|
| 558 |
+
output_scale_factor=mid_block_scale_factor,
|
| 559 |
+
resnet_groups=norm_num_groups,
|
| 560 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 561 |
+
add_attention=False,
|
| 562 |
+
)
|
| 563 |
+
elif mid_block_type is None:
|
| 564 |
+
self.mid_block = None
|
| 565 |
+
else:
|
| 566 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 567 |
+
|
| 568 |
+
# count how many layers upsample the images
|
| 569 |
+
self.num_upsamplers = 0
|
| 570 |
+
|
| 571 |
+
# up
|
| 572 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 573 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
| 574 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
| 575 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 576 |
+
reversed_transformer_layers_per_block = (
|
| 577 |
+
list(reversed(transformer_layers_per_block))
|
| 578 |
+
if reverse_transformer_layers_per_block is None
|
| 579 |
+
else reverse_transformer_layers_per_block
|
| 580 |
+
)
|
| 581 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 582 |
+
|
| 583 |
+
output_channel = reversed_block_out_channels[0]
|
| 584 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 585 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 586 |
+
|
| 587 |
+
prev_output_channel = output_channel
|
| 588 |
+
output_channel = reversed_block_out_channels[i]
|
| 589 |
+
input_channel = reversed_block_out_channels[
|
| 590 |
+
min(i + 1, len(block_out_channels) - 1)
|
| 591 |
+
]
|
| 592 |
+
|
| 593 |
+
# add upsample block for all BUT final layer
|
| 594 |
+
if not is_final_block:
|
| 595 |
+
add_upsample = True
|
| 596 |
+
self.num_upsamplers += 1
|
| 597 |
+
else:
|
| 598 |
+
add_upsample = False
|
| 599 |
+
|
| 600 |
+
up_block = get_up_block(
|
| 601 |
+
up_block_type,
|
| 602 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
| 603 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
| 604 |
+
in_channels=input_channel,
|
| 605 |
+
out_channels=output_channel,
|
| 606 |
+
prev_output_channel=prev_output_channel,
|
| 607 |
+
temb_channels=blocks_time_embed_dim,
|
| 608 |
+
add_upsample=add_upsample,
|
| 609 |
+
resnet_eps=norm_eps,
|
| 610 |
+
resnet_act_fn=act_fn,
|
| 611 |
+
resolution_idx=i,
|
| 612 |
+
resnet_groups=norm_num_groups,
|
| 613 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
| 614 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
| 615 |
+
dual_cross_attention=dual_cross_attention,
|
| 616 |
+
use_linear_projection=use_linear_projection,
|
| 617 |
+
only_cross_attention=only_cross_attention[i],
|
| 618 |
+
upcast_attention=upcast_attention,
|
| 619 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 620 |
+
attention_type=attention_type,
|
| 621 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 622 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 623 |
+
cross_attention_norm=cross_attention_norm,
|
| 624 |
+
attention_head_dim=attention_head_dim[i]
|
| 625 |
+
if attention_head_dim[i] is not None
|
| 626 |
+
else output_channel,
|
| 627 |
+
dropout=dropout,
|
| 628 |
+
)
|
| 629 |
+
self.up_blocks.append(up_block)
|
| 630 |
+
prev_output_channel = output_channel
|
| 631 |
+
|
| 632 |
+
# out
|
| 633 |
+
if norm_num_groups is not None:
|
| 634 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 635 |
+
num_channels=block_out_channels[0],
|
| 636 |
+
num_groups=norm_num_groups,
|
| 637 |
+
eps=norm_eps,
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
self.conv_act = get_activation(act_fn)
|
| 641 |
+
|
| 642 |
+
else:
|
| 643 |
+
self.conv_norm_out = None
|
| 644 |
+
self.conv_act = None
|
| 645 |
+
self.conv_norm_out = None
|
| 646 |
+
|
| 647 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
| 648 |
+
# self.conv_out = nn.Conv2d(
|
| 649 |
+
# block_out_channels[0],
|
| 650 |
+
# out_channels,
|
| 651 |
+
# kernel_size=conv_out_kernel,
|
| 652 |
+
# padding=conv_out_padding,
|
| 653 |
+
# )
|
| 654 |
+
|
| 655 |
+
if attention_type in ["gated", "gated-text-image"]:
|
| 656 |
+
positive_len = 768
|
| 657 |
+
if isinstance(cross_attention_dim, int):
|
| 658 |
+
positive_len = cross_attention_dim
|
| 659 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(
|
| 660 |
+
cross_attention_dim, list
|
| 661 |
+
):
|
| 662 |
+
positive_len = cross_attention_dim[0]
|
| 663 |
+
|
| 664 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
| 665 |
+
self.position_net = PositionNet(
|
| 666 |
+
positive_len=positive_len,
|
| 667 |
+
out_dim=cross_attention_dim,
|
| 668 |
+
feature_type=feature_type,
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
@property
|
| 672 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 673 |
+
r"""
|
| 674 |
+
Returns:
|
| 675 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 676 |
+
indexed by its weight name.
|
| 677 |
+
"""
|
| 678 |
+
# set recursively
|
| 679 |
+
processors = {}
|
| 680 |
+
|
| 681 |
+
def fn_recursive_add_processors(
|
| 682 |
+
name: str,
|
| 683 |
+
module: torch.nn.Module,
|
| 684 |
+
processors: Dict[str, AttentionProcessor],
|
| 685 |
+
):
|
| 686 |
+
if hasattr(module, "get_processor"):
|
| 687 |
+
processors[f"{name}.processor"] = module.get_processor(
|
| 688 |
+
return_deprecated_lora=True
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
for sub_name, child in module.named_children():
|
| 692 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 693 |
+
|
| 694 |
+
return processors
|
| 695 |
+
|
| 696 |
+
for name, module in self.named_children():
|
| 697 |
+
fn_recursive_add_processors(name, module, processors)
|
| 698 |
+
|
| 699 |
+
return processors
|
| 700 |
+
|
| 701 |
+
def set_attn_processor(
|
| 702 |
+
self,
|
| 703 |
+
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
| 704 |
+
_remove_lora=False,
|
| 705 |
+
):
|
| 706 |
+
r"""
|
| 707 |
+
Sets the attention processor to use to compute attention.
|
| 708 |
+
|
| 709 |
+
Parameters:
|
| 710 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 711 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 712 |
+
for **all** `Attention` layers.
|
| 713 |
+
|
| 714 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 715 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 716 |
+
|
| 717 |
+
"""
|
| 718 |
+
count = len(self.attn_processors.keys())
|
| 719 |
+
|
| 720 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 721 |
+
raise ValueError(
|
| 722 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 723 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 727 |
+
if hasattr(module, "set_processor"):
|
| 728 |
+
if not isinstance(processor, dict):
|
| 729 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
| 730 |
+
else:
|
| 731 |
+
module.set_processor(
|
| 732 |
+
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
for sub_name, child in module.named_children():
|
| 736 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 737 |
+
|
| 738 |
+
for name, module in self.named_children():
|
| 739 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 740 |
+
|
| 741 |
+
def set_default_attn_processor(self):
|
| 742 |
+
"""
|
| 743 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 744 |
+
"""
|
| 745 |
+
if all(
|
| 746 |
+
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
| 747 |
+
for proc in self.attn_processors.values()
|
| 748 |
+
):
|
| 749 |
+
processor = AttnAddedKVProcessor()
|
| 750 |
+
elif all(
|
| 751 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
| 752 |
+
for proc in self.attn_processors.values()
|
| 753 |
+
):
|
| 754 |
+
processor = AttnProcessor()
|
| 755 |
+
else:
|
| 756 |
+
raise ValueError(
|
| 757 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
| 761 |
+
|
| 762 |
+
def set_attention_slice(self, slice_size):
|
| 763 |
+
r"""
|
| 764 |
+
Enable sliced attention computation.
|
| 765 |
+
|
| 766 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 767 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 768 |
+
|
| 769 |
+
Args:
|
| 770 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 771 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 772 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 773 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 774 |
+
must be a multiple of `slice_size`.
|
| 775 |
+
"""
|
| 776 |
+
sliceable_head_dims = []
|
| 777 |
+
|
| 778 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 779 |
+
if hasattr(module, "set_attention_slice"):
|
| 780 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 781 |
+
|
| 782 |
+
for child in module.children():
|
| 783 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 784 |
+
|
| 785 |
+
# retrieve number of attention layers
|
| 786 |
+
for module in self.children():
|
| 787 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 788 |
+
|
| 789 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 790 |
+
|
| 791 |
+
if slice_size == "auto":
|
| 792 |
+
# half the attention head size is usually a good trade-off between
|
| 793 |
+
# speed and memory
|
| 794 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 795 |
+
elif slice_size == "max":
|
| 796 |
+
# make smallest slice possible
|
| 797 |
+
slice_size = num_sliceable_layers * [1]
|
| 798 |
+
|
| 799 |
+
slice_size = (
|
| 800 |
+
num_sliceable_layers * [slice_size]
|
| 801 |
+
if not isinstance(slice_size, list)
|
| 802 |
+
else slice_size
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 806 |
+
raise ValueError(
|
| 807 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 808 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
for i in range(len(slice_size)):
|
| 812 |
+
size = slice_size[i]
|
| 813 |
+
dim = sliceable_head_dims[i]
|
| 814 |
+
if size is not None and size > dim:
|
| 815 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 816 |
+
|
| 817 |
+
# Recursively walk through all the children.
|
| 818 |
+
# Any children which exposes the set_attention_slice method
|
| 819 |
+
# gets the message
|
| 820 |
+
def fn_recursive_set_attention_slice(
|
| 821 |
+
module: torch.nn.Module, slice_size: List[int]
|
| 822 |
+
):
|
| 823 |
+
if hasattr(module, "set_attention_slice"):
|
| 824 |
+
module.set_attention_slice(slice_size.pop())
|
| 825 |
+
|
| 826 |
+
for child in module.children():
|
| 827 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 828 |
+
|
| 829 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 830 |
+
for module in self.children():
|
| 831 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 832 |
+
|
| 833 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 834 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 835 |
+
module.gradient_checkpointing = value
|
| 836 |
+
|
| 837 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
| 838 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
| 839 |
+
|
| 840 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
| 841 |
+
|
| 842 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
| 843 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
| 844 |
+
|
| 845 |
+
Args:
|
| 846 |
+
s1 (`float`):
|
| 847 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
| 848 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 849 |
+
s2 (`float`):
|
| 850 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
| 851 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 852 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 853 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 854 |
+
"""
|
| 855 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 856 |
+
setattr(upsample_block, "s1", s1)
|
| 857 |
+
setattr(upsample_block, "s2", s2)
|
| 858 |
+
setattr(upsample_block, "b1", b1)
|
| 859 |
+
setattr(upsample_block, "b2", b2)
|
| 860 |
+
|
| 861 |
+
def disable_freeu(self):
|
| 862 |
+
"""Disables the FreeU mechanism."""
|
| 863 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
| 864 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 865 |
+
for k in freeu_keys:
|
| 866 |
+
if (
|
| 867 |
+
hasattr(upsample_block, k)
|
| 868 |
+
or getattr(upsample_block, k, None) is not None
|
| 869 |
+
):
|
| 870 |
+
setattr(upsample_block, k, None)
|
| 871 |
+
|
| 872 |
+
def forward(
|
| 873 |
+
self,
|
| 874 |
+
sample: torch.FloatTensor,
|
| 875 |
+
timestep: Union[torch.Tensor, float, int],
|
| 876 |
+
encoder_hidden_states: torch.Tensor,
|
| 877 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 878 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 879 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 880 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 881 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 882 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 883 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 884 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 885 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 886 |
+
return_dict: bool = True,
|
| 887 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 888 |
+
r"""
|
| 889 |
+
The [`UNet2DConditionModel`] forward method.
|
| 890 |
+
|
| 891 |
+
Args:
|
| 892 |
+
sample (`torch.FloatTensor`):
|
| 893 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
| 894 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
| 895 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
| 896 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
| 897 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 898 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 899 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
| 900 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
| 901 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
| 902 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 903 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 904 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 905 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 906 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 907 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 908 |
+
`self.processor` in
|
| 909 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 910 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 911 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
| 912 |
+
are passed along to the UNet blocks.
|
| 913 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
| 914 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
| 915 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
| 916 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
| 917 |
+
encoder_attention_mask (`torch.Tensor`):
|
| 918 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
| 919 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
| 920 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
| 921 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 922 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 923 |
+
tuple.
|
| 924 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 925 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
| 926 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 927 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
| 928 |
+
are passed along to the UNet blocks.
|
| 929 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
| 930 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
| 931 |
+
example from ControlNet side model(s)
|
| 932 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
| 933 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
| 934 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
| 935 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
| 936 |
+
|
| 937 |
+
Returns:
|
| 938 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 939 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
| 940 |
+
a `tuple` is returned where the first element is the sample tensor.
|
| 941 |
+
"""
|
| 942 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 943 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 944 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 945 |
+
# on the fly if necessary.
|
| 946 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 947 |
+
|
| 948 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 949 |
+
forward_upsample_size = False
|
| 950 |
+
upsample_size = None
|
| 951 |
+
|
| 952 |
+
for dim in sample.shape[-2:]:
|
| 953 |
+
if dim % default_overall_up_factor != 0:
|
| 954 |
+
# Forward upsample size to force interpolation output size.
|
| 955 |
+
forward_upsample_size = True
|
| 956 |
+
break
|
| 957 |
+
|
| 958 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
| 959 |
+
# expects mask of shape:
|
| 960 |
+
# [batch, key_tokens]
|
| 961 |
+
# adds singleton query_tokens dimension:
|
| 962 |
+
# [batch, 1, key_tokens]
|
| 963 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 964 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 965 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 966 |
+
if attention_mask is not None:
|
| 967 |
+
# assume that mask is expressed as:
|
| 968 |
+
# (1 = keep, 0 = discard)
|
| 969 |
+
# convert mask into a bias that can be added to attention scores:
|
| 970 |
+
# (keep = +0, discard = -10000.0)
|
| 971 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 972 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 973 |
+
|
| 974 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 975 |
+
if encoder_attention_mask is not None:
|
| 976 |
+
encoder_attention_mask = (
|
| 977 |
+
1 - encoder_attention_mask.to(sample.dtype)
|
| 978 |
+
) * -10000.0
|
| 979 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 980 |
+
|
| 981 |
+
# 0. center input if necessary
|
| 982 |
+
if self.config.center_input_sample:
|
| 983 |
+
sample = 2 * sample - 1.0
|
| 984 |
+
|
| 985 |
+
# 1. time
|
| 986 |
+
timesteps = timestep
|
| 987 |
+
if not torch.is_tensor(timesteps):
|
| 988 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 989 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 990 |
+
is_mps = sample.device.type == "mps"
|
| 991 |
+
if isinstance(timestep, float):
|
| 992 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 993 |
+
else:
|
| 994 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 995 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 996 |
+
elif len(timesteps.shape) == 0:
|
| 997 |
+
timesteps = timesteps[None].to(sample.device)
|
| 998 |
+
|
| 999 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1000 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 1001 |
+
|
| 1002 |
+
t_emb = self.time_proj(timesteps)
|
| 1003 |
+
|
| 1004 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 1005 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 1006 |
+
# there might be better ways to encapsulate this.
|
| 1007 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 1008 |
+
|
| 1009 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 1010 |
+
aug_emb = None
|
| 1011 |
+
|
| 1012 |
+
if self.class_embedding is not None:
|
| 1013 |
+
if class_labels is None:
|
| 1014 |
+
raise ValueError(
|
| 1015 |
+
"class_labels should be provided when num_class_embeds > 0"
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
if self.config.class_embed_type == "timestep":
|
| 1019 |
+
class_labels = self.time_proj(class_labels)
|
| 1020 |
+
|
| 1021 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 1022 |
+
# there might be better ways to encapsulate this.
|
| 1023 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 1024 |
+
|
| 1025 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
| 1026 |
+
|
| 1027 |
+
if self.config.class_embeddings_concat:
|
| 1028 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 1029 |
+
else:
|
| 1030 |
+
emb = emb + class_emb
|
| 1031 |
+
|
| 1032 |
+
if self.config.addition_embed_type == "text":
|
| 1033 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 1034 |
+
elif self.config.addition_embed_type == "text_image":
|
| 1035 |
+
# Kandinsky 2.1 - style
|
| 1036 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1037 |
+
raise ValueError(
|
| 1038 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1042 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
| 1043 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
| 1044 |
+
elif self.config.addition_embed_type == "text_time":
|
| 1045 |
+
# SDXL - style
|
| 1046 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 1047 |
+
raise ValueError(
|
| 1048 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 1049 |
+
)
|
| 1050 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 1051 |
+
if "time_ids" not in added_cond_kwargs:
|
| 1052 |
+
raise ValueError(
|
| 1053 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 1054 |
+
)
|
| 1055 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 1056 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 1057 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 1058 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 1059 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 1060 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 1061 |
+
elif self.config.addition_embed_type == "image":
|
| 1062 |
+
# Kandinsky 2.2 - style
|
| 1063 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1064 |
+
raise ValueError(
|
| 1065 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 1066 |
+
)
|
| 1067 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1068 |
+
aug_emb = self.add_embedding(image_embs)
|
| 1069 |
+
elif self.config.addition_embed_type == "image_hint":
|
| 1070 |
+
# Kandinsky 2.2 - style
|
| 1071 |
+
if (
|
| 1072 |
+
"image_embeds" not in added_cond_kwargs
|
| 1073 |
+
or "hint" not in added_cond_kwargs
|
| 1074 |
+
):
|
| 1075 |
+
raise ValueError(
|
| 1076 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
| 1077 |
+
)
|
| 1078 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1079 |
+
hint = added_cond_kwargs.get("hint")
|
| 1080 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
| 1081 |
+
sample = torch.cat([sample, hint], dim=1)
|
| 1082 |
+
|
| 1083 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 1084 |
+
|
| 1085 |
+
if self.time_embed_act is not None:
|
| 1086 |
+
emb = self.time_embed_act(emb)
|
| 1087 |
+
|
| 1088 |
+
if (
|
| 1089 |
+
self.encoder_hid_proj is not None
|
| 1090 |
+
and self.config.encoder_hid_dim_type == "text_proj"
|
| 1091 |
+
):
|
| 1092 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 1093 |
+
elif (
|
| 1094 |
+
self.encoder_hid_proj is not None
|
| 1095 |
+
and self.config.encoder_hid_dim_type == "text_image_proj"
|
| 1096 |
+
):
|
| 1097 |
+
# Kadinsky 2.1 - style
|
| 1098 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1099 |
+
raise ValueError(
|
| 1100 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1101 |
+
)
|
| 1102 |
+
|
| 1103 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1104 |
+
encoder_hidden_states = self.encoder_hid_proj(
|
| 1105 |
+
encoder_hidden_states, image_embeds
|
| 1106 |
+
)
|
| 1107 |
+
elif (
|
| 1108 |
+
self.encoder_hid_proj is not None
|
| 1109 |
+
and self.config.encoder_hid_dim_type == "image_proj"
|
| 1110 |
+
):
|
| 1111 |
+
# Kandinsky 2.2 - style
|
| 1112 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1113 |
+
raise ValueError(
|
| 1114 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1115 |
+
)
|
| 1116 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1117 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
| 1118 |
+
elif (
|
| 1119 |
+
self.encoder_hid_proj is not None
|
| 1120 |
+
and self.config.encoder_hid_dim_type == "ip_image_proj"
|
| 1121 |
+
):
|
| 1122 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1123 |
+
raise ValueError(
|
| 1124 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1125 |
+
)
|
| 1126 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1127 |
+
image_embeds = self.encoder_hid_proj(image_embeds).to(
|
| 1128 |
+
encoder_hidden_states.dtype
|
| 1129 |
+
)
|
| 1130 |
+
encoder_hidden_states = torch.cat(
|
| 1131 |
+
[encoder_hidden_states, image_embeds], dim=1
|
| 1132 |
+
)
|
| 1133 |
+
|
| 1134 |
+
# 2. pre-process
|
| 1135 |
+
sample = self.conv_in(sample)
|
| 1136 |
+
|
| 1137 |
+
# 2.5 GLIGEN position net
|
| 1138 |
+
if (
|
| 1139 |
+
cross_attention_kwargs is not None
|
| 1140 |
+
and cross_attention_kwargs.get("gligen", None) is not None
|
| 1141 |
+
):
|
| 1142 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
| 1143 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
| 1144 |
+
cross_attention_kwargs["gligen"] = {
|
| 1145 |
+
"objs": self.position_net(**gligen_args)
|
| 1146 |
+
}
|
| 1147 |
+
|
| 1148 |
+
# 3. down
|
| 1149 |
+
lora_scale = (
|
| 1150 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 1151 |
+
if cross_attention_kwargs is not None
|
| 1152 |
+
else 1.0
|
| 1153 |
+
)
|
| 1154 |
+
if USE_PEFT_BACKEND:
|
| 1155 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 1156 |
+
scale_lora_layers(self, lora_scale)
|
| 1157 |
+
|
| 1158 |
+
is_controlnet = (
|
| 1159 |
+
mid_block_additional_residual is not None
|
| 1160 |
+
and down_block_additional_residuals is not None
|
| 1161 |
+
)
|
| 1162 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
| 1163 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
| 1164 |
+
# maintain backward compatibility for legacy usage, where
|
| 1165 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
| 1166 |
+
# but can only use one or the other
|
| 1167 |
+
if (
|
| 1168 |
+
not is_adapter
|
| 1169 |
+
and mid_block_additional_residual is None
|
| 1170 |
+
and down_block_additional_residuals is not None
|
| 1171 |
+
):
|
| 1172 |
+
deprecate(
|
| 1173 |
+
"T2I should not use down_block_additional_residuals",
|
| 1174 |
+
"1.3.0",
|
| 1175 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
| 1176 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
| 1177 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
| 1178 |
+
standard_warn=False,
|
| 1179 |
+
)
|
| 1180 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
| 1181 |
+
is_adapter = True
|
| 1182 |
+
|
| 1183 |
+
down_block_res_samples = (sample,)
|
| 1184 |
+
tot_referece_features = ()
|
| 1185 |
+
for downsample_block in self.down_blocks:
|
| 1186 |
+
if (
|
| 1187 |
+
hasattr(downsample_block, "has_cross_attention")
|
| 1188 |
+
and downsample_block.has_cross_attention
|
| 1189 |
+
):
|
| 1190 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
| 1191 |
+
additional_residuals = {}
|
| 1192 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
| 1193 |
+
additional_residuals[
|
| 1194 |
+
"additional_residuals"
|
| 1195 |
+
] = down_intrablock_additional_residuals.pop(0)
|
| 1196 |
+
|
| 1197 |
+
sample, res_samples = downsample_block(
|
| 1198 |
+
hidden_states=sample,
|
| 1199 |
+
temb=emb,
|
| 1200 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1201 |
+
attention_mask=attention_mask,
|
| 1202 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1203 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1204 |
+
**additional_residuals,
|
| 1205 |
+
)
|
| 1206 |
+
else:
|
| 1207 |
+
sample, res_samples = downsample_block(
|
| 1208 |
+
hidden_states=sample, temb=emb, scale=lora_scale
|
| 1209 |
+
)
|
| 1210 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
| 1211 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
| 1212 |
+
|
| 1213 |
+
down_block_res_samples += res_samples
|
| 1214 |
+
|
| 1215 |
+
if is_controlnet:
|
| 1216 |
+
new_down_block_res_samples = ()
|
| 1217 |
+
|
| 1218 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 1219 |
+
down_block_res_samples, down_block_additional_residuals
|
| 1220 |
+
):
|
| 1221 |
+
down_block_res_sample = (
|
| 1222 |
+
down_block_res_sample + down_block_additional_residual
|
| 1223 |
+
)
|
| 1224 |
+
new_down_block_res_samples = new_down_block_res_samples + (
|
| 1225 |
+
down_block_res_sample,
|
| 1226 |
+
)
|
| 1227 |
+
|
| 1228 |
+
down_block_res_samples = new_down_block_res_samples
|
| 1229 |
+
|
| 1230 |
+
# 4. mid
|
| 1231 |
+
if self.mid_block is not None:
|
| 1232 |
+
if (
|
| 1233 |
+
hasattr(self.mid_block, "has_cross_attention")
|
| 1234 |
+
and self.mid_block.has_cross_attention
|
| 1235 |
+
):
|
| 1236 |
+
sample = self.mid_block(
|
| 1237 |
+
sample,
|
| 1238 |
+
emb,
|
| 1239 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1240 |
+
attention_mask=attention_mask,
|
| 1241 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1242 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1243 |
+
)
|
| 1244 |
+
else:
|
| 1245 |
+
sample = self.mid_block(sample, emb)
|
| 1246 |
+
|
| 1247 |
+
# To support T2I-Adapter-XL
|
| 1248 |
+
if (
|
| 1249 |
+
is_adapter
|
| 1250 |
+
and len(down_intrablock_additional_residuals) > 0
|
| 1251 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
| 1252 |
+
):
|
| 1253 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
| 1254 |
+
|
| 1255 |
+
if is_controlnet:
|
| 1256 |
+
sample = sample + mid_block_additional_residual
|
| 1257 |
+
|
| 1258 |
+
# 5. up
|
| 1259 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1260 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 1261 |
+
|
| 1262 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 1263 |
+
down_block_res_samples = down_block_res_samples[
|
| 1264 |
+
: -len(upsample_block.resnets)
|
| 1265 |
+
]
|
| 1266 |
+
|
| 1267 |
+
# if we have not reached the final block and need to forward the
|
| 1268 |
+
# upsample size, we do it here
|
| 1269 |
+
if not is_final_block and forward_upsample_size:
|
| 1270 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 1271 |
+
|
| 1272 |
+
if (
|
| 1273 |
+
hasattr(upsample_block, "has_cross_attention")
|
| 1274 |
+
and upsample_block.has_cross_attention
|
| 1275 |
+
):
|
| 1276 |
+
sample = upsample_block(
|
| 1277 |
+
hidden_states=sample,
|
| 1278 |
+
temb=emb,
|
| 1279 |
+
res_hidden_states_tuple=res_samples,
|
| 1280 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1281 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1282 |
+
upsample_size=upsample_size,
|
| 1283 |
+
attention_mask=attention_mask,
|
| 1284 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1285 |
+
)
|
| 1286 |
+
else:
|
| 1287 |
+
sample = upsample_block(
|
| 1288 |
+
hidden_states=sample,
|
| 1289 |
+
temb=emb,
|
| 1290 |
+
res_hidden_states_tuple=res_samples,
|
| 1291 |
+
upsample_size=upsample_size,
|
| 1292 |
+
scale=lora_scale,
|
| 1293 |
+
)
|
| 1294 |
+
|
| 1295 |
+
# 6. post-process
|
| 1296 |
+
# if self.conv_norm_out:
|
| 1297 |
+
# sample = self.conv_norm_out(sample)
|
| 1298 |
+
# sample = self.conv_act(sample)
|
| 1299 |
+
# sample = self.conv_out(sample)
|
| 1300 |
+
|
| 1301 |
+
if USE_PEFT_BACKEND:
|
| 1302 |
+
# remove `lora_scale` from each PEFT layer
|
| 1303 |
+
unscale_lora_layers(self, lora_scale)
|
| 1304 |
+
|
| 1305 |
+
if not return_dict:
|
| 1306 |
+
return (sample,)
|
| 1307 |
+
|
| 1308 |
+
return UNet2DConditionOutput(sample=sample)
|
ref_encoder/unet_3d.py
ADDED
|
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
| 2 |
+
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from os import PathLike
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 13 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
| 14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 15 |
+
try:
|
| 16 |
+
from diffusers.modeling_utils import ModelMixin
|
| 17 |
+
except:
|
| 18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 19 |
+
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging
|
| 20 |
+
from safetensors.torch import load_file
|
| 21 |
+
|
| 22 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
| 23 |
+
from .unet_3d_blocks import UNetMidBlock3DCrossAttn, get_down_block, get_up_block
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class UNet3DConditionOutput(BaseOutput):
|
| 31 |
+
sample: torch.FloatTensor
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
| 35 |
+
_supports_gradient_checkpointing = True
|
| 36 |
+
|
| 37 |
+
@register_to_config
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
sample_size: Optional[int] = None,
|
| 41 |
+
in_channels: int = 4,
|
| 42 |
+
out_channels: int = 4,
|
| 43 |
+
center_input_sample: bool = False,
|
| 44 |
+
flip_sin_to_cos: bool = True,
|
| 45 |
+
freq_shift: int = 0,
|
| 46 |
+
down_block_types: Tuple[str] = (
|
| 47 |
+
"CrossAttnDownBlock3D",
|
| 48 |
+
"CrossAttnDownBlock3D",
|
| 49 |
+
"CrossAttnDownBlock3D",
|
| 50 |
+
"DownBlock3D",
|
| 51 |
+
),
|
| 52 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
| 53 |
+
up_block_types: Tuple[str] = (
|
| 54 |
+
"UpBlock3D",
|
| 55 |
+
"CrossAttnUpBlock3D",
|
| 56 |
+
"CrossAttnUpBlock3D",
|
| 57 |
+
"CrossAttnUpBlock3D",
|
| 58 |
+
),
|
| 59 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 60 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 61 |
+
layers_per_block: int = 2,
|
| 62 |
+
downsample_padding: int = 1,
|
| 63 |
+
mid_block_scale_factor: float = 1,
|
| 64 |
+
act_fn: str = "silu",
|
| 65 |
+
norm_num_groups: int = 32,
|
| 66 |
+
norm_eps: float = 1e-5,
|
| 67 |
+
cross_attention_dim: int = 1280,
|
| 68 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 69 |
+
dual_cross_attention: bool = False,
|
| 70 |
+
use_linear_projection: bool = False,
|
| 71 |
+
class_embed_type: Optional[str] = None,
|
| 72 |
+
num_class_embeds: Optional[int] = None,
|
| 73 |
+
upcast_attention: bool = False,
|
| 74 |
+
resnet_time_scale_shift: str = "default",
|
| 75 |
+
use_inflated_groupnorm=False,
|
| 76 |
+
# Additional
|
| 77 |
+
use_motion_module=False, ######
|
| 78 |
+
motion_module_resolutions=(1, 2, 4, 8), ####
|
| 79 |
+
motion_module_mid_block=False, #####
|
| 80 |
+
motion_module_decoder_only=False, #####
|
| 81 |
+
motion_module_type=None, #####
|
| 82 |
+
motion_module_kwargs={}, #####
|
| 83 |
+
unet_use_cross_frame_attention=None, #####
|
| 84 |
+
unet_use_temporal_attention=None, #####
|
| 85 |
+
mode=None, #####
|
| 86 |
+
task_type="action", #####
|
| 87 |
+
):
|
| 88 |
+
super().__init__()
|
| 89 |
+
|
| 90 |
+
self.sample_size = sample_size
|
| 91 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 92 |
+
|
| 93 |
+
# input
|
| 94 |
+
self.conv_in = InflatedConv3d(
|
| 95 |
+
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# time
|
| 99 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 100 |
+
timestep_input_dim = block_out_channels[0]
|
| 101 |
+
|
| 102 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 103 |
+
|
| 104 |
+
# class embedding
|
| 105 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 106 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 107 |
+
elif class_embed_type == "timestep":
|
| 108 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 109 |
+
elif class_embed_type == "identity":
|
| 110 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 111 |
+
else:
|
| 112 |
+
self.class_embedding = None
|
| 113 |
+
|
| 114 |
+
self.down_blocks = nn.ModuleList([])
|
| 115 |
+
self.mid_block = None
|
| 116 |
+
self.up_blocks = nn.ModuleList([])
|
| 117 |
+
|
| 118 |
+
if isinstance(only_cross_attention, bool):
|
| 119 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 120 |
+
|
| 121 |
+
if isinstance(attention_head_dim, int):
|
| 122 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 123 |
+
|
| 124 |
+
# down
|
| 125 |
+
output_channel = block_out_channels[0]
|
| 126 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 127 |
+
if task_type == "action":
|
| 128 |
+
name_index, mid_name = None, None
|
| 129 |
+
else:
|
| 130 |
+
name_index, mid_name = i, "MidBlock"
|
| 131 |
+
res = 2**i
|
| 132 |
+
input_channel = output_channel
|
| 133 |
+
output_channel = block_out_channels[i]
|
| 134 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 135 |
+
|
| 136 |
+
down_block = get_down_block(
|
| 137 |
+
down_block_type,
|
| 138 |
+
num_layers=layers_per_block,
|
| 139 |
+
in_channels=input_channel,
|
| 140 |
+
out_channels=output_channel,
|
| 141 |
+
temb_channels=time_embed_dim,
|
| 142 |
+
add_downsample=not is_final_block,
|
| 143 |
+
resnet_eps=norm_eps,
|
| 144 |
+
resnet_act_fn=act_fn,
|
| 145 |
+
resnet_groups=norm_num_groups,
|
| 146 |
+
cross_attention_dim=cross_attention_dim,
|
| 147 |
+
attn_num_head_channels=attention_head_dim[i],
|
| 148 |
+
downsample_padding=downsample_padding,
|
| 149 |
+
dual_cross_attention=dual_cross_attention,
|
| 150 |
+
use_linear_projection=use_linear_projection,
|
| 151 |
+
only_cross_attention=only_cross_attention[i],
|
| 152 |
+
upcast_attention=upcast_attention,
|
| 153 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 154 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 155 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 156 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 157 |
+
use_motion_module=use_motion_module
|
| 158 |
+
and (res in motion_module_resolutions)
|
| 159 |
+
and (not motion_module_decoder_only),
|
| 160 |
+
motion_module_type=motion_module_type,
|
| 161 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 162 |
+
name_index=name_index, #####
|
| 163 |
+
)
|
| 164 |
+
self.down_blocks.append(down_block)
|
| 165 |
+
|
| 166 |
+
# mid
|
| 167 |
+
|
| 168 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
| 169 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
| 170 |
+
in_channels=block_out_channels[-1],
|
| 171 |
+
temb_channels=time_embed_dim,
|
| 172 |
+
resnet_eps=norm_eps,
|
| 173 |
+
resnet_act_fn=act_fn,
|
| 174 |
+
output_scale_factor=mid_block_scale_factor,
|
| 175 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 176 |
+
cross_attention_dim=cross_attention_dim,
|
| 177 |
+
attn_num_head_channels=attention_head_dim[-1],
|
| 178 |
+
resnet_groups=norm_num_groups,
|
| 179 |
+
dual_cross_attention=dual_cross_attention,
|
| 180 |
+
use_linear_projection=use_linear_projection,
|
| 181 |
+
upcast_attention=upcast_attention,
|
| 182 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 183 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 184 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 185 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
| 186 |
+
motion_module_type=motion_module_type,
|
| 187 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 188 |
+
name=mid_name,
|
| 189 |
+
)
|
| 190 |
+
else:
|
| 191 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 192 |
+
|
| 193 |
+
# count how many layers upsample the videos
|
| 194 |
+
self.num_upsamplers = 0
|
| 195 |
+
|
| 196 |
+
# up
|
| 197 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 198 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
| 199 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 200 |
+
output_channel = reversed_block_out_channels[0]
|
| 201 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 202 |
+
res = 2 ** (3 - i)
|
| 203 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 204 |
+
|
| 205 |
+
if task_type == "action":
|
| 206 |
+
name_index = None
|
| 207 |
+
else:
|
| 208 |
+
name_index = i
|
| 209 |
+
|
| 210 |
+
prev_output_channel = output_channel
|
| 211 |
+
output_channel = reversed_block_out_channels[i]
|
| 212 |
+
input_channel = reversed_block_out_channels[
|
| 213 |
+
min(i + 1, len(block_out_channels) - 1)
|
| 214 |
+
]
|
| 215 |
+
|
| 216 |
+
# add upsample block for all BUT final layer
|
| 217 |
+
if not is_final_block:
|
| 218 |
+
add_upsample = True
|
| 219 |
+
self.num_upsamplers += 1
|
| 220 |
+
else:
|
| 221 |
+
add_upsample = False
|
| 222 |
+
|
| 223 |
+
up_block = get_up_block(
|
| 224 |
+
up_block_type,
|
| 225 |
+
num_layers=layers_per_block + 1,
|
| 226 |
+
in_channels=input_channel,
|
| 227 |
+
out_channels=output_channel,
|
| 228 |
+
prev_output_channel=prev_output_channel,
|
| 229 |
+
temb_channels=time_embed_dim,
|
| 230 |
+
add_upsample=add_upsample,
|
| 231 |
+
resnet_eps=norm_eps,
|
| 232 |
+
resnet_act_fn=act_fn,
|
| 233 |
+
resnet_groups=norm_num_groups,
|
| 234 |
+
cross_attention_dim=cross_attention_dim,
|
| 235 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
| 236 |
+
dual_cross_attention=dual_cross_attention,
|
| 237 |
+
use_linear_projection=use_linear_projection,
|
| 238 |
+
only_cross_attention=only_cross_attention[i],
|
| 239 |
+
upcast_attention=upcast_attention,
|
| 240 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 241 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 242 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 243 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 244 |
+
use_motion_module=use_motion_module
|
| 245 |
+
and (res in motion_module_resolutions),
|
| 246 |
+
motion_module_type=motion_module_type,
|
| 247 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 248 |
+
name_index=name_index,
|
| 249 |
+
)
|
| 250 |
+
self.up_blocks.append(up_block)
|
| 251 |
+
prev_output_channel = output_channel
|
| 252 |
+
|
| 253 |
+
# out
|
| 254 |
+
if use_inflated_groupnorm:
|
| 255 |
+
self.conv_norm_out = InflatedGroupNorm(
|
| 256 |
+
num_channels=block_out_channels[0],
|
| 257 |
+
num_groups=norm_num_groups,
|
| 258 |
+
eps=norm_eps,
|
| 259 |
+
)
|
| 260 |
+
else:
|
| 261 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 262 |
+
num_channels=block_out_channels[0],
|
| 263 |
+
num_groups=norm_num_groups,
|
| 264 |
+
eps=norm_eps,
|
| 265 |
+
)
|
| 266 |
+
self.conv_act = nn.SiLU()
|
| 267 |
+
self.conv_out = InflatedConv3d(
|
| 268 |
+
block_out_channels[0], out_channels, kernel_size=3, padding=1
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
self.mode = mode
|
| 272 |
+
|
| 273 |
+
@property
|
| 274 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 275 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 276 |
+
r"""
|
| 277 |
+
Returns:
|
| 278 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 279 |
+
indexed by its weight name.
|
| 280 |
+
"""
|
| 281 |
+
# set recursively
|
| 282 |
+
processors = {}
|
| 283 |
+
|
| 284 |
+
def fn_recursive_add_processors(
|
| 285 |
+
name: str,
|
| 286 |
+
module: torch.nn.Module,
|
| 287 |
+
processors: Dict[str, AttentionProcessor],
|
| 288 |
+
):
|
| 289 |
+
if hasattr(module, "set_processor"):
|
| 290 |
+
processors[f"{name}.processor"] = module.processor
|
| 291 |
+
|
| 292 |
+
for sub_name, child in module.named_children():
|
| 293 |
+
if "temporal_transformer" not in sub_name:
|
| 294 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 295 |
+
|
| 296 |
+
return processors
|
| 297 |
+
|
| 298 |
+
for name, module in self.named_children():
|
| 299 |
+
if "temporal_transformer" not in name:
|
| 300 |
+
fn_recursive_add_processors(name, module, processors)
|
| 301 |
+
|
| 302 |
+
return processors
|
| 303 |
+
|
| 304 |
+
def set_attention_slice(self, slice_size):
|
| 305 |
+
r"""
|
| 306 |
+
Enable sliced attention computation.
|
| 307 |
+
|
| 308 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
| 309 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
| 310 |
+
|
| 311 |
+
Args:
|
| 312 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 313 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
| 314 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
| 315 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 316 |
+
must be a multiple of `slice_size`.
|
| 317 |
+
"""
|
| 318 |
+
sliceable_head_dims = []
|
| 319 |
+
|
| 320 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
| 321 |
+
if hasattr(module, "set_attention_slice"):
|
| 322 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 323 |
+
|
| 324 |
+
for child in module.children():
|
| 325 |
+
fn_recursive_retrieve_slicable_dims(child)
|
| 326 |
+
|
| 327 |
+
# retrieve number of attention layers
|
| 328 |
+
for module in self.children():
|
| 329 |
+
fn_recursive_retrieve_slicable_dims(module)
|
| 330 |
+
|
| 331 |
+
num_slicable_layers = len(sliceable_head_dims)
|
| 332 |
+
|
| 333 |
+
if slice_size == "auto":
|
| 334 |
+
# half the attention head size is usually a good trade-off between
|
| 335 |
+
# speed and memory
|
| 336 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 337 |
+
elif slice_size == "max":
|
| 338 |
+
# make smallest slice possible
|
| 339 |
+
slice_size = num_slicable_layers * [1]
|
| 340 |
+
|
| 341 |
+
slice_size = (
|
| 342 |
+
num_slicable_layers * [slice_size]
|
| 343 |
+
if not isinstance(slice_size, list)
|
| 344 |
+
else slice_size
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 348 |
+
raise ValueError(
|
| 349 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 350 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
for i in range(len(slice_size)):
|
| 354 |
+
size = slice_size[i]
|
| 355 |
+
dim = sliceable_head_dims[i]
|
| 356 |
+
if size is not None and size > dim:
|
| 357 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 358 |
+
|
| 359 |
+
# Recursively walk through all the children.
|
| 360 |
+
# Any children which exposes the set_attention_slice method
|
| 361 |
+
# gets the message
|
| 362 |
+
def fn_recursive_set_attention_slice(
|
| 363 |
+
module: torch.nn.Module, slice_size: List[int]
|
| 364 |
+
):
|
| 365 |
+
if hasattr(module, "set_attention_slice"):
|
| 366 |
+
module.set_attention_slice(slice_size.pop())
|
| 367 |
+
|
| 368 |
+
for child in module.children():
|
| 369 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 370 |
+
|
| 371 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 372 |
+
for module in self.children():
|
| 373 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 374 |
+
|
| 375 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 376 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 377 |
+
module.gradient_checkpointing = value
|
| 378 |
+
|
| 379 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 380 |
+
def set_attn_processor(
|
| 381 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
| 382 |
+
):
|
| 383 |
+
r"""
|
| 384 |
+
Sets the attention processor to use to compute attention.
|
| 385 |
+
|
| 386 |
+
Parameters:
|
| 387 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 388 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 389 |
+
for **all** `Attention` layers.
|
| 390 |
+
|
| 391 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 392 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 393 |
+
|
| 394 |
+
"""
|
| 395 |
+
count = len(self.attn_processors.keys())
|
| 396 |
+
|
| 397 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 398 |
+
raise ValueError(
|
| 399 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 400 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 404 |
+
if hasattr(module, "set_processor"):
|
| 405 |
+
if not isinstance(processor, dict):
|
| 406 |
+
module.set_processor(processor)
|
| 407 |
+
else:
|
| 408 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 409 |
+
|
| 410 |
+
for sub_name, child in module.named_children():
|
| 411 |
+
if "temporal_transformer" not in sub_name:
|
| 412 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 413 |
+
|
| 414 |
+
for name, module in self.named_children():
|
| 415 |
+
if "temporal_transformer" not in name:
|
| 416 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 417 |
+
|
| 418 |
+
def forward(
|
| 419 |
+
self,
|
| 420 |
+
sample: torch.FloatTensor,
|
| 421 |
+
timestep: Union[torch.Tensor, float, int],
|
| 422 |
+
encoder_hidden_states: torch.Tensor,
|
| 423 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 424 |
+
pose_cond_fea: Optional[torch.Tensor] = None,
|
| 425 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 426 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 427 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 428 |
+
return_dict: bool = True,
|
| 429 |
+
self_attention_additional_feats = None,
|
| 430 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
| 431 |
+
r"""
|
| 432 |
+
Args:
|
| 433 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
| 434 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
| 435 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
| 436 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 437 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
| 438 |
+
|
| 439 |
+
Returns:
|
| 440 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 441 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
| 442 |
+
returning a tuple, the first element is the sample tensor.
|
| 443 |
+
"""
|
| 444 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 445 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
| 446 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 447 |
+
# on the fly if necessary.
|
| 448 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 449 |
+
|
| 450 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 451 |
+
forward_upsample_size = False
|
| 452 |
+
upsample_size = None
|
| 453 |
+
|
| 454 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 455 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 456 |
+
forward_upsample_size = True
|
| 457 |
+
|
| 458 |
+
# prepare attention_mask
|
| 459 |
+
if attention_mask is not None:
|
| 460 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 461 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 462 |
+
|
| 463 |
+
# center input if necessary
|
| 464 |
+
if self.config.center_input_sample:
|
| 465 |
+
sample = 2 * sample - 1.0
|
| 466 |
+
|
| 467 |
+
# time
|
| 468 |
+
timesteps = timestep
|
| 469 |
+
if not torch.is_tensor(timesteps):
|
| 470 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 471 |
+
is_mps = sample.device.type == "mps"
|
| 472 |
+
if isinstance(timestep, float):
|
| 473 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 474 |
+
else:
|
| 475 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 476 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 477 |
+
elif len(timesteps.shape) == 0:
|
| 478 |
+
timesteps = timesteps[None].to(sample.device)
|
| 479 |
+
|
| 480 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 481 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 482 |
+
|
| 483 |
+
t_emb = self.time_proj(timesteps)
|
| 484 |
+
|
| 485 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 486 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 487 |
+
# there might be better ways to encapsulate this.
|
| 488 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 489 |
+
emb = self.time_embedding(t_emb)
|
| 490 |
+
|
| 491 |
+
if self.class_embedding is not None:
|
| 492 |
+
if class_labels is None:
|
| 493 |
+
raise ValueError(
|
| 494 |
+
"class_labels should be provided when num_class_embeds > 0"
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
if self.config.class_embed_type == "timestep":
|
| 498 |
+
class_labels = self.time_proj(class_labels)
|
| 499 |
+
|
| 500 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 501 |
+
emb = emb + class_emb
|
| 502 |
+
|
| 503 |
+
# pre-process
|
| 504 |
+
sample = self.conv_in(sample)
|
| 505 |
+
if pose_cond_fea is not None:
|
| 506 |
+
sample = sample + pose_cond_fea
|
| 507 |
+
|
| 508 |
+
# down
|
| 509 |
+
down_block_res_samples = (sample,)
|
| 510 |
+
for downsample_block in self.down_blocks:
|
| 511 |
+
if (
|
| 512 |
+
hasattr(downsample_block, "has_cross_attention")
|
| 513 |
+
and downsample_block.has_cross_attention
|
| 514 |
+
):
|
| 515 |
+
sample, res_samples = downsample_block(
|
| 516 |
+
hidden_states=sample,
|
| 517 |
+
temb=emb,
|
| 518 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 519 |
+
attention_mask=attention_mask,
|
| 520 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 521 |
+
mode=self.mode,
|
| 522 |
+
)
|
| 523 |
+
else:
|
| 524 |
+
sample, res_samples = downsample_block(
|
| 525 |
+
hidden_states=sample,
|
| 526 |
+
temb=emb,
|
| 527 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
down_block_res_samples += res_samples
|
| 531 |
+
|
| 532 |
+
if down_block_additional_residuals is not None:
|
| 533 |
+
new_down_block_res_samples = ()
|
| 534 |
+
|
| 535 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 536 |
+
down_block_res_samples, down_block_additional_residuals
|
| 537 |
+
):
|
| 538 |
+
down_block_additional_residual = rearrange(
|
| 539 |
+
down_block_additional_residual, "(b f) c h w -> b c f h w", f=down_block_res_sample.shape[2]
|
| 540 |
+
)
|
| 541 |
+
down_block_res_sample = (
|
| 542 |
+
down_block_res_sample + down_block_additional_residual
|
| 543 |
+
)
|
| 544 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
| 545 |
+
|
| 546 |
+
down_block_res_samples = new_down_block_res_samples
|
| 547 |
+
|
| 548 |
+
# mid
|
| 549 |
+
sample = self.mid_block(
|
| 550 |
+
sample,
|
| 551 |
+
emb,
|
| 552 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 553 |
+
attention_mask=attention_mask,
|
| 554 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 555 |
+
mode=self.mode,
|
| 556 |
+
)
|
| 557 |
+
|
| 558 |
+
if mid_block_additional_residual is not None:
|
| 559 |
+
mid_block_additional_residual = rearrange(
|
| 560 |
+
mid_block_additional_residual, "(b f) c h w -> b c f h w", f=sample.shape[2]
|
| 561 |
+
)
|
| 562 |
+
sample = sample + mid_block_additional_residual
|
| 563 |
+
|
| 564 |
+
# up
|
| 565 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 566 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 567 |
+
|
| 568 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 569 |
+
down_block_res_samples = down_block_res_samples[
|
| 570 |
+
: -len(upsample_block.resnets)
|
| 571 |
+
]
|
| 572 |
+
|
| 573 |
+
# if we have not reached the final block and need to forward the
|
| 574 |
+
# upsample size, we do it here
|
| 575 |
+
if not is_final_block and forward_upsample_size:
|
| 576 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 577 |
+
|
| 578 |
+
if (
|
| 579 |
+
hasattr(upsample_block, "has_cross_attention")
|
| 580 |
+
and upsample_block.has_cross_attention
|
| 581 |
+
):
|
| 582 |
+
sample = upsample_block(
|
| 583 |
+
hidden_states=sample,
|
| 584 |
+
temb=emb,
|
| 585 |
+
res_hidden_states_tuple=res_samples,
|
| 586 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 587 |
+
upsample_size=upsample_size,
|
| 588 |
+
attention_mask=attention_mask,
|
| 589 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 590 |
+
mode=self.mode,
|
| 591 |
+
)
|
| 592 |
+
else:
|
| 593 |
+
sample = upsample_block(
|
| 594 |
+
hidden_states=sample,
|
| 595 |
+
temb=emb,
|
| 596 |
+
res_hidden_states_tuple=res_samples,
|
| 597 |
+
upsample_size=upsample_size,
|
| 598 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# post-process
|
| 602 |
+
sample = self.conv_norm_out(sample)
|
| 603 |
+
sample = self.conv_act(sample)
|
| 604 |
+
sample = self.conv_out(sample)
|
| 605 |
+
|
| 606 |
+
if not return_dict:
|
| 607 |
+
return (sample,)
|
| 608 |
+
|
| 609 |
+
return UNet3DConditionOutput(sample=sample)
|
| 610 |
+
|
| 611 |
+
@classmethod
|
| 612 |
+
def from_pretrained_2d(
|
| 613 |
+
cls,
|
| 614 |
+
pretrained_model_path: PathLike,
|
| 615 |
+
motion_module_path: PathLike,
|
| 616 |
+
subfolder=None,
|
| 617 |
+
unet_additional_kwargs=None,
|
| 618 |
+
mm_zero_proj_out=False,
|
| 619 |
+
):
|
| 620 |
+
pretrained_model_path = Path(pretrained_model_path)
|
| 621 |
+
motion_module_path = Path(motion_module_path)
|
| 622 |
+
if subfolder is not None:
|
| 623 |
+
pretrained_model_path = pretrained_model_path.joinpath(subfolder)
|
| 624 |
+
logger.info(
|
| 625 |
+
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..."
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
config_file = pretrained_model_path / "config.json"
|
| 629 |
+
if not (config_file.exists() and config_file.is_file()):
|
| 630 |
+
raise RuntimeError(f"{config_file} does not exist or is not a file")
|
| 631 |
+
|
| 632 |
+
unet_config = cls.load_config(config_file)
|
| 633 |
+
unet_config["_class_name"] = cls.__name__
|
| 634 |
+
unet_config["down_block_types"] = [
|
| 635 |
+
"CrossAttnDownBlock3D",
|
| 636 |
+
"CrossAttnDownBlock3D",
|
| 637 |
+
"CrossAttnDownBlock3D",
|
| 638 |
+
"DownBlock3D",
|
| 639 |
+
]
|
| 640 |
+
unet_config["up_block_types"] = [
|
| 641 |
+
"UpBlock3D",
|
| 642 |
+
"CrossAttnUpBlock3D",
|
| 643 |
+
"CrossAttnUpBlock3D",
|
| 644 |
+
"CrossAttnUpBlock3D",
|
| 645 |
+
]
|
| 646 |
+
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
| 647 |
+
|
| 648 |
+
model = cls.from_config(unet_config, **unet_additional_kwargs)
|
| 649 |
+
# load the vanilla weights
|
| 650 |
+
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists():
|
| 651 |
+
logger.debug(
|
| 652 |
+
f"loading safeTensors weights from {pretrained_model_path} ..."
|
| 653 |
+
)
|
| 654 |
+
state_dict = load_file(
|
| 655 |
+
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu"
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists():
|
| 659 |
+
logger.debug(f"loading weights from {pretrained_model_path} ...")
|
| 660 |
+
state_dict = torch.load(
|
| 661 |
+
pretrained_model_path.joinpath(WEIGHTS_NAME),
|
| 662 |
+
map_location="cpu",
|
| 663 |
+
weights_only=True,
|
| 664 |
+
)
|
| 665 |
+
else:
|
| 666 |
+
raise FileNotFoundError(f"no weights file found in {pretrained_model_path}")
|
| 667 |
+
|
| 668 |
+
# load the motion module weights
|
| 669 |
+
if motion_module_path.exists() and motion_module_path.is_file():
|
| 670 |
+
if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]:
|
| 671 |
+
logger.info(f"Load motion module params from {motion_module_path}")
|
| 672 |
+
motion_state_dict = torch.load(
|
| 673 |
+
motion_module_path, map_location="cpu", weights_only=True
|
| 674 |
+
)
|
| 675 |
+
elif motion_module_path.suffix.lower() == ".safetensors":
|
| 676 |
+
motion_state_dict = load_file(motion_module_path, device="cpu")
|
| 677 |
+
else:
|
| 678 |
+
raise RuntimeError(
|
| 679 |
+
f"unknown file format for motion module weights: {motion_module_path.suffix}"
|
| 680 |
+
)
|
| 681 |
+
if mm_zero_proj_out:
|
| 682 |
+
logger.info(f"Zero initialize proj_out layers in motion module...")
|
| 683 |
+
new_motion_state_dict = OrderedDict()
|
| 684 |
+
for k in motion_state_dict:
|
| 685 |
+
if "proj_out" in k:
|
| 686 |
+
continue
|
| 687 |
+
new_motion_state_dict[k] = motion_state_dict[k]
|
| 688 |
+
motion_state_dict = new_motion_state_dict
|
| 689 |
+
|
| 690 |
+
# merge the state dicts
|
| 691 |
+
state_dict.update(motion_state_dict)
|
| 692 |
+
|
| 693 |
+
# load the weights into the model
|
| 694 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
| 695 |
+
logger.debug(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
| 696 |
+
|
| 697 |
+
params = [
|
| 698 |
+
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
|
| 699 |
+
]
|
| 700 |
+
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")
|
| 701 |
+
|
| 702 |
+
return model
|
ref_encoder/unet_3d_blocks.py
ADDED
|
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
| 2 |
+
|
| 3 |
+
import pdb
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
from .motion_module import get_motion_module
|
| 9 |
+
|
| 10 |
+
# from .motion_module import get_motion_module
|
| 11 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
| 12 |
+
from .transformer_3d import Transformer3DModel
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_down_block(
|
| 16 |
+
down_block_type,
|
| 17 |
+
num_layers,
|
| 18 |
+
in_channels,
|
| 19 |
+
out_channels,
|
| 20 |
+
temb_channels,
|
| 21 |
+
add_downsample,
|
| 22 |
+
resnet_eps,
|
| 23 |
+
resnet_act_fn,
|
| 24 |
+
attn_num_head_channels,
|
| 25 |
+
resnet_groups=None,
|
| 26 |
+
cross_attention_dim=None,
|
| 27 |
+
downsample_padding=None,
|
| 28 |
+
dual_cross_attention=False,
|
| 29 |
+
use_linear_projection=False,
|
| 30 |
+
only_cross_attention=False,
|
| 31 |
+
upcast_attention=False,
|
| 32 |
+
resnet_time_scale_shift="default",
|
| 33 |
+
unet_use_cross_frame_attention=None,
|
| 34 |
+
unet_use_temporal_attention=None,
|
| 35 |
+
use_inflated_groupnorm=None,
|
| 36 |
+
use_motion_module=None,
|
| 37 |
+
motion_module_type=None,
|
| 38 |
+
motion_module_kwargs=None,
|
| 39 |
+
name_index=None,
|
| 40 |
+
):
|
| 41 |
+
down_block_type = (
|
| 42 |
+
down_block_type[7:]
|
| 43 |
+
if down_block_type.startswith("UNetRes")
|
| 44 |
+
else down_block_type
|
| 45 |
+
)
|
| 46 |
+
if down_block_type == "DownBlock3D":
|
| 47 |
+
return DownBlock3D(
|
| 48 |
+
num_layers=num_layers,
|
| 49 |
+
in_channels=in_channels,
|
| 50 |
+
out_channels=out_channels,
|
| 51 |
+
temb_channels=temb_channels,
|
| 52 |
+
add_downsample=add_downsample,
|
| 53 |
+
resnet_eps=resnet_eps,
|
| 54 |
+
resnet_act_fn=resnet_act_fn,
|
| 55 |
+
resnet_groups=resnet_groups,
|
| 56 |
+
downsample_padding=downsample_padding,
|
| 57 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 58 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 59 |
+
use_motion_module=use_motion_module,
|
| 60 |
+
motion_module_type=motion_module_type,
|
| 61 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 62 |
+
)
|
| 63 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
| 64 |
+
if cross_attention_dim is None:
|
| 65 |
+
raise ValueError(
|
| 66 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock3D"
|
| 67 |
+
)
|
| 68 |
+
if name_index is not None:
|
| 69 |
+
name_index = f"CrossAttnDownBlock_{name_index}_"
|
| 70 |
+
return CrossAttnDownBlock3D(
|
| 71 |
+
num_layers=num_layers,
|
| 72 |
+
in_channels=in_channels,
|
| 73 |
+
out_channels=out_channels,
|
| 74 |
+
temb_channels=temb_channels,
|
| 75 |
+
add_downsample=add_downsample,
|
| 76 |
+
resnet_eps=resnet_eps,
|
| 77 |
+
resnet_act_fn=resnet_act_fn,
|
| 78 |
+
resnet_groups=resnet_groups,
|
| 79 |
+
downsample_padding=downsample_padding,
|
| 80 |
+
cross_attention_dim=cross_attention_dim,
|
| 81 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 82 |
+
dual_cross_attention=dual_cross_attention,
|
| 83 |
+
use_linear_projection=use_linear_projection,
|
| 84 |
+
only_cross_attention=only_cross_attention,
|
| 85 |
+
upcast_attention=upcast_attention,
|
| 86 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 87 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 88 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 89 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 90 |
+
use_motion_module=use_motion_module,
|
| 91 |
+
motion_module_type=motion_module_type,
|
| 92 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 93 |
+
name=name_index,
|
| 94 |
+
)
|
| 95 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_up_block(
|
| 99 |
+
up_block_type,
|
| 100 |
+
num_layers,
|
| 101 |
+
in_channels,
|
| 102 |
+
out_channels,
|
| 103 |
+
prev_output_channel,
|
| 104 |
+
temb_channels,
|
| 105 |
+
add_upsample,
|
| 106 |
+
resnet_eps,
|
| 107 |
+
resnet_act_fn,
|
| 108 |
+
attn_num_head_channels,
|
| 109 |
+
resnet_groups=None,
|
| 110 |
+
cross_attention_dim=None,
|
| 111 |
+
dual_cross_attention=False,
|
| 112 |
+
use_linear_projection=False,
|
| 113 |
+
only_cross_attention=False,
|
| 114 |
+
upcast_attention=False,
|
| 115 |
+
resnet_time_scale_shift="default",
|
| 116 |
+
unet_use_cross_frame_attention=None,
|
| 117 |
+
unet_use_temporal_attention=None,
|
| 118 |
+
use_inflated_groupnorm=None,
|
| 119 |
+
use_motion_module=None,
|
| 120 |
+
motion_module_type=None,
|
| 121 |
+
motion_module_kwargs=None,
|
| 122 |
+
name_index=None,
|
| 123 |
+
):
|
| 124 |
+
up_block_type = (
|
| 125 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 126 |
+
)
|
| 127 |
+
if up_block_type == "UpBlock3D":
|
| 128 |
+
return UpBlock3D(
|
| 129 |
+
num_layers=num_layers,
|
| 130 |
+
in_channels=in_channels,
|
| 131 |
+
out_channels=out_channels,
|
| 132 |
+
prev_output_channel=prev_output_channel,
|
| 133 |
+
temb_channels=temb_channels,
|
| 134 |
+
add_upsample=add_upsample,
|
| 135 |
+
resnet_eps=resnet_eps,
|
| 136 |
+
resnet_act_fn=resnet_act_fn,
|
| 137 |
+
resnet_groups=resnet_groups,
|
| 138 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 139 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 140 |
+
use_motion_module=use_motion_module,
|
| 141 |
+
motion_module_type=motion_module_type,
|
| 142 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 143 |
+
)
|
| 144 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
| 145 |
+
if cross_attention_dim is None:
|
| 146 |
+
raise ValueError(
|
| 147 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock3D"
|
| 148 |
+
)
|
| 149 |
+
if name_index is not None:
|
| 150 |
+
name_index = f"CrossAttnUpBlock_{name_index}_"
|
| 151 |
+
return CrossAttnUpBlock3D(
|
| 152 |
+
num_layers=num_layers,
|
| 153 |
+
in_channels=in_channels,
|
| 154 |
+
out_channels=out_channels,
|
| 155 |
+
prev_output_channel=prev_output_channel,
|
| 156 |
+
temb_channels=temb_channels,
|
| 157 |
+
add_upsample=add_upsample,
|
| 158 |
+
resnet_eps=resnet_eps,
|
| 159 |
+
resnet_act_fn=resnet_act_fn,
|
| 160 |
+
resnet_groups=resnet_groups,
|
| 161 |
+
cross_attention_dim=cross_attention_dim,
|
| 162 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 163 |
+
dual_cross_attention=dual_cross_attention,
|
| 164 |
+
use_linear_projection=use_linear_projection,
|
| 165 |
+
only_cross_attention=only_cross_attention,
|
| 166 |
+
upcast_attention=upcast_attention,
|
| 167 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 168 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 169 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 170 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 171 |
+
use_motion_module=use_motion_module,
|
| 172 |
+
motion_module_type=motion_module_type,
|
| 173 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 174 |
+
name=name_index,
|
| 175 |
+
)
|
| 176 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
| 180 |
+
def __init__(
|
| 181 |
+
self,
|
| 182 |
+
in_channels: int,
|
| 183 |
+
temb_channels: int,
|
| 184 |
+
dropout: float = 0.0,
|
| 185 |
+
num_layers: int = 1,
|
| 186 |
+
resnet_eps: float = 1e-6,
|
| 187 |
+
resnet_time_scale_shift: str = "default",
|
| 188 |
+
resnet_act_fn: str = "swish",
|
| 189 |
+
resnet_groups: int = 32,
|
| 190 |
+
resnet_pre_norm: bool = True,
|
| 191 |
+
attn_num_head_channels=1,
|
| 192 |
+
output_scale_factor=1.0,
|
| 193 |
+
cross_attention_dim=1280,
|
| 194 |
+
dual_cross_attention=False,
|
| 195 |
+
use_linear_projection=False,
|
| 196 |
+
upcast_attention=False,
|
| 197 |
+
unet_use_cross_frame_attention=None,
|
| 198 |
+
unet_use_temporal_attention=None,
|
| 199 |
+
use_inflated_groupnorm=None,
|
| 200 |
+
use_motion_module=None,
|
| 201 |
+
motion_module_type=None,
|
| 202 |
+
motion_module_kwargs=None,
|
| 203 |
+
name=None
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
self.has_cross_attention = True
|
| 208 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 209 |
+
resnet_groups = (
|
| 210 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 211 |
+
)
|
| 212 |
+
self.name = name
|
| 213 |
+
# there is always at least one resnet
|
| 214 |
+
resnets = [
|
| 215 |
+
ResnetBlock3D(
|
| 216 |
+
in_channels=in_channels,
|
| 217 |
+
out_channels=in_channels,
|
| 218 |
+
temb_channels=temb_channels,
|
| 219 |
+
eps=resnet_eps,
|
| 220 |
+
groups=resnet_groups,
|
| 221 |
+
dropout=dropout,
|
| 222 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 223 |
+
non_linearity=resnet_act_fn,
|
| 224 |
+
output_scale_factor=output_scale_factor,
|
| 225 |
+
pre_norm=resnet_pre_norm,
|
| 226 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 227 |
+
)
|
| 228 |
+
]
|
| 229 |
+
attentions = []
|
| 230 |
+
motion_modules = []
|
| 231 |
+
for i in range(num_layers):
|
| 232 |
+
if dual_cross_attention:
|
| 233 |
+
raise NotImplementedError
|
| 234 |
+
if self.name is not None:
|
| 235 |
+
attn_name = f"{self.name}_{i}_TransformerModel"
|
| 236 |
+
else:
|
| 237 |
+
attn_name = None
|
| 238 |
+
attentions.append(
|
| 239 |
+
Transformer3DModel(
|
| 240 |
+
attn_num_head_channels,
|
| 241 |
+
in_channels // attn_num_head_channels,
|
| 242 |
+
in_channels=in_channels,
|
| 243 |
+
num_layers=1,
|
| 244 |
+
cross_attention_dim=cross_attention_dim,
|
| 245 |
+
norm_num_groups=resnet_groups,
|
| 246 |
+
use_linear_projection=use_linear_projection,
|
| 247 |
+
upcast_attention=upcast_attention,
|
| 248 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 249 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 250 |
+
name=attn_name,
|
| 251 |
+
)
|
| 252 |
+
)
|
| 253 |
+
motion_modules.append(
|
| 254 |
+
get_motion_module(
|
| 255 |
+
in_channels=in_channels,
|
| 256 |
+
motion_module_type=motion_module_type,
|
| 257 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 258 |
+
)
|
| 259 |
+
if use_motion_module
|
| 260 |
+
else None
|
| 261 |
+
)
|
| 262 |
+
resnets.append(
|
| 263 |
+
ResnetBlock3D(
|
| 264 |
+
in_channels=in_channels,
|
| 265 |
+
out_channels=in_channels,
|
| 266 |
+
temb_channels=temb_channels,
|
| 267 |
+
eps=resnet_eps,
|
| 268 |
+
groups=resnet_groups,
|
| 269 |
+
dropout=dropout,
|
| 270 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 271 |
+
non_linearity=resnet_act_fn,
|
| 272 |
+
output_scale_factor=output_scale_factor,
|
| 273 |
+
pre_norm=resnet_pre_norm,
|
| 274 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
self.attentions = nn.ModuleList(attentions)
|
| 279 |
+
self.resnets = nn.ModuleList(resnets)
|
| 280 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 281 |
+
|
| 282 |
+
def forward(
|
| 283 |
+
self,
|
| 284 |
+
hidden_states,
|
| 285 |
+
temb=None,
|
| 286 |
+
encoder_hidden_states=None,
|
| 287 |
+
attention_mask=None,
|
| 288 |
+
self_attention_additional_feats=None,
|
| 289 |
+
mode=None,
|
| 290 |
+
):
|
| 291 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 292 |
+
for attn, resnet, motion_module in zip(
|
| 293 |
+
self.attentions, self.resnets[1:], self.motion_modules
|
| 294 |
+
):
|
| 295 |
+
hidden_states = attn(
|
| 296 |
+
hidden_states,
|
| 297 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 298 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 299 |
+
mode=mode,
|
| 300 |
+
).sample
|
| 301 |
+
hidden_states = (
|
| 302 |
+
motion_module(
|
| 303 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 304 |
+
)
|
| 305 |
+
if motion_module is not None
|
| 306 |
+
else hidden_states
|
| 307 |
+
)
|
| 308 |
+
hidden_states = resnet(hidden_states, temb)
|
| 309 |
+
|
| 310 |
+
return hidden_states
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
class CrossAttnDownBlock3D(nn.Module):
|
| 314 |
+
def __init__(
|
| 315 |
+
self,
|
| 316 |
+
in_channels: int,
|
| 317 |
+
out_channels: int,
|
| 318 |
+
temb_channels: int,
|
| 319 |
+
dropout: float = 0.0,
|
| 320 |
+
num_layers: int = 1,
|
| 321 |
+
resnet_eps: float = 1e-6,
|
| 322 |
+
resnet_time_scale_shift: str = "default",
|
| 323 |
+
resnet_act_fn: str = "swish",
|
| 324 |
+
resnet_groups: int = 32,
|
| 325 |
+
resnet_pre_norm: bool = True,
|
| 326 |
+
attn_num_head_channels=1,
|
| 327 |
+
cross_attention_dim=1280,
|
| 328 |
+
output_scale_factor=1.0,
|
| 329 |
+
downsample_padding=1,
|
| 330 |
+
add_downsample=True,
|
| 331 |
+
dual_cross_attention=False,
|
| 332 |
+
use_linear_projection=False,
|
| 333 |
+
only_cross_attention=False,
|
| 334 |
+
upcast_attention=False,
|
| 335 |
+
unet_use_cross_frame_attention=None,
|
| 336 |
+
unet_use_temporal_attention=None,
|
| 337 |
+
use_inflated_groupnorm=None,
|
| 338 |
+
use_motion_module=None,
|
| 339 |
+
motion_module_type=None,
|
| 340 |
+
motion_module_kwargs=None,
|
| 341 |
+
name=None,
|
| 342 |
+
):
|
| 343 |
+
super().__init__()
|
| 344 |
+
resnets = []
|
| 345 |
+
attentions = []
|
| 346 |
+
motion_modules = []
|
| 347 |
+
|
| 348 |
+
self.has_cross_attention = True
|
| 349 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 350 |
+
self.name=name
|
| 351 |
+
|
| 352 |
+
for i in range(num_layers):
|
| 353 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 354 |
+
resnets.append(
|
| 355 |
+
ResnetBlock3D(
|
| 356 |
+
in_channels=in_channels,
|
| 357 |
+
out_channels=out_channels,
|
| 358 |
+
temb_channels=temb_channels,
|
| 359 |
+
eps=resnet_eps,
|
| 360 |
+
groups=resnet_groups,
|
| 361 |
+
dropout=dropout,
|
| 362 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 363 |
+
non_linearity=resnet_act_fn,
|
| 364 |
+
output_scale_factor=output_scale_factor,
|
| 365 |
+
pre_norm=resnet_pre_norm,
|
| 366 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 367 |
+
)
|
| 368 |
+
)
|
| 369 |
+
if dual_cross_attention:
|
| 370 |
+
raise NotImplementedError
|
| 371 |
+
if self.name is not None:
|
| 372 |
+
attn_name = f"{self.name}_{i}_TransformerModel"
|
| 373 |
+
else:
|
| 374 |
+
attn_name = None
|
| 375 |
+
attentions.append(
|
| 376 |
+
Transformer3DModel(
|
| 377 |
+
attn_num_head_channels,
|
| 378 |
+
out_channels // attn_num_head_channels,
|
| 379 |
+
in_channels=out_channels,
|
| 380 |
+
num_layers=1,
|
| 381 |
+
cross_attention_dim=cross_attention_dim,
|
| 382 |
+
norm_num_groups=resnet_groups,
|
| 383 |
+
use_linear_projection=use_linear_projection,
|
| 384 |
+
only_cross_attention=only_cross_attention,
|
| 385 |
+
upcast_attention=upcast_attention,
|
| 386 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 387 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 388 |
+
name=attn_name,
|
| 389 |
+
)
|
| 390 |
+
)
|
| 391 |
+
motion_modules.append(
|
| 392 |
+
get_motion_module(
|
| 393 |
+
in_channels=out_channels,
|
| 394 |
+
motion_module_type=motion_module_type,
|
| 395 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 396 |
+
)
|
| 397 |
+
if use_motion_module
|
| 398 |
+
else None
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
self.attentions = nn.ModuleList(attentions)
|
| 402 |
+
self.resnets = nn.ModuleList(resnets)
|
| 403 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 404 |
+
|
| 405 |
+
if add_downsample:
|
| 406 |
+
self.downsamplers = nn.ModuleList(
|
| 407 |
+
[
|
| 408 |
+
Downsample3D(
|
| 409 |
+
out_channels,
|
| 410 |
+
use_conv=True,
|
| 411 |
+
out_channels=out_channels,
|
| 412 |
+
padding=downsample_padding,
|
| 413 |
+
name="op",
|
| 414 |
+
)
|
| 415 |
+
]
|
| 416 |
+
)
|
| 417 |
+
else:
|
| 418 |
+
self.downsamplers = None
|
| 419 |
+
|
| 420 |
+
self.gradient_checkpointing = False
|
| 421 |
+
|
| 422 |
+
def forward(
|
| 423 |
+
self,
|
| 424 |
+
hidden_states,
|
| 425 |
+
temb=None,
|
| 426 |
+
encoder_hidden_states=None,
|
| 427 |
+
attention_mask=None,
|
| 428 |
+
self_attention_additional_feats=None,
|
| 429 |
+
mode=None,
|
| 430 |
+
):
|
| 431 |
+
output_states = ()
|
| 432 |
+
|
| 433 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
| 434 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
| 435 |
+
):
|
| 436 |
+
# self.gradient_checkpointing = False
|
| 437 |
+
if self.training and self.gradient_checkpointing:
|
| 438 |
+
|
| 439 |
+
def create_custom_forward(module, return_dict=None):
|
| 440 |
+
def custom_forward(*inputs):
|
| 441 |
+
if return_dict is not None:
|
| 442 |
+
return module(*inputs, return_dict=return_dict)
|
| 443 |
+
else:
|
| 444 |
+
return module(*inputs)
|
| 445 |
+
|
| 446 |
+
return custom_forward
|
| 447 |
+
|
| 448 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 449 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 450 |
+
)
|
| 451 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 452 |
+
create_custom_forward(attn, return_dict=False),
|
| 453 |
+
hidden_states,
|
| 454 |
+
encoder_hidden_states,
|
| 455 |
+
self_attention_additional_feats,
|
| 456 |
+
mode,
|
| 457 |
+
)[0]
|
| 458 |
+
|
| 459 |
+
# add motion module
|
| 460 |
+
if motion_module is not None:
|
| 461 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 462 |
+
create_custom_forward(motion_module),
|
| 463 |
+
hidden_states.requires_grad_(),
|
| 464 |
+
temb,
|
| 465 |
+
encoder_hidden_states,
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
else:
|
| 469 |
+
hidden_states = resnet(hidden_states, temb)
|
| 470 |
+
hidden_states = attn(
|
| 471 |
+
hidden_states,
|
| 472 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 473 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 474 |
+
mode=mode,
|
| 475 |
+
).sample
|
| 476 |
+
|
| 477 |
+
# add motion module
|
| 478 |
+
hidden_states = (
|
| 479 |
+
motion_module(
|
| 480 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 481 |
+
)
|
| 482 |
+
if motion_module is not None
|
| 483 |
+
else hidden_states
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
output_states += (hidden_states,)
|
| 487 |
+
|
| 488 |
+
if self.downsamplers is not None:
|
| 489 |
+
for downsampler in self.downsamplers:
|
| 490 |
+
hidden_states = downsampler(hidden_states)
|
| 491 |
+
|
| 492 |
+
output_states += (hidden_states,)
|
| 493 |
+
|
| 494 |
+
return hidden_states, output_states
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
class DownBlock3D(nn.Module):
|
| 498 |
+
def __init__(
|
| 499 |
+
self,
|
| 500 |
+
in_channels: int,
|
| 501 |
+
out_channels: int,
|
| 502 |
+
temb_channels: int,
|
| 503 |
+
dropout: float = 0.0,
|
| 504 |
+
num_layers: int = 1,
|
| 505 |
+
resnet_eps: float = 1e-6,
|
| 506 |
+
resnet_time_scale_shift: str = "default",
|
| 507 |
+
resnet_act_fn: str = "swish",
|
| 508 |
+
resnet_groups: int = 32,
|
| 509 |
+
resnet_pre_norm: bool = True,
|
| 510 |
+
output_scale_factor=1.0,
|
| 511 |
+
add_downsample=True,
|
| 512 |
+
downsample_padding=1,
|
| 513 |
+
use_inflated_groupnorm=None,
|
| 514 |
+
use_motion_module=None,
|
| 515 |
+
motion_module_type=None,
|
| 516 |
+
motion_module_kwargs=None,
|
| 517 |
+
):
|
| 518 |
+
super().__init__()
|
| 519 |
+
resnets = []
|
| 520 |
+
motion_modules = []
|
| 521 |
+
|
| 522 |
+
# use_motion_module = False
|
| 523 |
+
for i in range(num_layers):
|
| 524 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 525 |
+
resnets.append(
|
| 526 |
+
ResnetBlock3D(
|
| 527 |
+
in_channels=in_channels,
|
| 528 |
+
out_channels=out_channels,
|
| 529 |
+
temb_channels=temb_channels,
|
| 530 |
+
eps=resnet_eps,
|
| 531 |
+
groups=resnet_groups,
|
| 532 |
+
dropout=dropout,
|
| 533 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 534 |
+
non_linearity=resnet_act_fn,
|
| 535 |
+
output_scale_factor=output_scale_factor,
|
| 536 |
+
pre_norm=resnet_pre_norm,
|
| 537 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 538 |
+
)
|
| 539 |
+
)
|
| 540 |
+
motion_modules.append(
|
| 541 |
+
get_motion_module(
|
| 542 |
+
in_channels=out_channels,
|
| 543 |
+
motion_module_type=motion_module_type,
|
| 544 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 545 |
+
)
|
| 546 |
+
if use_motion_module
|
| 547 |
+
else None
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
self.resnets = nn.ModuleList(resnets)
|
| 551 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 552 |
+
|
| 553 |
+
if add_downsample:
|
| 554 |
+
self.downsamplers = nn.ModuleList(
|
| 555 |
+
[
|
| 556 |
+
Downsample3D(
|
| 557 |
+
out_channels,
|
| 558 |
+
use_conv=True,
|
| 559 |
+
out_channels=out_channels,
|
| 560 |
+
padding=downsample_padding,
|
| 561 |
+
name="op",
|
| 562 |
+
)
|
| 563 |
+
]
|
| 564 |
+
)
|
| 565 |
+
else:
|
| 566 |
+
self.downsamplers = None
|
| 567 |
+
|
| 568 |
+
self.gradient_checkpointing = False
|
| 569 |
+
|
| 570 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
| 571 |
+
output_states = ()
|
| 572 |
+
|
| 573 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
| 574 |
+
# print(f"DownBlock3D {self.gradient_checkpointing = }")
|
| 575 |
+
if self.training and self.gradient_checkpointing:
|
| 576 |
+
|
| 577 |
+
def create_custom_forward(module):
|
| 578 |
+
def custom_forward(*inputs):
|
| 579 |
+
return module(*inputs)
|
| 580 |
+
|
| 581 |
+
return custom_forward
|
| 582 |
+
|
| 583 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 584 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 585 |
+
)
|
| 586 |
+
if motion_module is not None:
|
| 587 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 588 |
+
create_custom_forward(motion_module),
|
| 589 |
+
hidden_states.requires_grad_(),
|
| 590 |
+
temb,
|
| 591 |
+
encoder_hidden_states,
|
| 592 |
+
)
|
| 593 |
+
else:
|
| 594 |
+
hidden_states = resnet(hidden_states, temb)
|
| 595 |
+
|
| 596 |
+
# add motion module
|
| 597 |
+
hidden_states = (
|
| 598 |
+
motion_module(
|
| 599 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 600 |
+
)
|
| 601 |
+
if motion_module is not None
|
| 602 |
+
else hidden_states
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
output_states += (hidden_states,)
|
| 606 |
+
|
| 607 |
+
if self.downsamplers is not None:
|
| 608 |
+
for downsampler in self.downsamplers:
|
| 609 |
+
hidden_states = downsampler(hidden_states)
|
| 610 |
+
|
| 611 |
+
output_states += (hidden_states,)
|
| 612 |
+
|
| 613 |
+
return hidden_states, output_states
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
class CrossAttnUpBlock3D(nn.Module):
|
| 617 |
+
def __init__(
|
| 618 |
+
self,
|
| 619 |
+
in_channels: int,
|
| 620 |
+
out_channels: int,
|
| 621 |
+
prev_output_channel: int,
|
| 622 |
+
temb_channels: int,
|
| 623 |
+
dropout: float = 0.0,
|
| 624 |
+
num_layers: int = 1,
|
| 625 |
+
resnet_eps: float = 1e-6,
|
| 626 |
+
resnet_time_scale_shift: str = "default",
|
| 627 |
+
resnet_act_fn: str = "swish",
|
| 628 |
+
resnet_groups: int = 32,
|
| 629 |
+
resnet_pre_norm: bool = True,
|
| 630 |
+
attn_num_head_channels=1,
|
| 631 |
+
cross_attention_dim=1280,
|
| 632 |
+
output_scale_factor=1.0,
|
| 633 |
+
add_upsample=True,
|
| 634 |
+
dual_cross_attention=False,
|
| 635 |
+
use_linear_projection=False,
|
| 636 |
+
only_cross_attention=False,
|
| 637 |
+
upcast_attention=False,
|
| 638 |
+
unet_use_cross_frame_attention=None,
|
| 639 |
+
unet_use_temporal_attention=None,
|
| 640 |
+
use_motion_module=None,
|
| 641 |
+
use_inflated_groupnorm=None,
|
| 642 |
+
motion_module_type=None,
|
| 643 |
+
motion_module_kwargs=None,
|
| 644 |
+
name=None
|
| 645 |
+
):
|
| 646 |
+
super().__init__()
|
| 647 |
+
resnets = []
|
| 648 |
+
attentions = []
|
| 649 |
+
motion_modules = []
|
| 650 |
+
|
| 651 |
+
self.has_cross_attention = True
|
| 652 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 653 |
+
self.name = name
|
| 654 |
+
|
| 655 |
+
for i in range(num_layers):
|
| 656 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 657 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 658 |
+
|
| 659 |
+
resnets.append(
|
| 660 |
+
ResnetBlock3D(
|
| 661 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 662 |
+
out_channels=out_channels,
|
| 663 |
+
temb_channels=temb_channels,
|
| 664 |
+
eps=resnet_eps,
|
| 665 |
+
groups=resnet_groups,
|
| 666 |
+
dropout=dropout,
|
| 667 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 668 |
+
non_linearity=resnet_act_fn,
|
| 669 |
+
output_scale_factor=output_scale_factor,
|
| 670 |
+
pre_norm=resnet_pre_norm,
|
| 671 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 672 |
+
)
|
| 673 |
+
)
|
| 674 |
+
if dual_cross_attention:
|
| 675 |
+
raise NotImplementedError
|
| 676 |
+
if self.name is not None:
|
| 677 |
+
attn_name = f"{self.name}_{i}_TransformerModel"
|
| 678 |
+
else:
|
| 679 |
+
attn_name = None
|
| 680 |
+
attentions.append(
|
| 681 |
+
Transformer3DModel(
|
| 682 |
+
attn_num_head_channels,
|
| 683 |
+
out_channels // attn_num_head_channels,
|
| 684 |
+
in_channels=out_channels,
|
| 685 |
+
num_layers=1,
|
| 686 |
+
cross_attention_dim=cross_attention_dim,
|
| 687 |
+
norm_num_groups=resnet_groups,
|
| 688 |
+
use_linear_projection=use_linear_projection,
|
| 689 |
+
only_cross_attention=only_cross_attention,
|
| 690 |
+
upcast_attention=upcast_attention,
|
| 691 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 692 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 693 |
+
name=attn_name,
|
| 694 |
+
)
|
| 695 |
+
)
|
| 696 |
+
motion_modules.append(
|
| 697 |
+
get_motion_module(
|
| 698 |
+
in_channels=out_channels,
|
| 699 |
+
motion_module_type=motion_module_type,
|
| 700 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 701 |
+
)
|
| 702 |
+
if use_motion_module
|
| 703 |
+
else None
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
self.attentions = nn.ModuleList(attentions)
|
| 707 |
+
self.resnets = nn.ModuleList(resnets)
|
| 708 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 709 |
+
|
| 710 |
+
if add_upsample:
|
| 711 |
+
self.upsamplers = nn.ModuleList(
|
| 712 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 713 |
+
)
|
| 714 |
+
else:
|
| 715 |
+
self.upsamplers = None
|
| 716 |
+
|
| 717 |
+
self.gradient_checkpointing = False
|
| 718 |
+
|
| 719 |
+
def forward(
|
| 720 |
+
self,
|
| 721 |
+
hidden_states,
|
| 722 |
+
res_hidden_states_tuple,
|
| 723 |
+
temb=None,
|
| 724 |
+
encoder_hidden_states=None,
|
| 725 |
+
upsample_size=None,
|
| 726 |
+
attention_mask=None,
|
| 727 |
+
self_attention_additional_feats=None,
|
| 728 |
+
mode=None,
|
| 729 |
+
):
|
| 730 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
| 731 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
| 732 |
+
):
|
| 733 |
+
# pop res hidden states
|
| 734 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 735 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 736 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 737 |
+
|
| 738 |
+
if self.training and self.gradient_checkpointing:
|
| 739 |
+
|
| 740 |
+
def create_custom_forward(module, return_dict=None):
|
| 741 |
+
def custom_forward(*inputs):
|
| 742 |
+
if return_dict is not None:
|
| 743 |
+
return module(*inputs, return_dict=return_dict)
|
| 744 |
+
else:
|
| 745 |
+
return module(*inputs)
|
| 746 |
+
|
| 747 |
+
return custom_forward
|
| 748 |
+
|
| 749 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 750 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 751 |
+
)
|
| 752 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 753 |
+
create_custom_forward(attn, return_dict=False),
|
| 754 |
+
hidden_states,
|
| 755 |
+
encoder_hidden_states,
|
| 756 |
+
self_attention_additional_feats,
|
| 757 |
+
mode,
|
| 758 |
+
)[0]
|
| 759 |
+
if motion_module is not None:
|
| 760 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 761 |
+
create_custom_forward(motion_module),
|
| 762 |
+
hidden_states.requires_grad_(),
|
| 763 |
+
temb,
|
| 764 |
+
encoder_hidden_states,
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
else:
|
| 768 |
+
hidden_states = resnet(hidden_states, temb)
|
| 769 |
+
hidden_states = attn(
|
| 770 |
+
hidden_states,
|
| 771 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 772 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 773 |
+
mode=mode,
|
| 774 |
+
).sample
|
| 775 |
+
|
| 776 |
+
# add motion module
|
| 777 |
+
hidden_states = (
|
| 778 |
+
motion_module(
|
| 779 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 780 |
+
)
|
| 781 |
+
if motion_module is not None
|
| 782 |
+
else hidden_states
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
if self.upsamplers is not None:
|
| 786 |
+
for upsampler in self.upsamplers:
|
| 787 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 788 |
+
|
| 789 |
+
return hidden_states
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
class UpBlock3D(nn.Module):
|
| 793 |
+
def __init__(
|
| 794 |
+
self,
|
| 795 |
+
in_channels: int,
|
| 796 |
+
prev_output_channel: int,
|
| 797 |
+
out_channels: int,
|
| 798 |
+
temb_channels: int,
|
| 799 |
+
dropout: float = 0.0,
|
| 800 |
+
num_layers: int = 1,
|
| 801 |
+
resnet_eps: float = 1e-6,
|
| 802 |
+
resnet_time_scale_shift: str = "default",
|
| 803 |
+
resnet_act_fn: str = "swish",
|
| 804 |
+
resnet_groups: int = 32,
|
| 805 |
+
resnet_pre_norm: bool = True,
|
| 806 |
+
output_scale_factor=1.0,
|
| 807 |
+
add_upsample=True,
|
| 808 |
+
use_inflated_groupnorm=None,
|
| 809 |
+
use_motion_module=None,
|
| 810 |
+
motion_module_type=None,
|
| 811 |
+
motion_module_kwargs=None,
|
| 812 |
+
):
|
| 813 |
+
super().__init__()
|
| 814 |
+
resnets = []
|
| 815 |
+
motion_modules = []
|
| 816 |
+
|
| 817 |
+
# use_motion_module = False
|
| 818 |
+
for i in range(num_layers):
|
| 819 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 820 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 821 |
+
|
| 822 |
+
resnets.append(
|
| 823 |
+
ResnetBlock3D(
|
| 824 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 825 |
+
out_channels=out_channels,
|
| 826 |
+
temb_channels=temb_channels,
|
| 827 |
+
eps=resnet_eps,
|
| 828 |
+
groups=resnet_groups,
|
| 829 |
+
dropout=dropout,
|
| 830 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 831 |
+
non_linearity=resnet_act_fn,
|
| 832 |
+
output_scale_factor=output_scale_factor,
|
| 833 |
+
pre_norm=resnet_pre_norm,
|
| 834 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 835 |
+
)
|
| 836 |
+
)
|
| 837 |
+
motion_modules.append(
|
| 838 |
+
get_motion_module(
|
| 839 |
+
in_channels=out_channels,
|
| 840 |
+
motion_module_type=motion_module_type,
|
| 841 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 842 |
+
)
|
| 843 |
+
if use_motion_module
|
| 844 |
+
else None
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
self.resnets = nn.ModuleList(resnets)
|
| 848 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 849 |
+
|
| 850 |
+
if add_upsample:
|
| 851 |
+
self.upsamplers = nn.ModuleList(
|
| 852 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 853 |
+
)
|
| 854 |
+
else:
|
| 855 |
+
self.upsamplers = None
|
| 856 |
+
|
| 857 |
+
self.gradient_checkpointing = False
|
| 858 |
+
|
| 859 |
+
def forward(
|
| 860 |
+
self,
|
| 861 |
+
hidden_states,
|
| 862 |
+
res_hidden_states_tuple,
|
| 863 |
+
temb=None,
|
| 864 |
+
upsample_size=None,
|
| 865 |
+
encoder_hidden_states=None,
|
| 866 |
+
):
|
| 867 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
| 868 |
+
# pop res hidden states
|
| 869 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 870 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 871 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 872 |
+
|
| 873 |
+
# print(f"UpBlock3D {self.gradient_checkpointing = }")
|
| 874 |
+
if self.training and self.gradient_checkpointing:
|
| 875 |
+
|
| 876 |
+
def create_custom_forward(module):
|
| 877 |
+
def custom_forward(*inputs):
|
| 878 |
+
return module(*inputs)
|
| 879 |
+
|
| 880 |
+
return custom_forward
|
| 881 |
+
|
| 882 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 883 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 884 |
+
)
|
| 885 |
+
if motion_module is not None:
|
| 886 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 887 |
+
create_custom_forward(motion_module),
|
| 888 |
+
hidden_states.requires_grad_(),
|
| 889 |
+
temb,
|
| 890 |
+
encoder_hidden_states,
|
| 891 |
+
)
|
| 892 |
+
else:
|
| 893 |
+
hidden_states = resnet(hidden_states, temb)
|
| 894 |
+
hidden_states = (
|
| 895 |
+
motion_module(
|
| 896 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 897 |
+
)
|
| 898 |
+
if motion_module is not None
|
| 899 |
+
else hidden_states
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
if self.upsamplers is not None:
|
| 903 |
+
for upsampler in self.upsamplers:
|
| 904 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 905 |
+
|
| 906 |
+
return hidden_states
|
src/__init__.py
ADDED
|
File without changes
|
src/dataset/dance_image.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
from decord import VideoReader
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from torch.utils.data import Dataset
|
| 9 |
+
from transformers import CLIPImageProcessor
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class HumanDanceDataset(Dataset):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
img_size,
|
| 16 |
+
img_scale=(1.0, 1.0),
|
| 17 |
+
img_ratio=(0.9, 1.0),
|
| 18 |
+
drop_ratio=0.1,
|
| 19 |
+
data_meta_paths=["./data/fahsion_meta.json"],
|
| 20 |
+
sample_margin=30,
|
| 21 |
+
):
|
| 22 |
+
super().__init__()
|
| 23 |
+
|
| 24 |
+
self.img_size = img_size
|
| 25 |
+
self.img_scale = img_scale
|
| 26 |
+
self.img_ratio = img_ratio
|
| 27 |
+
self.sample_margin = sample_margin
|
| 28 |
+
|
| 29 |
+
# -----
|
| 30 |
+
# vid_meta format:
|
| 31 |
+
# [{'video_path': , 'kps_path': , 'other':},
|
| 32 |
+
# {'video_path': , 'kps_path': , 'other':}]
|
| 33 |
+
# -----
|
| 34 |
+
vid_meta = []
|
| 35 |
+
for data_meta_path in data_meta_paths:
|
| 36 |
+
vid_meta.extend(json.load(open(data_meta_path, "r")))
|
| 37 |
+
self.vid_meta = vid_meta
|
| 38 |
+
|
| 39 |
+
self.clip_image_processor = CLIPImageProcessor()
|
| 40 |
+
|
| 41 |
+
self.transform = transforms.Compose(
|
| 42 |
+
[
|
| 43 |
+
transforms.RandomResizedCrop(
|
| 44 |
+
self.img_size,
|
| 45 |
+
scale=self.img_scale,
|
| 46 |
+
ratio=self.img_ratio,
|
| 47 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
| 48 |
+
),
|
| 49 |
+
transforms.ToTensor(),
|
| 50 |
+
transforms.Normalize([0.5], [0.5]),
|
| 51 |
+
]
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
self.cond_transform = transforms.Compose(
|
| 55 |
+
[
|
| 56 |
+
transforms.RandomResizedCrop(
|
| 57 |
+
self.img_size,
|
| 58 |
+
scale=self.img_scale,
|
| 59 |
+
ratio=self.img_ratio,
|
| 60 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
| 61 |
+
),
|
| 62 |
+
transforms.ToTensor(),
|
| 63 |
+
]
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
self.drop_ratio = drop_ratio
|
| 67 |
+
|
| 68 |
+
def augmentation(self, image, transform, state=None):
|
| 69 |
+
if state is not None:
|
| 70 |
+
torch.set_rng_state(state)
|
| 71 |
+
return transform(image)
|
| 72 |
+
|
| 73 |
+
def __getitem__(self, index):
|
| 74 |
+
video_meta = self.vid_meta[index]
|
| 75 |
+
video_path = video_meta["video_path"]
|
| 76 |
+
kps_path = video_meta["kps_path"]
|
| 77 |
+
|
| 78 |
+
video_reader = VideoReader(video_path)
|
| 79 |
+
kps_reader = VideoReader(kps_path)
|
| 80 |
+
|
| 81 |
+
assert len(video_reader) == len(
|
| 82 |
+
kps_reader
|
| 83 |
+
), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"
|
| 84 |
+
|
| 85 |
+
video_length = len(video_reader)
|
| 86 |
+
|
| 87 |
+
margin = min(self.sample_margin, video_length)
|
| 88 |
+
|
| 89 |
+
ref_img_idx = random.randint(0, video_length - 1)
|
| 90 |
+
if ref_img_idx + margin < video_length:
|
| 91 |
+
tgt_img_idx = random.randint(ref_img_idx + margin, video_length - 1)
|
| 92 |
+
elif ref_img_idx - margin > 0:
|
| 93 |
+
tgt_img_idx = random.randint(0, ref_img_idx - margin)
|
| 94 |
+
else:
|
| 95 |
+
tgt_img_idx = random.randint(0, video_length - 1)
|
| 96 |
+
|
| 97 |
+
ref_img = video_reader[ref_img_idx]
|
| 98 |
+
ref_img_pil = Image.fromarray(ref_img.asnumpy())
|
| 99 |
+
tgt_img = video_reader[tgt_img_idx]
|
| 100 |
+
tgt_img_pil = Image.fromarray(tgt_img.asnumpy())
|
| 101 |
+
|
| 102 |
+
tgt_pose = kps_reader[tgt_img_idx]
|
| 103 |
+
tgt_pose_pil = Image.fromarray(tgt_pose.asnumpy())
|
| 104 |
+
|
| 105 |
+
state = torch.get_rng_state()
|
| 106 |
+
tgt_img = self.augmentation(tgt_img_pil, self.transform, state)
|
| 107 |
+
tgt_pose_img = self.augmentation(tgt_pose_pil, self.cond_transform, state)
|
| 108 |
+
ref_img_vae = self.augmentation(ref_img_pil, self.transform, state)
|
| 109 |
+
clip_image = self.clip_image_processor(
|
| 110 |
+
images=ref_img_pil, return_tensors="pt"
|
| 111 |
+
).pixel_values[0]
|
| 112 |
+
|
| 113 |
+
sample = dict(
|
| 114 |
+
video_dir=video_path,
|
| 115 |
+
img=tgt_img,
|
| 116 |
+
tgt_pose=tgt_pose_img,
|
| 117 |
+
ref_img=ref_img_vae,
|
| 118 |
+
clip_images=clip_image,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
return sample
|
| 122 |
+
|
| 123 |
+
def __len__(self):
|
| 124 |
+
return len(self.vid_meta)
|
src/dataset/dance_video.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
import torchvision.transforms as transforms
|
| 9 |
+
from decord import VideoReader
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from torch.utils.data import Dataset
|
| 12 |
+
from transformers import CLIPImageProcessor
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class HumanDanceVideoDataset(Dataset):
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
sample_rate,
|
| 19 |
+
n_sample_frames,
|
| 20 |
+
width,
|
| 21 |
+
height,
|
| 22 |
+
img_scale=(1.0, 1.0),
|
| 23 |
+
img_ratio=(0.9, 1.0),
|
| 24 |
+
drop_ratio=0.1,
|
| 25 |
+
data_meta_paths=["./data/fashion_meta.json"],
|
| 26 |
+
):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.sample_rate = sample_rate
|
| 29 |
+
self.n_sample_frames = n_sample_frames
|
| 30 |
+
self.width = width
|
| 31 |
+
self.height = height
|
| 32 |
+
self.img_scale = img_scale
|
| 33 |
+
self.img_ratio = img_ratio
|
| 34 |
+
|
| 35 |
+
vid_meta = []
|
| 36 |
+
for data_meta_path in data_meta_paths:
|
| 37 |
+
vid_meta.extend(json.load(open(data_meta_path, "r")))
|
| 38 |
+
self.vid_meta = vid_meta
|
| 39 |
+
|
| 40 |
+
self.clip_image_processor = CLIPImageProcessor()
|
| 41 |
+
|
| 42 |
+
self.pixel_transform = transforms.Compose(
|
| 43 |
+
[
|
| 44 |
+
transforms.RandomResizedCrop(
|
| 45 |
+
(height, width),
|
| 46 |
+
scale=self.img_scale,
|
| 47 |
+
ratio=self.img_ratio,
|
| 48 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
| 49 |
+
),
|
| 50 |
+
transforms.ToTensor(),
|
| 51 |
+
transforms.Normalize([0.5], [0.5]),
|
| 52 |
+
]
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
self.cond_transform = transforms.Compose(
|
| 56 |
+
[
|
| 57 |
+
transforms.RandomResizedCrop(
|
| 58 |
+
(height, width),
|
| 59 |
+
scale=self.img_scale,
|
| 60 |
+
ratio=self.img_ratio,
|
| 61 |
+
interpolation=transforms.InterpolationMode.BILINEAR,
|
| 62 |
+
),
|
| 63 |
+
transforms.ToTensor(),
|
| 64 |
+
]
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
self.drop_ratio = drop_ratio
|
| 68 |
+
|
| 69 |
+
def augmentation(self, images, transform, state=None):
|
| 70 |
+
if state is not None:
|
| 71 |
+
torch.set_rng_state(state)
|
| 72 |
+
if isinstance(images, List):
|
| 73 |
+
transformed_images = [transform(img) for img in images]
|
| 74 |
+
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
|
| 75 |
+
else:
|
| 76 |
+
ret_tensor = transform(images) # (c, h, w)
|
| 77 |
+
return ret_tensor
|
| 78 |
+
|
| 79 |
+
def __getitem__(self, index):
|
| 80 |
+
video_meta = self.vid_meta[index]
|
| 81 |
+
video_path = video_meta["video_path"]
|
| 82 |
+
kps_path = video_meta["kps_path"]
|
| 83 |
+
|
| 84 |
+
video_reader = VideoReader(video_path)
|
| 85 |
+
kps_reader = VideoReader(kps_path)
|
| 86 |
+
|
| 87 |
+
assert len(video_reader) == len(
|
| 88 |
+
kps_reader
|
| 89 |
+
), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"
|
| 90 |
+
|
| 91 |
+
video_length = len(video_reader)
|
| 92 |
+
|
| 93 |
+
clip_length = min(
|
| 94 |
+
video_length, (self.n_sample_frames - 1) * self.sample_rate + 1
|
| 95 |
+
)
|
| 96 |
+
start_idx = random.randint(0, video_length - clip_length)
|
| 97 |
+
batch_index = np.linspace(
|
| 98 |
+
start_idx, start_idx + clip_length - 1, self.n_sample_frames, dtype=int
|
| 99 |
+
).tolist()
|
| 100 |
+
|
| 101 |
+
# read frames and kps
|
| 102 |
+
vid_pil_image_list = []
|
| 103 |
+
pose_pil_image_list = []
|
| 104 |
+
for index in batch_index:
|
| 105 |
+
img = video_reader[index]
|
| 106 |
+
vid_pil_image_list.append(Image.fromarray(img.asnumpy()))
|
| 107 |
+
img = kps_reader[index]
|
| 108 |
+
pose_pil_image_list.append(Image.fromarray(img.asnumpy()))
|
| 109 |
+
|
| 110 |
+
ref_img_idx = random.randint(0, video_length - 1)
|
| 111 |
+
ref_img = Image.fromarray(video_reader[ref_img_idx].asnumpy())
|
| 112 |
+
|
| 113 |
+
# transform
|
| 114 |
+
state = torch.get_rng_state()
|
| 115 |
+
pixel_values_vid = self.augmentation(
|
| 116 |
+
vid_pil_image_list, self.pixel_transform, state
|
| 117 |
+
)
|
| 118 |
+
pixel_values_pose = self.augmentation(
|
| 119 |
+
pose_pil_image_list, self.cond_transform, state
|
| 120 |
+
)
|
| 121 |
+
pixel_values_ref_img = self.augmentation(ref_img, self.pixel_transform, state)
|
| 122 |
+
clip_ref_img = self.clip_image_processor(
|
| 123 |
+
images=ref_img, return_tensors="pt"
|
| 124 |
+
).pixel_values[0]
|
| 125 |
+
|
| 126 |
+
sample = dict(
|
| 127 |
+
video_dir=video_path,
|
| 128 |
+
pixel_values_vid=pixel_values_vid,
|
| 129 |
+
pixel_values_pose=pixel_values_pose,
|
| 130 |
+
pixel_values_ref_img=pixel_values_ref_img,
|
| 131 |
+
clip_ref_img=clip_ref_img,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
return sample
|
| 135 |
+
|
| 136 |
+
def __len__(self):
|
| 137 |
+
return len(self.vid_meta)
|
src/dwpose/__init__.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/IDEA-Research/DWPose
|
| 2 |
+
# Openpose
|
| 3 |
+
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
| 4 |
+
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
| 5 |
+
# 3rd Edited by ControlNet
|
| 6 |
+
# 4th Edited by ControlNet (added face and correct hands)
|
| 7 |
+
|
| 8 |
+
import copy
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
| 12 |
+
import cv2
|
| 13 |
+
import numpy as np
|
| 14 |
+
import torch
|
| 15 |
+
from controlnet_aux.util import HWC3, resize_image
|
| 16 |
+
from PIL import Image
|
| 17 |
+
|
| 18 |
+
from . import util
|
| 19 |
+
from .wholebody import Wholebody
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def draw_pose(pose, H, W):
|
| 23 |
+
bodies = pose["bodies"]
|
| 24 |
+
faces = pose["faces"]
|
| 25 |
+
hands = pose["hands"]
|
| 26 |
+
candidate = bodies["candidate"]
|
| 27 |
+
subset = bodies["subset"]
|
| 28 |
+
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
| 29 |
+
|
| 30 |
+
canvas = util.draw_bodypose(canvas, candidate, subset)
|
| 31 |
+
|
| 32 |
+
canvas = util.draw_handpose(canvas, hands)
|
| 33 |
+
|
| 34 |
+
canvas = util.draw_facepose(canvas, faces)
|
| 35 |
+
|
| 36 |
+
return canvas
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class DWposeDetector:
|
| 40 |
+
def __init__(self):
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
def to(self, device):
|
| 44 |
+
self.pose_estimation = Wholebody(device)
|
| 45 |
+
return self
|
| 46 |
+
|
| 47 |
+
def cal_height(self, input_image):
|
| 48 |
+
input_image = cv2.cvtColor(
|
| 49 |
+
np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
input_image = HWC3(input_image)
|
| 53 |
+
H, W, C = input_image.shape
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
candidate, subset = self.pose_estimation(input_image)
|
| 56 |
+
nums, keys, locs = candidate.shape
|
| 57 |
+
# candidate[..., 0] /= float(W)
|
| 58 |
+
# candidate[..., 1] /= float(H)
|
| 59 |
+
body = candidate
|
| 60 |
+
return body[0, ..., 1].min(), body[..., 1].max() - body[..., 1].min()
|
| 61 |
+
|
| 62 |
+
def __call__(
|
| 63 |
+
self,
|
| 64 |
+
input_image,
|
| 65 |
+
detect_resolution=512,
|
| 66 |
+
image_resolution=512,
|
| 67 |
+
output_type="pil",
|
| 68 |
+
**kwargs,
|
| 69 |
+
):
|
| 70 |
+
input_image = cv2.cvtColor(
|
| 71 |
+
np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
input_image = HWC3(input_image)
|
| 75 |
+
input_image = resize_image(input_image, detect_resolution)
|
| 76 |
+
H, W, C = input_image.shape
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
candidate, subset = self.pose_estimation(input_image)
|
| 79 |
+
nums, keys, locs = candidate.shape
|
| 80 |
+
candidate[..., 0] /= float(W)
|
| 81 |
+
candidate[..., 1] /= float(H)
|
| 82 |
+
score = subset[:, :18]
|
| 83 |
+
max_ind = np.mean(score, axis=-1).argmax(axis=0)
|
| 84 |
+
score = score[[max_ind]]
|
| 85 |
+
body = candidate[:, :18].copy()
|
| 86 |
+
body = body[[max_ind]]
|
| 87 |
+
nums = 1
|
| 88 |
+
body = body.reshape(nums * 18, locs)
|
| 89 |
+
body_score = copy.deepcopy(score)
|
| 90 |
+
for i in range(len(score)):
|
| 91 |
+
for j in range(len(score[i])):
|
| 92 |
+
if score[i][j] > 0.3:
|
| 93 |
+
score[i][j] = int(18 * i + j)
|
| 94 |
+
else:
|
| 95 |
+
score[i][j] = -1
|
| 96 |
+
|
| 97 |
+
un_visible = subset < 0.3
|
| 98 |
+
candidate[un_visible] = -1
|
| 99 |
+
|
| 100 |
+
foot = candidate[:, 18:24]
|
| 101 |
+
|
| 102 |
+
faces = candidate[[max_ind], 24:92]
|
| 103 |
+
|
| 104 |
+
hands = candidate[[max_ind], 92:113]
|
| 105 |
+
hands = np.vstack([hands, candidate[[max_ind], 113:]])
|
| 106 |
+
|
| 107 |
+
bodies = dict(candidate=body, subset=score)
|
| 108 |
+
pose = dict(bodies=bodies, hands=hands, faces=faces)
|
| 109 |
+
|
| 110 |
+
detected_map = draw_pose(pose, H, W)
|
| 111 |
+
detected_map = HWC3(detected_map)
|
| 112 |
+
|
| 113 |
+
img = resize_image(input_image, image_resolution)
|
| 114 |
+
H, W, C = img.shape
|
| 115 |
+
|
| 116 |
+
detected_map = cv2.resize(
|
| 117 |
+
detected_map, (W, H), interpolation=cv2.INTER_LINEAR
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
if output_type == "pil":
|
| 121 |
+
detected_map = Image.fromarray(detected_map)
|
| 122 |
+
|
| 123 |
+
return detected_map, body_score
|
src/dwpose/onnxdet.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/IDEA-Research/DWPose
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def nms(boxes, scores, nms_thr):
|
| 8 |
+
"""Single class NMS implemented in Numpy."""
|
| 9 |
+
x1 = boxes[:, 0]
|
| 10 |
+
y1 = boxes[:, 1]
|
| 11 |
+
x2 = boxes[:, 2]
|
| 12 |
+
y2 = boxes[:, 3]
|
| 13 |
+
|
| 14 |
+
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
| 15 |
+
order = scores.argsort()[::-1]
|
| 16 |
+
|
| 17 |
+
keep = []
|
| 18 |
+
while order.size > 0:
|
| 19 |
+
i = order[0]
|
| 20 |
+
keep.append(i)
|
| 21 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
| 22 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
| 23 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
| 24 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
| 25 |
+
|
| 26 |
+
w = np.maximum(0.0, xx2 - xx1 + 1)
|
| 27 |
+
h = np.maximum(0.0, yy2 - yy1 + 1)
|
| 28 |
+
inter = w * h
|
| 29 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
| 30 |
+
|
| 31 |
+
inds = np.where(ovr <= nms_thr)[0]
|
| 32 |
+
order = order[inds + 1]
|
| 33 |
+
|
| 34 |
+
return keep
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def multiclass_nms(boxes, scores, nms_thr, score_thr):
|
| 38 |
+
"""Multiclass NMS implemented in Numpy. Class-aware version."""
|
| 39 |
+
final_dets = []
|
| 40 |
+
num_classes = scores.shape[1]
|
| 41 |
+
for cls_ind in range(num_classes):
|
| 42 |
+
cls_scores = scores[:, cls_ind]
|
| 43 |
+
valid_score_mask = cls_scores > score_thr
|
| 44 |
+
if valid_score_mask.sum() == 0:
|
| 45 |
+
continue
|
| 46 |
+
else:
|
| 47 |
+
valid_scores = cls_scores[valid_score_mask]
|
| 48 |
+
valid_boxes = boxes[valid_score_mask]
|
| 49 |
+
keep = nms(valid_boxes, valid_scores, nms_thr)
|
| 50 |
+
if len(keep) > 0:
|
| 51 |
+
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
| 52 |
+
dets = np.concatenate(
|
| 53 |
+
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
| 54 |
+
)
|
| 55 |
+
final_dets.append(dets)
|
| 56 |
+
if len(final_dets) == 0:
|
| 57 |
+
return None
|
| 58 |
+
return np.concatenate(final_dets, 0)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def demo_postprocess(outputs, img_size, p6=False):
|
| 62 |
+
grids = []
|
| 63 |
+
expanded_strides = []
|
| 64 |
+
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
| 65 |
+
|
| 66 |
+
hsizes = [img_size[0] // stride for stride in strides]
|
| 67 |
+
wsizes = [img_size[1] // stride for stride in strides]
|
| 68 |
+
|
| 69 |
+
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
| 70 |
+
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
| 71 |
+
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
| 72 |
+
grids.append(grid)
|
| 73 |
+
shape = grid.shape[:2]
|
| 74 |
+
expanded_strides.append(np.full((*shape, 1), stride))
|
| 75 |
+
|
| 76 |
+
grids = np.concatenate(grids, 1)
|
| 77 |
+
expanded_strides = np.concatenate(expanded_strides, 1)
|
| 78 |
+
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
| 79 |
+
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
| 80 |
+
|
| 81 |
+
return outputs
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def preprocess(img, input_size, swap=(2, 0, 1)):
|
| 85 |
+
if len(img.shape) == 3:
|
| 86 |
+
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
| 87 |
+
else:
|
| 88 |
+
padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
| 89 |
+
|
| 90 |
+
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
| 91 |
+
resized_img = cv2.resize(
|
| 92 |
+
img,
|
| 93 |
+
(int(img.shape[1] * r), int(img.shape[0] * r)),
|
| 94 |
+
interpolation=cv2.INTER_LINEAR,
|
| 95 |
+
).astype(np.uint8)
|
| 96 |
+
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
| 97 |
+
|
| 98 |
+
padded_img = padded_img.transpose(swap)
|
| 99 |
+
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
| 100 |
+
return padded_img, r
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def inference_detector(session, oriImg):
|
| 104 |
+
input_shape = (640, 640)
|
| 105 |
+
img, ratio = preprocess(oriImg, input_shape)
|
| 106 |
+
|
| 107 |
+
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
| 108 |
+
output = session.run(None, ort_inputs)
|
| 109 |
+
predictions = demo_postprocess(output[0], input_shape)[0]
|
| 110 |
+
|
| 111 |
+
boxes = predictions[:, :4]
|
| 112 |
+
scores = predictions[:, 4:5] * predictions[:, 5:]
|
| 113 |
+
|
| 114 |
+
boxes_xyxy = np.ones_like(boxes)
|
| 115 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
|
| 116 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
|
| 117 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
|
| 118 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
|
| 119 |
+
boxes_xyxy /= ratio
|
| 120 |
+
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
| 121 |
+
if dets is not None:
|
| 122 |
+
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
| 123 |
+
isscore = final_scores > 0.3
|
| 124 |
+
iscat = final_cls_inds == 0
|
| 125 |
+
isbbox = [i and j for (i, j) in zip(isscore, iscat)]
|
| 126 |
+
final_boxes = final_boxes[isbbox]
|
| 127 |
+
else:
|
| 128 |
+
return []
|
| 129 |
+
|
| 130 |
+
return final_boxes
|
src/dwpose/onnxpose.py
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/IDEA-Research/DWPose
|
| 2 |
+
from typing import List, Tuple
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import onnxruntime as ort
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def preprocess(
|
| 10 |
+
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
|
| 11 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 12 |
+
"""Do preprocessing for RTMPose model inference.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
img (np.ndarray): Input image in shape.
|
| 16 |
+
input_size (tuple): Input image size in shape (w, h).
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
tuple:
|
| 20 |
+
- resized_img (np.ndarray): Preprocessed image.
|
| 21 |
+
- center (np.ndarray): Center of image.
|
| 22 |
+
- scale (np.ndarray): Scale of image.
|
| 23 |
+
"""
|
| 24 |
+
# get shape of image
|
| 25 |
+
img_shape = img.shape[:2]
|
| 26 |
+
out_img, out_center, out_scale = [], [], []
|
| 27 |
+
if len(out_bbox) == 0:
|
| 28 |
+
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
|
| 29 |
+
for i in range(len(out_bbox)):
|
| 30 |
+
x0 = out_bbox[i][0]
|
| 31 |
+
y0 = out_bbox[i][1]
|
| 32 |
+
x1 = out_bbox[i][2]
|
| 33 |
+
y1 = out_bbox[i][3]
|
| 34 |
+
bbox = np.array([x0, y0, x1, y1])
|
| 35 |
+
|
| 36 |
+
# get center and scale
|
| 37 |
+
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
|
| 38 |
+
|
| 39 |
+
# do affine transformation
|
| 40 |
+
resized_img, scale = top_down_affine(input_size, scale, center, img)
|
| 41 |
+
|
| 42 |
+
# normalize image
|
| 43 |
+
mean = np.array([123.675, 116.28, 103.53])
|
| 44 |
+
std = np.array([58.395, 57.12, 57.375])
|
| 45 |
+
resized_img = (resized_img - mean) / std
|
| 46 |
+
|
| 47 |
+
out_img.append(resized_img)
|
| 48 |
+
out_center.append(center)
|
| 49 |
+
out_scale.append(scale)
|
| 50 |
+
|
| 51 |
+
return out_img, out_center, out_scale
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
|
| 55 |
+
"""Inference RTMPose model.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
sess (ort.InferenceSession): ONNXRuntime session.
|
| 59 |
+
img (np.ndarray): Input image in shape.
|
| 60 |
+
|
| 61 |
+
Returns:
|
| 62 |
+
outputs (np.ndarray): Output of RTMPose model.
|
| 63 |
+
"""
|
| 64 |
+
all_out = []
|
| 65 |
+
# build input
|
| 66 |
+
for i in range(len(img)):
|
| 67 |
+
input = [img[i].transpose(2, 0, 1)]
|
| 68 |
+
|
| 69 |
+
# build output
|
| 70 |
+
sess_input = {sess.get_inputs()[0].name: input}
|
| 71 |
+
sess_output = []
|
| 72 |
+
for out in sess.get_outputs():
|
| 73 |
+
sess_output.append(out.name)
|
| 74 |
+
|
| 75 |
+
# run model
|
| 76 |
+
outputs = sess.run(sess_output, sess_input)
|
| 77 |
+
all_out.append(outputs)
|
| 78 |
+
|
| 79 |
+
return all_out
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def postprocess(
|
| 83 |
+
outputs: List[np.ndarray],
|
| 84 |
+
model_input_size: Tuple[int, int],
|
| 85 |
+
center: Tuple[int, int],
|
| 86 |
+
scale: Tuple[int, int],
|
| 87 |
+
simcc_split_ratio: float = 2.0,
|
| 88 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 89 |
+
"""Postprocess for RTMPose model output.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
outputs (np.ndarray): Output of RTMPose model.
|
| 93 |
+
model_input_size (tuple): RTMPose model Input image size.
|
| 94 |
+
center (tuple): Center of bbox in shape (x, y).
|
| 95 |
+
scale (tuple): Scale of bbox in shape (w, h).
|
| 96 |
+
simcc_split_ratio (float): Split ratio of simcc.
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
tuple:
|
| 100 |
+
- keypoints (np.ndarray): Rescaled keypoints.
|
| 101 |
+
- scores (np.ndarray): Model predict scores.
|
| 102 |
+
"""
|
| 103 |
+
all_key = []
|
| 104 |
+
all_score = []
|
| 105 |
+
for i in range(len(outputs)):
|
| 106 |
+
# use simcc to decode
|
| 107 |
+
simcc_x, simcc_y = outputs[i]
|
| 108 |
+
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
|
| 109 |
+
|
| 110 |
+
# rescale keypoints
|
| 111 |
+
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
|
| 112 |
+
all_key.append(keypoints[0])
|
| 113 |
+
all_score.append(scores[0])
|
| 114 |
+
|
| 115 |
+
return np.array(all_key), np.array(all_score)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def bbox_xyxy2cs(
|
| 119 |
+
bbox: np.ndarray, padding: float = 1.0
|
| 120 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 121 |
+
"""Transform the bbox format from (x,y,w,h) into (center, scale)
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
|
| 125 |
+
as (left, top, right, bottom)
|
| 126 |
+
padding (float): BBox padding factor that will be multilied to scale.
|
| 127 |
+
Default: 1.0
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
tuple: A tuple containing center and scale.
|
| 131 |
+
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
|
| 132 |
+
(n, 2)
|
| 133 |
+
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
|
| 134 |
+
(n, 2)
|
| 135 |
+
"""
|
| 136 |
+
# convert single bbox from (4, ) to (1, 4)
|
| 137 |
+
dim = bbox.ndim
|
| 138 |
+
if dim == 1:
|
| 139 |
+
bbox = bbox[None, :]
|
| 140 |
+
|
| 141 |
+
# get bbox center and scale
|
| 142 |
+
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
|
| 143 |
+
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
|
| 144 |
+
scale = np.hstack([x2 - x1, y2 - y1]) * padding
|
| 145 |
+
|
| 146 |
+
if dim == 1:
|
| 147 |
+
center = center[0]
|
| 148 |
+
scale = scale[0]
|
| 149 |
+
|
| 150 |
+
return center, scale
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray:
|
| 154 |
+
"""Extend the scale to match the given aspect ratio.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
scale (np.ndarray): The image scale (w, h) in shape (2, )
|
| 158 |
+
aspect_ratio (float): The ratio of ``w/h``
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
np.ndarray: The reshaped image scale in (2, )
|
| 162 |
+
"""
|
| 163 |
+
w, h = np.hsplit(bbox_scale, [1])
|
| 164 |
+
bbox_scale = np.where(
|
| 165 |
+
w > h * aspect_ratio,
|
| 166 |
+
np.hstack([w, w / aspect_ratio]),
|
| 167 |
+
np.hstack([h * aspect_ratio, h]),
|
| 168 |
+
)
|
| 169 |
+
return bbox_scale
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
|
| 173 |
+
"""Rotate a point by an angle.
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
|
| 177 |
+
angle_rad (float): rotation angle in radian
|
| 178 |
+
|
| 179 |
+
Returns:
|
| 180 |
+
np.ndarray: Rotated point in shape (2, )
|
| 181 |
+
"""
|
| 182 |
+
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
| 183 |
+
rot_mat = np.array([[cs, -sn], [sn, cs]])
|
| 184 |
+
return rot_mat @ pt
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
|
| 188 |
+
"""To calculate the affine matrix, three pairs of points are required. This
|
| 189 |
+
function is used to get the 3rd point, given 2D points a & b.
|
| 190 |
+
|
| 191 |
+
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
| 192 |
+
anticlockwise, using b as the rotation center.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
a (np.ndarray): The 1st point (x,y) in shape (2, )
|
| 196 |
+
b (np.ndarray): The 2nd point (x,y) in shape (2, )
|
| 197 |
+
|
| 198 |
+
Returns:
|
| 199 |
+
np.ndarray: The 3rd point.
|
| 200 |
+
"""
|
| 201 |
+
direction = a - b
|
| 202 |
+
c = b + np.r_[-direction[1], direction[0]]
|
| 203 |
+
return c
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def get_warp_matrix(
|
| 207 |
+
center: np.ndarray,
|
| 208 |
+
scale: np.ndarray,
|
| 209 |
+
rot: float,
|
| 210 |
+
output_size: Tuple[int, int],
|
| 211 |
+
shift: Tuple[float, float] = (0.0, 0.0),
|
| 212 |
+
inv: bool = False,
|
| 213 |
+
) -> np.ndarray:
|
| 214 |
+
"""Calculate the affine transformation matrix that can warp the bbox area
|
| 215 |
+
in the input image to the output size.
|
| 216 |
+
|
| 217 |
+
Args:
|
| 218 |
+
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
| 219 |
+
scale (np.ndarray[2, ]): Scale of the bounding box
|
| 220 |
+
wrt [width, height].
|
| 221 |
+
rot (float): Rotation angle (degree).
|
| 222 |
+
output_size (np.ndarray[2, ] | list(2,)): Size of the
|
| 223 |
+
destination heatmaps.
|
| 224 |
+
shift (0-100%): Shift translation ratio wrt the width/height.
|
| 225 |
+
Default (0., 0.).
|
| 226 |
+
inv (bool): Option to inverse the affine transform direction.
|
| 227 |
+
(inv=False: src->dst or inv=True: dst->src)
|
| 228 |
+
|
| 229 |
+
Returns:
|
| 230 |
+
np.ndarray: A 2x3 transformation matrix
|
| 231 |
+
"""
|
| 232 |
+
shift = np.array(shift)
|
| 233 |
+
src_w = scale[0]
|
| 234 |
+
dst_w = output_size[0]
|
| 235 |
+
dst_h = output_size[1]
|
| 236 |
+
|
| 237 |
+
# compute transformation matrix
|
| 238 |
+
rot_rad = np.deg2rad(rot)
|
| 239 |
+
src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad)
|
| 240 |
+
dst_dir = np.array([0.0, dst_w * -0.5])
|
| 241 |
+
|
| 242 |
+
# get four corners of the src rectangle in the original image
|
| 243 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
| 244 |
+
src[0, :] = center + scale * shift
|
| 245 |
+
src[1, :] = center + src_dir + scale * shift
|
| 246 |
+
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
| 247 |
+
|
| 248 |
+
# get four corners of the dst rectangle in the input image
|
| 249 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
| 250 |
+
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
| 251 |
+
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
| 252 |
+
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
| 253 |
+
|
| 254 |
+
if inv:
|
| 255 |
+
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
| 256 |
+
else:
|
| 257 |
+
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
| 258 |
+
|
| 259 |
+
return warp_mat
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def top_down_affine(
|
| 263 |
+
input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray
|
| 264 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 265 |
+
"""Get the bbox image as the model input by affine transform.
|
| 266 |
+
|
| 267 |
+
Args:
|
| 268 |
+
input_size (dict): The input size of the model.
|
| 269 |
+
bbox_scale (dict): The bbox scale of the img.
|
| 270 |
+
bbox_center (dict): The bbox center of the img.
|
| 271 |
+
img (np.ndarray): The original image.
|
| 272 |
+
|
| 273 |
+
Returns:
|
| 274 |
+
tuple: A tuple containing center and scale.
|
| 275 |
+
- np.ndarray[float32]: img after affine transform.
|
| 276 |
+
- np.ndarray[float32]: bbox scale after affine transform.
|
| 277 |
+
"""
|
| 278 |
+
w, h = input_size
|
| 279 |
+
warp_size = (int(w), int(h))
|
| 280 |
+
|
| 281 |
+
# reshape bbox to fixed aspect ratio
|
| 282 |
+
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
|
| 283 |
+
|
| 284 |
+
# get the affine matrix
|
| 285 |
+
center = bbox_center
|
| 286 |
+
scale = bbox_scale
|
| 287 |
+
rot = 0
|
| 288 |
+
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
|
| 289 |
+
|
| 290 |
+
# do affine transform
|
| 291 |
+
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
|
| 292 |
+
|
| 293 |
+
return img, bbox_scale
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def get_simcc_maximum(
|
| 297 |
+
simcc_x: np.ndarray, simcc_y: np.ndarray
|
| 298 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 299 |
+
"""Get maximum response location and value from simcc representations.
|
| 300 |
+
|
| 301 |
+
Note:
|
| 302 |
+
instance number: N
|
| 303 |
+
num_keypoints: K
|
| 304 |
+
heatmap height: H
|
| 305 |
+
heatmap width: W
|
| 306 |
+
|
| 307 |
+
Args:
|
| 308 |
+
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
|
| 309 |
+
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
tuple:
|
| 313 |
+
- locs (np.ndarray): locations of maximum heatmap responses in shape
|
| 314 |
+
(K, 2) or (N, K, 2)
|
| 315 |
+
- vals (np.ndarray): values of maximum heatmap responses in shape
|
| 316 |
+
(K,) or (N, K)
|
| 317 |
+
"""
|
| 318 |
+
N, K, Wx = simcc_x.shape
|
| 319 |
+
simcc_x = simcc_x.reshape(N * K, -1)
|
| 320 |
+
simcc_y = simcc_y.reshape(N * K, -1)
|
| 321 |
+
|
| 322 |
+
# get maximum value locations
|
| 323 |
+
x_locs = np.argmax(simcc_x, axis=1)
|
| 324 |
+
y_locs = np.argmax(simcc_y, axis=1)
|
| 325 |
+
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
|
| 326 |
+
max_val_x = np.amax(simcc_x, axis=1)
|
| 327 |
+
max_val_y = np.amax(simcc_y, axis=1)
|
| 328 |
+
|
| 329 |
+
# get maximum value across x and y axis
|
| 330 |
+
mask = max_val_x > max_val_y
|
| 331 |
+
max_val_x[mask] = max_val_y[mask]
|
| 332 |
+
vals = max_val_x
|
| 333 |
+
locs[vals <= 0.0] = -1
|
| 334 |
+
|
| 335 |
+
# reshape
|
| 336 |
+
locs = locs.reshape(N, K, 2)
|
| 337 |
+
vals = vals.reshape(N, K)
|
| 338 |
+
|
| 339 |
+
return locs, vals
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def decode(
|
| 343 |
+
simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio
|
| 344 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 345 |
+
"""Modulate simcc distribution with Gaussian.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
|
| 349 |
+
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
|
| 350 |
+
simcc_split_ratio (int): The split ratio of simcc.
|
| 351 |
+
|
| 352 |
+
Returns:
|
| 353 |
+
tuple: A tuple containing center and scale.
|
| 354 |
+
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
|
| 355 |
+
- np.ndarray[float32]: scores in shape (K,) or (n, K)
|
| 356 |
+
"""
|
| 357 |
+
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
|
| 358 |
+
keypoints /= simcc_split_ratio
|
| 359 |
+
|
| 360 |
+
return keypoints, scores
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def inference_pose(session, out_bbox, oriImg):
|
| 364 |
+
h, w = session.get_inputs()[0].shape[2:]
|
| 365 |
+
model_input_size = (w, h)
|
| 366 |
+
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
|
| 367 |
+
outputs = inference(session, resized_img)
|
| 368 |
+
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
|
| 369 |
+
|
| 370 |
+
return keypoints, scores
|
src/dwpose/util.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/IDEA-Research/DWPose
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib
|
| 5 |
+
import cv2
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
eps = 0.01
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def smart_resize(x, s):
|
| 12 |
+
Ht, Wt = s
|
| 13 |
+
if x.ndim == 2:
|
| 14 |
+
Ho, Wo = x.shape
|
| 15 |
+
Co = 1
|
| 16 |
+
else:
|
| 17 |
+
Ho, Wo, Co = x.shape
|
| 18 |
+
if Co == 3 or Co == 1:
|
| 19 |
+
k = float(Ht + Wt) / float(Ho + Wo)
|
| 20 |
+
return cv2.resize(
|
| 21 |
+
x,
|
| 22 |
+
(int(Wt), int(Ht)),
|
| 23 |
+
interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4,
|
| 24 |
+
)
|
| 25 |
+
else:
|
| 26 |
+
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def smart_resize_k(x, fx, fy):
|
| 30 |
+
if x.ndim == 2:
|
| 31 |
+
Ho, Wo = x.shape
|
| 32 |
+
Co = 1
|
| 33 |
+
else:
|
| 34 |
+
Ho, Wo, Co = x.shape
|
| 35 |
+
Ht, Wt = Ho * fy, Wo * fx
|
| 36 |
+
if Co == 3 or Co == 1:
|
| 37 |
+
k = float(Ht + Wt) / float(Ho + Wo)
|
| 38 |
+
return cv2.resize(
|
| 39 |
+
x,
|
| 40 |
+
(int(Wt), int(Ht)),
|
| 41 |
+
interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4,
|
| 42 |
+
)
|
| 43 |
+
else:
|
| 44 |
+
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def padRightDownCorner(img, stride, padValue):
|
| 48 |
+
h = img.shape[0]
|
| 49 |
+
w = img.shape[1]
|
| 50 |
+
|
| 51 |
+
pad = 4 * [None]
|
| 52 |
+
pad[0] = 0 # up
|
| 53 |
+
pad[1] = 0 # left
|
| 54 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
| 55 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
| 56 |
+
|
| 57 |
+
img_padded = img
|
| 58 |
+
pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1))
|
| 59 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
| 60 |
+
pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1))
|
| 61 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
| 62 |
+
pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1))
|
| 63 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
| 64 |
+
pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1))
|
| 65 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
| 66 |
+
|
| 67 |
+
return img_padded, pad
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def transfer(model, model_weights):
|
| 71 |
+
transfered_model_weights = {}
|
| 72 |
+
for weights_name in model.state_dict().keys():
|
| 73 |
+
transfered_model_weights[weights_name] = model_weights[
|
| 74 |
+
".".join(weights_name.split(".")[1:])
|
| 75 |
+
]
|
| 76 |
+
return transfered_model_weights
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def draw_bodypose(canvas, candidate, subset):
|
| 80 |
+
H, W, C = canvas.shape
|
| 81 |
+
candidate = np.array(candidate)
|
| 82 |
+
subset = np.array(subset)
|
| 83 |
+
|
| 84 |
+
stickwidth = 4
|
| 85 |
+
|
| 86 |
+
limbSeq = [
|
| 87 |
+
[2, 3],
|
| 88 |
+
[2, 6],
|
| 89 |
+
[3, 4],
|
| 90 |
+
[4, 5],
|
| 91 |
+
[6, 7],
|
| 92 |
+
[7, 8],
|
| 93 |
+
[2, 9],
|
| 94 |
+
[9, 10],
|
| 95 |
+
[10, 11],
|
| 96 |
+
[2, 12],
|
| 97 |
+
[12, 13],
|
| 98 |
+
[13, 14],
|
| 99 |
+
[2, 1],
|
| 100 |
+
[1, 15],
|
| 101 |
+
[15, 17],
|
| 102 |
+
[1, 16],
|
| 103 |
+
[16, 18],
|
| 104 |
+
[3, 17],
|
| 105 |
+
[6, 18],
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
colors = [
|
| 109 |
+
[255, 0, 0],
|
| 110 |
+
[255, 85, 0],
|
| 111 |
+
[255, 170, 0],
|
| 112 |
+
[255, 255, 0],
|
| 113 |
+
[170, 255, 0],
|
| 114 |
+
[85, 255, 0],
|
| 115 |
+
[0, 255, 0],
|
| 116 |
+
[0, 255, 85],
|
| 117 |
+
[0, 255, 170],
|
| 118 |
+
[0, 255, 255],
|
| 119 |
+
[0, 170, 255],
|
| 120 |
+
[0, 85, 255],
|
| 121 |
+
[0, 0, 255],
|
| 122 |
+
[85, 0, 255],
|
| 123 |
+
[170, 0, 255],
|
| 124 |
+
[255, 0, 255],
|
| 125 |
+
[255, 0, 170],
|
| 126 |
+
[255, 0, 85],
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
for i in range(17):
|
| 130 |
+
for n in range(len(subset)):
|
| 131 |
+
index = subset[n][np.array(limbSeq[i]) - 1]
|
| 132 |
+
if -1 in index:
|
| 133 |
+
continue
|
| 134 |
+
Y = candidate[index.astype(int), 0] * float(W)
|
| 135 |
+
X = candidate[index.astype(int), 1] * float(H)
|
| 136 |
+
mX = np.mean(X)
|
| 137 |
+
mY = np.mean(Y)
|
| 138 |
+
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
| 139 |
+
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
| 140 |
+
polygon = cv2.ellipse2Poly(
|
| 141 |
+
(int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
| 142 |
+
)
|
| 143 |
+
cv2.fillConvexPoly(canvas, polygon, colors[i])
|
| 144 |
+
|
| 145 |
+
canvas = (canvas * 0.6).astype(np.uint8)
|
| 146 |
+
|
| 147 |
+
for i in range(18):
|
| 148 |
+
for n in range(len(subset)):
|
| 149 |
+
index = int(subset[n][i])
|
| 150 |
+
if index == -1:
|
| 151 |
+
continue
|
| 152 |
+
x, y = candidate[index][0:2]
|
| 153 |
+
x = int(x * W)
|
| 154 |
+
y = int(y * H)
|
| 155 |
+
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
| 156 |
+
|
| 157 |
+
return canvas
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def draw_handpose(canvas, all_hand_peaks):
|
| 161 |
+
H, W, C = canvas.shape
|
| 162 |
+
|
| 163 |
+
edges = [
|
| 164 |
+
[0, 1],
|
| 165 |
+
[1, 2],
|
| 166 |
+
[2, 3],
|
| 167 |
+
[3, 4],
|
| 168 |
+
[0, 5],
|
| 169 |
+
[5, 6],
|
| 170 |
+
[6, 7],
|
| 171 |
+
[7, 8],
|
| 172 |
+
[0, 9],
|
| 173 |
+
[9, 10],
|
| 174 |
+
[10, 11],
|
| 175 |
+
[11, 12],
|
| 176 |
+
[0, 13],
|
| 177 |
+
[13, 14],
|
| 178 |
+
[14, 15],
|
| 179 |
+
[15, 16],
|
| 180 |
+
[0, 17],
|
| 181 |
+
[17, 18],
|
| 182 |
+
[18, 19],
|
| 183 |
+
[19, 20],
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
for peaks in all_hand_peaks:
|
| 187 |
+
peaks = np.array(peaks)
|
| 188 |
+
|
| 189 |
+
for ie, e in enumerate(edges):
|
| 190 |
+
x1, y1 = peaks[e[0]]
|
| 191 |
+
x2, y2 = peaks[e[1]]
|
| 192 |
+
x1 = int(x1 * W)
|
| 193 |
+
y1 = int(y1 * H)
|
| 194 |
+
x2 = int(x2 * W)
|
| 195 |
+
y2 = int(y2 * H)
|
| 196 |
+
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
|
| 197 |
+
cv2.line(
|
| 198 |
+
canvas,
|
| 199 |
+
(x1, y1),
|
| 200 |
+
(x2, y2),
|
| 201 |
+
matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0])
|
| 202 |
+
* 255,
|
| 203 |
+
thickness=2,
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
for i, keyponit in enumerate(peaks):
|
| 207 |
+
x, y = keyponit
|
| 208 |
+
x = int(x * W)
|
| 209 |
+
y = int(y * H)
|
| 210 |
+
if x > eps and y > eps:
|
| 211 |
+
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
| 212 |
+
return canvas
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def draw_facepose(canvas, all_lmks):
|
| 216 |
+
H, W, C = canvas.shape
|
| 217 |
+
for lmks in all_lmks:
|
| 218 |
+
lmks = np.array(lmks)
|
| 219 |
+
for lmk in lmks:
|
| 220 |
+
x, y = lmk
|
| 221 |
+
x = int(x * W)
|
| 222 |
+
y = int(y * H)
|
| 223 |
+
if x > eps and y > eps:
|
| 224 |
+
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
|
| 225 |
+
return canvas
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# detect hand according to body pose keypoints
|
| 229 |
+
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
| 230 |
+
def handDetect(candidate, subset, oriImg):
|
| 231 |
+
# right hand: wrist 4, elbow 3, shoulder 2
|
| 232 |
+
# left hand: wrist 7, elbow 6, shoulder 5
|
| 233 |
+
ratioWristElbow = 0.33
|
| 234 |
+
detect_result = []
|
| 235 |
+
image_height, image_width = oriImg.shape[0:2]
|
| 236 |
+
for person in subset.astype(int):
|
| 237 |
+
# if any of three not detected
|
| 238 |
+
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
| 239 |
+
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
| 240 |
+
if not (has_left or has_right):
|
| 241 |
+
continue
|
| 242 |
+
hands = []
|
| 243 |
+
# left hand
|
| 244 |
+
if has_left:
|
| 245 |
+
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
| 246 |
+
x1, y1 = candidate[left_shoulder_index][:2]
|
| 247 |
+
x2, y2 = candidate[left_elbow_index][:2]
|
| 248 |
+
x3, y3 = candidate[left_wrist_index][:2]
|
| 249 |
+
hands.append([x1, y1, x2, y2, x3, y3, True])
|
| 250 |
+
# right hand
|
| 251 |
+
if has_right:
|
| 252 |
+
right_shoulder_index, right_elbow_index, right_wrist_index = person[
|
| 253 |
+
[2, 3, 4]
|
| 254 |
+
]
|
| 255 |
+
x1, y1 = candidate[right_shoulder_index][:2]
|
| 256 |
+
x2, y2 = candidate[right_elbow_index][:2]
|
| 257 |
+
x3, y3 = candidate[right_wrist_index][:2]
|
| 258 |
+
hands.append([x1, y1, x2, y2, x3, y3, False])
|
| 259 |
+
|
| 260 |
+
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
| 261 |
+
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
| 262 |
+
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
| 263 |
+
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
| 264 |
+
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
| 265 |
+
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
| 266 |
+
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
| 267 |
+
x = x3 + ratioWristElbow * (x3 - x2)
|
| 268 |
+
y = y3 + ratioWristElbow * (y3 - y2)
|
| 269 |
+
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
| 270 |
+
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
| 271 |
+
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
| 272 |
+
# x-y refers to the center --> offset to topLeft point
|
| 273 |
+
# handRectangle.x -= handRectangle.width / 2.f;
|
| 274 |
+
# handRectangle.y -= handRectangle.height / 2.f;
|
| 275 |
+
x -= width / 2
|
| 276 |
+
y -= width / 2 # width = height
|
| 277 |
+
# overflow the image
|
| 278 |
+
if x < 0:
|
| 279 |
+
x = 0
|
| 280 |
+
if y < 0:
|
| 281 |
+
y = 0
|
| 282 |
+
width1 = width
|
| 283 |
+
width2 = width
|
| 284 |
+
if x + width > image_width:
|
| 285 |
+
width1 = image_width - x
|
| 286 |
+
if y + width > image_height:
|
| 287 |
+
width2 = image_height - y
|
| 288 |
+
width = min(width1, width2)
|
| 289 |
+
# the max hand box value is 20 pixels
|
| 290 |
+
if width >= 20:
|
| 291 |
+
detect_result.append([int(x), int(y), int(width), is_left])
|
| 292 |
+
|
| 293 |
+
"""
|
| 294 |
+
return value: [[x, y, w, True if left hand else False]].
|
| 295 |
+
width=height since the network require squared input.
|
| 296 |
+
x, y is the coordinate of top left
|
| 297 |
+
"""
|
| 298 |
+
return detect_result
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# Written by Lvmin
|
| 302 |
+
def faceDetect(candidate, subset, oriImg):
|
| 303 |
+
# left right eye ear 14 15 16 17
|
| 304 |
+
detect_result = []
|
| 305 |
+
image_height, image_width = oriImg.shape[0:2]
|
| 306 |
+
for person in subset.astype(int):
|
| 307 |
+
has_head = person[0] > -1
|
| 308 |
+
if not has_head:
|
| 309 |
+
continue
|
| 310 |
+
|
| 311 |
+
has_left_eye = person[14] > -1
|
| 312 |
+
has_right_eye = person[15] > -1
|
| 313 |
+
has_left_ear = person[16] > -1
|
| 314 |
+
has_right_ear = person[17] > -1
|
| 315 |
+
|
| 316 |
+
if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
|
| 317 |
+
continue
|
| 318 |
+
|
| 319 |
+
head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
|
| 320 |
+
|
| 321 |
+
width = 0.0
|
| 322 |
+
x0, y0 = candidate[head][:2]
|
| 323 |
+
|
| 324 |
+
if has_left_eye:
|
| 325 |
+
x1, y1 = candidate[left_eye][:2]
|
| 326 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
| 327 |
+
width = max(width, d * 3.0)
|
| 328 |
+
|
| 329 |
+
if has_right_eye:
|
| 330 |
+
x1, y1 = candidate[right_eye][:2]
|
| 331 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
| 332 |
+
width = max(width, d * 3.0)
|
| 333 |
+
|
| 334 |
+
if has_left_ear:
|
| 335 |
+
x1, y1 = candidate[left_ear][:2]
|
| 336 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
| 337 |
+
width = max(width, d * 1.5)
|
| 338 |
+
|
| 339 |
+
if has_right_ear:
|
| 340 |
+
x1, y1 = candidate[right_ear][:2]
|
| 341 |
+
d = max(abs(x0 - x1), abs(y0 - y1))
|
| 342 |
+
width = max(width, d * 1.5)
|
| 343 |
+
|
| 344 |
+
x, y = x0, y0
|
| 345 |
+
|
| 346 |
+
x -= width
|
| 347 |
+
y -= width
|
| 348 |
+
|
| 349 |
+
if x < 0:
|
| 350 |
+
x = 0
|
| 351 |
+
|
| 352 |
+
if y < 0:
|
| 353 |
+
y = 0
|
| 354 |
+
|
| 355 |
+
width1 = width * 2
|
| 356 |
+
width2 = width * 2
|
| 357 |
+
|
| 358 |
+
if x + width > image_width:
|
| 359 |
+
width1 = image_width - x
|
| 360 |
+
|
| 361 |
+
if y + width > image_height:
|
| 362 |
+
width2 = image_height - y
|
| 363 |
+
|
| 364 |
+
width = min(width1, width2)
|
| 365 |
+
|
| 366 |
+
if width >= 20:
|
| 367 |
+
detect_result.append([int(x), int(y), int(width)])
|
| 368 |
+
|
| 369 |
+
return detect_result
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
# get max index of 2d array
|
| 373 |
+
def npmax(array):
|
| 374 |
+
arrayindex = array.argmax(1)
|
| 375 |
+
arrayvalue = array.max(1)
|
| 376 |
+
i = arrayvalue.argmax()
|
| 377 |
+
j = arrayindex[i]
|
| 378 |
+
return i, j
|
src/dwpose/wholebody.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/IDEA-Research/DWPose
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import onnxruntime as ort
|
| 7 |
+
|
| 8 |
+
from .onnxdet import inference_detector
|
| 9 |
+
from .onnxpose import inference_pose
|
| 10 |
+
|
| 11 |
+
ModelDataPathPrefix = Path("./pretrained_weights")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Wholebody:
|
| 15 |
+
def __init__(self, device="cuda:0"):
|
| 16 |
+
providers = (
|
| 17 |
+
["CPUExecutionProvider"] if device == "cpu" else ["CUDAExecutionProvider"]
|
| 18 |
+
)
|
| 19 |
+
onnx_det = ModelDataPathPrefix.joinpath("DWPose/yolox_l.onnx")
|
| 20 |
+
onnx_pose = ModelDataPathPrefix.joinpath("DWPose/dw-ll_ucoco_384.onnx")
|
| 21 |
+
|
| 22 |
+
self.session_det = ort.InferenceSession(
|
| 23 |
+
path_or_bytes=onnx_det, providers=providers
|
| 24 |
+
)
|
| 25 |
+
self.session_pose = ort.InferenceSession(
|
| 26 |
+
path_or_bytes=onnx_pose, providers=providers
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
def __call__(self, oriImg):
|
| 30 |
+
det_result = inference_detector(self.session_det, oriImg)
|
| 31 |
+
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
|
| 32 |
+
|
| 33 |
+
keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1)
|
| 34 |
+
# compute neck joint
|
| 35 |
+
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
| 36 |
+
# neck score when visualizing pred
|
| 37 |
+
neck[:, 2:4] = np.logical_and(
|
| 38 |
+
keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3
|
| 39 |
+
).astype(int)
|
| 40 |
+
new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1)
|
| 41 |
+
mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3]
|
| 42 |
+
openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17]
|
| 43 |
+
new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx]
|
| 44 |
+
keypoints_info = new_keypoints_info
|
| 45 |
+
|
| 46 |
+
keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2]
|
| 47 |
+
|
| 48 |
+
return keypoints, scores
|
src/models/attention.py
ADDED
|
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
| 2 |
+
|
| 3 |
+
from typing import Any, Dict, Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
|
| 7 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from torch import nn
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class BasicTransformerBlock(nn.Module):
|
| 13 |
+
r"""
|
| 14 |
+
A basic Transformer block.
|
| 15 |
+
|
| 16 |
+
Parameters:
|
| 17 |
+
dim (`int`): The number of channels in the input and output.
|
| 18 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 19 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 20 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 21 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 22 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 23 |
+
num_embeds_ada_norm (:
|
| 24 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
| 25 |
+
attention_bias (:
|
| 26 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
| 27 |
+
only_cross_attention (`bool`, *optional*):
|
| 28 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
| 29 |
+
double_self_attention (`bool`, *optional*):
|
| 30 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
| 31 |
+
upcast_attention (`bool`, *optional*):
|
| 32 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
| 33 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
| 34 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 35 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
| 36 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
| 37 |
+
final_dropout (`bool` *optional*, defaults to False):
|
| 38 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 39 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
| 40 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
| 41 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
| 42 |
+
The type of positional embeddings to apply to.
|
| 43 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
| 44 |
+
The maximum number of positional embeddings to apply.
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
dim: int,
|
| 50 |
+
num_attention_heads: int,
|
| 51 |
+
attention_head_dim: int,
|
| 52 |
+
dropout=0.0,
|
| 53 |
+
cross_attention_dim: Optional[int] = None,
|
| 54 |
+
activation_fn: str = "geglu",
|
| 55 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 56 |
+
attention_bias: bool = False,
|
| 57 |
+
only_cross_attention: bool = False,
|
| 58 |
+
double_self_attention: bool = False,
|
| 59 |
+
upcast_attention: bool = False,
|
| 60 |
+
norm_elementwise_affine: bool = True,
|
| 61 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
| 62 |
+
norm_eps: float = 1e-5,
|
| 63 |
+
final_dropout: bool = False,
|
| 64 |
+
attention_type: str = "default",
|
| 65 |
+
positional_embeddings: Optional[str] = None,
|
| 66 |
+
num_positional_embeddings: Optional[int] = None,
|
| 67 |
+
):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.only_cross_attention = only_cross_attention
|
| 70 |
+
|
| 71 |
+
self.use_ada_layer_norm_zero = (
|
| 72 |
+
num_embeds_ada_norm is not None
|
| 73 |
+
) and norm_type == "ada_norm_zero"
|
| 74 |
+
self.use_ada_layer_norm = (
|
| 75 |
+
num_embeds_ada_norm is not None
|
| 76 |
+
) and norm_type == "ada_norm"
|
| 77 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
| 78 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
| 79 |
+
|
| 80 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
| 81 |
+
raise ValueError(
|
| 82 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
| 83 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
| 87 |
+
raise ValueError(
|
| 88 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if positional_embeddings == "sinusoidal":
|
| 92 |
+
self.pos_embed = SinusoidalPositionalEmbedding(
|
| 93 |
+
dim, max_seq_length=num_positional_embeddings
|
| 94 |
+
)
|
| 95 |
+
else:
|
| 96 |
+
self.pos_embed = None
|
| 97 |
+
|
| 98 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 99 |
+
# 1. Self-Attn
|
| 100 |
+
if self.use_ada_layer_norm:
|
| 101 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 102 |
+
elif self.use_ada_layer_norm_zero:
|
| 103 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
| 104 |
+
else:
|
| 105 |
+
self.norm1 = nn.LayerNorm(
|
| 106 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
self.attn1 = Attention(
|
| 110 |
+
query_dim=dim,
|
| 111 |
+
heads=num_attention_heads,
|
| 112 |
+
dim_head=attention_head_dim,
|
| 113 |
+
dropout=dropout,
|
| 114 |
+
bias=attention_bias,
|
| 115 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 116 |
+
upcast_attention=upcast_attention,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# 2. Cross-Attn
|
| 120 |
+
if cross_attention_dim is not None or double_self_attention:
|
| 121 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
| 122 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
| 123 |
+
# the second cross attention block.
|
| 124 |
+
self.norm2 = (
|
| 125 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 126 |
+
if self.use_ada_layer_norm
|
| 127 |
+
else nn.LayerNorm(
|
| 128 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
| 129 |
+
)
|
| 130 |
+
)
|
| 131 |
+
self.attn2 = Attention(
|
| 132 |
+
query_dim=dim,
|
| 133 |
+
cross_attention_dim=cross_attention_dim
|
| 134 |
+
if not double_self_attention
|
| 135 |
+
else None,
|
| 136 |
+
heads=num_attention_heads,
|
| 137 |
+
dim_head=attention_head_dim,
|
| 138 |
+
dropout=dropout,
|
| 139 |
+
bias=attention_bias,
|
| 140 |
+
upcast_attention=upcast_attention,
|
| 141 |
+
) # is self-attn if encoder_hidden_states is none
|
| 142 |
+
else:
|
| 143 |
+
self.norm2 = None
|
| 144 |
+
self.attn2 = None
|
| 145 |
+
|
| 146 |
+
# 3. Feed-forward
|
| 147 |
+
if not self.use_ada_layer_norm_single:
|
| 148 |
+
self.norm3 = nn.LayerNorm(
|
| 149 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
self.ff = FeedForward(
|
| 153 |
+
dim,
|
| 154 |
+
dropout=dropout,
|
| 155 |
+
activation_fn=activation_fn,
|
| 156 |
+
final_dropout=final_dropout,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# 4. Fuser
|
| 160 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
| 161 |
+
self.fuser = GatedSelfAttentionDense(
|
| 162 |
+
dim, cross_attention_dim, num_attention_heads, attention_head_dim
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# 5. Scale-shift for PixArt-Alpha.
|
| 166 |
+
if self.use_ada_layer_norm_single:
|
| 167 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
| 168 |
+
|
| 169 |
+
# let chunk size default to None
|
| 170 |
+
self._chunk_size = None
|
| 171 |
+
self._chunk_dim = 0
|
| 172 |
+
|
| 173 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
| 174 |
+
# Sets chunk feed-forward
|
| 175 |
+
self._chunk_size = chunk_size
|
| 176 |
+
self._chunk_dim = dim
|
| 177 |
+
|
| 178 |
+
def forward(
|
| 179 |
+
self,
|
| 180 |
+
hidden_states: torch.FloatTensor,
|
| 181 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 182 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 183 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 184 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 185 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 186 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 187 |
+
) -> torch.FloatTensor:
|
| 188 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 189 |
+
# 0. Self-Attention
|
| 190 |
+
batch_size = hidden_states.shape[0]
|
| 191 |
+
|
| 192 |
+
if self.use_ada_layer_norm:
|
| 193 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 194 |
+
elif self.use_ada_layer_norm_zero:
|
| 195 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 196 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 197 |
+
)
|
| 198 |
+
elif self.use_layer_norm:
|
| 199 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 200 |
+
elif self.use_ada_layer_norm_single:
|
| 201 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 202 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
| 203 |
+
).chunk(6, dim=1)
|
| 204 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 205 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 206 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
| 207 |
+
else:
|
| 208 |
+
raise ValueError("Incorrect norm used")
|
| 209 |
+
|
| 210 |
+
if self.pos_embed is not None:
|
| 211 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 212 |
+
|
| 213 |
+
# 1. Retrieve lora scale.
|
| 214 |
+
lora_scale = (
|
| 215 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 216 |
+
if cross_attention_kwargs is not None
|
| 217 |
+
else 1.0
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# 2. Prepare GLIGEN inputs
|
| 221 |
+
cross_attention_kwargs = (
|
| 222 |
+
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 223 |
+
)
|
| 224 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
| 225 |
+
|
| 226 |
+
attn_output = self.attn1(
|
| 227 |
+
norm_hidden_states,
|
| 228 |
+
encoder_hidden_states=encoder_hidden_states
|
| 229 |
+
if self.only_cross_attention
|
| 230 |
+
else None,
|
| 231 |
+
attention_mask=attention_mask,
|
| 232 |
+
**cross_attention_kwargs,
|
| 233 |
+
)
|
| 234 |
+
if self.use_ada_layer_norm_zero:
|
| 235 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 236 |
+
elif self.use_ada_layer_norm_single:
|
| 237 |
+
attn_output = gate_msa * attn_output
|
| 238 |
+
|
| 239 |
+
hidden_states = attn_output + hidden_states
|
| 240 |
+
if hidden_states.ndim == 4:
|
| 241 |
+
hidden_states = hidden_states.squeeze(1)
|
| 242 |
+
|
| 243 |
+
# 2.5 GLIGEN Control
|
| 244 |
+
if gligen_kwargs is not None:
|
| 245 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
| 246 |
+
|
| 247 |
+
# 3. Cross-Attention
|
| 248 |
+
if self.attn2 is not None:
|
| 249 |
+
if self.use_ada_layer_norm:
|
| 250 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
| 251 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
| 252 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 253 |
+
elif self.use_ada_layer_norm_single:
|
| 254 |
+
# For PixArt norm2 isn't applied here:
|
| 255 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
| 256 |
+
norm_hidden_states = hidden_states
|
| 257 |
+
else:
|
| 258 |
+
raise ValueError("Incorrect norm")
|
| 259 |
+
|
| 260 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
| 261 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 262 |
+
|
| 263 |
+
attn_output = self.attn2(
|
| 264 |
+
norm_hidden_states,
|
| 265 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 266 |
+
attention_mask=encoder_attention_mask,
|
| 267 |
+
**cross_attention_kwargs,
|
| 268 |
+
)
|
| 269 |
+
hidden_states = attn_output + hidden_states
|
| 270 |
+
|
| 271 |
+
# 4. Feed-forward
|
| 272 |
+
if not self.use_ada_layer_norm_single:
|
| 273 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 274 |
+
|
| 275 |
+
if self.use_ada_layer_norm_zero:
|
| 276 |
+
norm_hidden_states = (
|
| 277 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
if self.use_ada_layer_norm_single:
|
| 281 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 282 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 283 |
+
|
| 284 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
| 285 |
+
|
| 286 |
+
if self.use_ada_layer_norm_zero:
|
| 287 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 288 |
+
elif self.use_ada_layer_norm_single:
|
| 289 |
+
ff_output = gate_mlp * ff_output
|
| 290 |
+
|
| 291 |
+
hidden_states = ff_output + hidden_states
|
| 292 |
+
if hidden_states.ndim == 4:
|
| 293 |
+
hidden_states = hidden_states.squeeze(1)
|
| 294 |
+
|
| 295 |
+
return hidden_states
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
| 299 |
+
def __init__(
|
| 300 |
+
self,
|
| 301 |
+
dim: int,
|
| 302 |
+
num_attention_heads: int,
|
| 303 |
+
attention_head_dim: int,
|
| 304 |
+
dropout=0.0,
|
| 305 |
+
cross_attention_dim: Optional[int] = None,
|
| 306 |
+
activation_fn: str = "geglu",
|
| 307 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 308 |
+
attention_bias: bool = False,
|
| 309 |
+
only_cross_attention: bool = False,
|
| 310 |
+
upcast_attention: bool = False,
|
| 311 |
+
unet_use_cross_frame_attention=None,
|
| 312 |
+
unet_use_temporal_attention=None,
|
| 313 |
+
name=None,
|
| 314 |
+
):
|
| 315 |
+
super().__init__()
|
| 316 |
+
self.only_cross_attention = only_cross_attention
|
| 317 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
| 318 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
| 319 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
| 320 |
+
self.name=name
|
| 321 |
+
|
| 322 |
+
# SC-Attn
|
| 323 |
+
self.attn1 = Attention(
|
| 324 |
+
query_dim=dim,
|
| 325 |
+
heads=num_attention_heads,
|
| 326 |
+
dim_head=attention_head_dim,
|
| 327 |
+
dropout=dropout,
|
| 328 |
+
bias=attention_bias,
|
| 329 |
+
upcast_attention=upcast_attention,
|
| 330 |
+
)
|
| 331 |
+
self.norm1 = (
|
| 332 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 333 |
+
if self.use_ada_layer_norm
|
| 334 |
+
else nn.LayerNorm(dim)
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Cross-Attn
|
| 338 |
+
if cross_attention_dim is not None:
|
| 339 |
+
self.attn2 = Attention(
|
| 340 |
+
query_dim=dim,
|
| 341 |
+
cross_attention_dim=cross_attention_dim,
|
| 342 |
+
heads=num_attention_heads,
|
| 343 |
+
dim_head=attention_head_dim,
|
| 344 |
+
dropout=dropout,
|
| 345 |
+
bias=attention_bias,
|
| 346 |
+
upcast_attention=upcast_attention,
|
| 347 |
+
)
|
| 348 |
+
else:
|
| 349 |
+
self.attn2 = None
|
| 350 |
+
|
| 351 |
+
if cross_attention_dim is not None:
|
| 352 |
+
self.norm2 = (
|
| 353 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 354 |
+
if self.use_ada_layer_norm
|
| 355 |
+
else nn.LayerNorm(dim)
|
| 356 |
+
)
|
| 357 |
+
else:
|
| 358 |
+
self.norm2 = None
|
| 359 |
+
|
| 360 |
+
# Feed-forward
|
| 361 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 362 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 363 |
+
self.use_ada_layer_norm_zero = False
|
| 364 |
+
# Temp-Attn
|
| 365 |
+
assert unet_use_temporal_attention is not None
|
| 366 |
+
if unet_use_temporal_attention:
|
| 367 |
+
self.attn_temp = Attention(
|
| 368 |
+
query_dim=dim,
|
| 369 |
+
heads=num_attention_heads,
|
| 370 |
+
dim_head=attention_head_dim,
|
| 371 |
+
dropout=dropout,
|
| 372 |
+
bias=attention_bias,
|
| 373 |
+
upcast_attention=upcast_attention,
|
| 374 |
+
)
|
| 375 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
| 376 |
+
self.norm_temp = (
|
| 377 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 378 |
+
if self.use_ada_layer_norm
|
| 379 |
+
else nn.LayerNorm(dim)
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
def forward(
|
| 383 |
+
self,
|
| 384 |
+
hidden_states,
|
| 385 |
+
encoder_hidden_states=None,
|
| 386 |
+
timestep=None,
|
| 387 |
+
attention_mask=None,
|
| 388 |
+
video_length=None,
|
| 389 |
+
self_attention_additional_feats=None,
|
| 390 |
+
mode=None,
|
| 391 |
+
):
|
| 392 |
+
norm_hidden_states = (
|
| 393 |
+
self.norm1(hidden_states, timestep)
|
| 394 |
+
if self.use_ada_layer_norm
|
| 395 |
+
else self.norm1(hidden_states)
|
| 396 |
+
)
|
| 397 |
+
if self.name:
|
| 398 |
+
modify_norm_hidden_states = norm_hidden_states
|
| 399 |
+
if mode == "write":
|
| 400 |
+
self_attention_additional_feats[self.name]=norm_hidden_states
|
| 401 |
+
elif mode == "read" and self_attention_additional_feats:
|
| 402 |
+
ref_states = self_attention_additional_feats[self.name]
|
| 403 |
+
bank_fea = [
|
| 404 |
+
rearrange(
|
| 405 |
+
ref_states.unsqueeze(1).repeat(1, video_length, 1, 1),
|
| 406 |
+
"b t l c -> (b t) l c",
|
| 407 |
+
)
|
| 408 |
+
]
|
| 409 |
+
modify_norm_hidden_states = torch.cat(
|
| 410 |
+
[norm_hidden_states] + bank_fea, dim=1
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
if self.unet_use_cross_frame_attention:
|
| 414 |
+
hidden_states = (
|
| 415 |
+
self.attn1(
|
| 416 |
+
norm_hidden_states,
|
| 417 |
+
attention_mask=attention_mask,
|
| 418 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
| 419 |
+
video_length=video_length,
|
| 420 |
+
)
|
| 421 |
+
+ hidden_states
|
| 422 |
+
)
|
| 423 |
+
else:
|
| 424 |
+
hidden_states = (
|
| 425 |
+
self.attn1(
|
| 426 |
+
norm_hidden_states,
|
| 427 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
| 428 |
+
attention_mask=attention_mask
|
| 429 |
+
)
|
| 430 |
+
+ hidden_states
|
| 431 |
+
)
|
| 432 |
+
else:
|
| 433 |
+
if self.unet_use_cross_frame_attention:
|
| 434 |
+
hidden_states = (
|
| 435 |
+
self.attn1(
|
| 436 |
+
norm_hidden_states,
|
| 437 |
+
attention_mask=attention_mask,
|
| 438 |
+
video_length=video_length,
|
| 439 |
+
)
|
| 440 |
+
+ hidden_states
|
| 441 |
+
)
|
| 442 |
+
else:
|
| 443 |
+
hidden_states = (
|
| 444 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask)
|
| 445 |
+
+ hidden_states
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
if self.attn2 is not None:
|
| 449 |
+
# Cross-Attention
|
| 450 |
+
norm_hidden_states = (
|
| 451 |
+
self.norm2(hidden_states, timestep)
|
| 452 |
+
if self.use_ada_layer_norm
|
| 453 |
+
else self.norm2(hidden_states)
|
| 454 |
+
)
|
| 455 |
+
hidden_states = (
|
| 456 |
+
self.attn2(
|
| 457 |
+
norm_hidden_states,
|
| 458 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 459 |
+
attention_mask=attention_mask,
|
| 460 |
+
)
|
| 461 |
+
+ hidden_states
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
# Feed-forward
|
| 465 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 466 |
+
|
| 467 |
+
# Temporal-Attention
|
| 468 |
+
if self.unet_use_temporal_attention:
|
| 469 |
+
d = hidden_states.shape[1]
|
| 470 |
+
hidden_states = rearrange(
|
| 471 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
| 472 |
+
)
|
| 473 |
+
norm_hidden_states = (
|
| 474 |
+
self.norm_temp(hidden_states, timestep)
|
| 475 |
+
if self.use_ada_layer_norm
|
| 476 |
+
else self.norm_temp(hidden_states)
|
| 477 |
+
)
|
| 478 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
| 479 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
| 480 |
+
|
| 481 |
+
return hidden_states
|
src/models/motion_module.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapt from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
| 2 |
+
import math
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Callable, Optional
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from diffusers.models.attention import FeedForward
|
| 8 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
| 9 |
+
from diffusers.utils import BaseOutput
|
| 10 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 11 |
+
from einops import rearrange, repeat
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def zero_module(module):
|
| 16 |
+
# Zero out the parameters of a module and return it.
|
| 17 |
+
for p in module.parameters():
|
| 18 |
+
p.detach().zero_()
|
| 19 |
+
return module
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
| 24 |
+
sample: torch.FloatTensor
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
if is_xformers_available():
|
| 28 |
+
import xformers
|
| 29 |
+
import xformers.ops
|
| 30 |
+
else:
|
| 31 |
+
xformers = None
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
| 35 |
+
if motion_module_type == "Vanilla":
|
| 36 |
+
return VanillaTemporalModule(
|
| 37 |
+
in_channels=in_channels,
|
| 38 |
+
**motion_module_kwargs,
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
raise ValueError
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class VanillaTemporalModule(nn.Module):
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
in_channels,
|
| 48 |
+
num_attention_heads=8,
|
| 49 |
+
num_transformer_block=2,
|
| 50 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
| 51 |
+
cross_frame_attention_mode=None,
|
| 52 |
+
temporal_position_encoding=False,
|
| 53 |
+
temporal_position_encoding_max_len=24,
|
| 54 |
+
temporal_attention_dim_div=1,
|
| 55 |
+
zero_initialize=True,
|
| 56 |
+
):
|
| 57 |
+
super().__init__()
|
| 58 |
+
|
| 59 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
| 60 |
+
in_channels=in_channels,
|
| 61 |
+
num_attention_heads=num_attention_heads,
|
| 62 |
+
attention_head_dim=in_channels
|
| 63 |
+
// num_attention_heads
|
| 64 |
+
// temporal_attention_dim_div,
|
| 65 |
+
num_layers=num_transformer_block,
|
| 66 |
+
attention_block_types=attention_block_types,
|
| 67 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 68 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 69 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if zero_initialize:
|
| 73 |
+
self.temporal_transformer.proj_out = zero_module(
|
| 74 |
+
self.temporal_transformer.proj_out
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def forward(
|
| 78 |
+
self,
|
| 79 |
+
input_tensor,
|
| 80 |
+
temb,
|
| 81 |
+
encoder_hidden_states,
|
| 82 |
+
attention_mask=None,
|
| 83 |
+
anchor_frame_idx=None,
|
| 84 |
+
):
|
| 85 |
+
hidden_states = input_tensor
|
| 86 |
+
hidden_states = self.temporal_transformer(
|
| 87 |
+
hidden_states, encoder_hidden_states, attention_mask
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
output = hidden_states
|
| 91 |
+
return output
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class TemporalTransformer3DModel(nn.Module):
|
| 95 |
+
def __init__(
|
| 96 |
+
self,
|
| 97 |
+
in_channels,
|
| 98 |
+
num_attention_heads,
|
| 99 |
+
attention_head_dim,
|
| 100 |
+
num_layers,
|
| 101 |
+
attention_block_types=(
|
| 102 |
+
"Temporal_Self",
|
| 103 |
+
"Temporal_Self",
|
| 104 |
+
),
|
| 105 |
+
dropout=0.0,
|
| 106 |
+
norm_num_groups=32,
|
| 107 |
+
cross_attention_dim=768,
|
| 108 |
+
activation_fn="geglu",
|
| 109 |
+
attention_bias=False,
|
| 110 |
+
upcast_attention=False,
|
| 111 |
+
cross_frame_attention_mode=None,
|
| 112 |
+
temporal_position_encoding=False,
|
| 113 |
+
temporal_position_encoding_max_len=24,
|
| 114 |
+
):
|
| 115 |
+
super().__init__()
|
| 116 |
+
|
| 117 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 118 |
+
|
| 119 |
+
self.norm = torch.nn.GroupNorm(
|
| 120 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
| 121 |
+
)
|
| 122 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 123 |
+
|
| 124 |
+
self.transformer_blocks = nn.ModuleList(
|
| 125 |
+
[
|
| 126 |
+
TemporalTransformerBlock(
|
| 127 |
+
dim=inner_dim,
|
| 128 |
+
num_attention_heads=num_attention_heads,
|
| 129 |
+
attention_head_dim=attention_head_dim,
|
| 130 |
+
attention_block_types=attention_block_types,
|
| 131 |
+
dropout=dropout,
|
| 132 |
+
norm_num_groups=norm_num_groups,
|
| 133 |
+
cross_attention_dim=cross_attention_dim,
|
| 134 |
+
activation_fn=activation_fn,
|
| 135 |
+
attention_bias=attention_bias,
|
| 136 |
+
upcast_attention=upcast_attention,
|
| 137 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 138 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 139 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 140 |
+
)
|
| 141 |
+
for d in range(num_layers)
|
| 142 |
+
]
|
| 143 |
+
)
|
| 144 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
| 145 |
+
|
| 146 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
| 147 |
+
assert (
|
| 148 |
+
hidden_states.dim() == 5
|
| 149 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
| 150 |
+
video_length = hidden_states.shape[2]
|
| 151 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
| 152 |
+
|
| 153 |
+
batch, channel, height, weight = hidden_states.shape
|
| 154 |
+
residual = hidden_states
|
| 155 |
+
|
| 156 |
+
hidden_states = self.norm(hidden_states)
|
| 157 |
+
inner_dim = hidden_states.shape[1]
|
| 158 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 159 |
+
batch, height * weight, inner_dim
|
| 160 |
+
)
|
| 161 |
+
hidden_states = self.proj_in(hidden_states)
|
| 162 |
+
|
| 163 |
+
# Transformer Blocks
|
| 164 |
+
for block in self.transformer_blocks:
|
| 165 |
+
hidden_states = block(
|
| 166 |
+
hidden_states,
|
| 167 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 168 |
+
video_length=video_length,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# output
|
| 172 |
+
hidden_states = self.proj_out(hidden_states)
|
| 173 |
+
hidden_states = (
|
| 174 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
| 175 |
+
.permute(0, 3, 1, 2)
|
| 176 |
+
.contiguous()
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
output = hidden_states + residual
|
| 180 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
| 181 |
+
|
| 182 |
+
return output
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class TemporalTransformerBlock(nn.Module):
|
| 186 |
+
def __init__(
|
| 187 |
+
self,
|
| 188 |
+
dim,
|
| 189 |
+
num_attention_heads,
|
| 190 |
+
attention_head_dim,
|
| 191 |
+
attention_block_types=(
|
| 192 |
+
"Temporal_Self",
|
| 193 |
+
"Temporal_Self",
|
| 194 |
+
),
|
| 195 |
+
dropout=0.0,
|
| 196 |
+
norm_num_groups=32,
|
| 197 |
+
cross_attention_dim=768,
|
| 198 |
+
activation_fn="geglu",
|
| 199 |
+
attention_bias=False,
|
| 200 |
+
upcast_attention=False,
|
| 201 |
+
cross_frame_attention_mode=None,
|
| 202 |
+
temporal_position_encoding=False,
|
| 203 |
+
temporal_position_encoding_max_len=24,
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
attention_blocks = []
|
| 208 |
+
norms = []
|
| 209 |
+
|
| 210 |
+
for block_name in attention_block_types:
|
| 211 |
+
attention_blocks.append(
|
| 212 |
+
VersatileAttention(
|
| 213 |
+
attention_mode=block_name.split("_")[0],
|
| 214 |
+
cross_attention_dim=cross_attention_dim
|
| 215 |
+
if block_name.endswith("_Cross")
|
| 216 |
+
else None,
|
| 217 |
+
query_dim=dim,
|
| 218 |
+
heads=num_attention_heads,
|
| 219 |
+
dim_head=attention_head_dim,
|
| 220 |
+
dropout=dropout,
|
| 221 |
+
bias=attention_bias,
|
| 222 |
+
upcast_attention=upcast_attention,
|
| 223 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
| 224 |
+
temporal_position_encoding=temporal_position_encoding,
|
| 225 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
| 226 |
+
)
|
| 227 |
+
)
|
| 228 |
+
norms.append(nn.LayerNorm(dim))
|
| 229 |
+
|
| 230 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
| 231 |
+
self.norms = nn.ModuleList(norms)
|
| 232 |
+
|
| 233 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
| 234 |
+
self.ff_norm = nn.LayerNorm(dim)
|
| 235 |
+
|
| 236 |
+
def forward(
|
| 237 |
+
self,
|
| 238 |
+
hidden_states,
|
| 239 |
+
encoder_hidden_states=None,
|
| 240 |
+
attention_mask=None,
|
| 241 |
+
video_length=None,
|
| 242 |
+
):
|
| 243 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
| 244 |
+
norm_hidden_states = norm(hidden_states)
|
| 245 |
+
hidden_states = (
|
| 246 |
+
attention_block(
|
| 247 |
+
norm_hidden_states,
|
| 248 |
+
encoder_hidden_states=encoder_hidden_states
|
| 249 |
+
if attention_block.is_cross_attention
|
| 250 |
+
else None,
|
| 251 |
+
video_length=video_length,
|
| 252 |
+
)
|
| 253 |
+
+ hidden_states
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
| 257 |
+
|
| 258 |
+
output = hidden_states
|
| 259 |
+
return output
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class PositionalEncoding(nn.Module):
|
| 263 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 266 |
+
position = torch.arange(max_len).unsqueeze(1)
|
| 267 |
+
div_term = torch.exp(
|
| 268 |
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
| 269 |
+
)
|
| 270 |
+
pe = torch.zeros(1, max_len, d_model)
|
| 271 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
| 272 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
| 273 |
+
self.register_buffer("pe", pe)
|
| 274 |
+
|
| 275 |
+
def forward(self, x):
|
| 276 |
+
x = x + self.pe[:, : x.size(1)]
|
| 277 |
+
return self.dropout(x)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class VersatileAttention(Attention):
|
| 281 |
+
def __init__(
|
| 282 |
+
self,
|
| 283 |
+
attention_mode=None,
|
| 284 |
+
cross_frame_attention_mode=None,
|
| 285 |
+
temporal_position_encoding=False,
|
| 286 |
+
temporal_position_encoding_max_len=24,
|
| 287 |
+
*args,
|
| 288 |
+
**kwargs,
|
| 289 |
+
):
|
| 290 |
+
super().__init__(*args, **kwargs)
|
| 291 |
+
assert attention_mode == "Temporal"
|
| 292 |
+
|
| 293 |
+
self.attention_mode = attention_mode
|
| 294 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
| 295 |
+
|
| 296 |
+
self.pos_encoder = (
|
| 297 |
+
PositionalEncoding(
|
| 298 |
+
kwargs["query_dim"],
|
| 299 |
+
dropout=0.0,
|
| 300 |
+
max_len=temporal_position_encoding_max_len,
|
| 301 |
+
)
|
| 302 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
| 303 |
+
else None
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
def extra_repr(self):
|
| 307 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
| 308 |
+
|
| 309 |
+
def set_use_memory_efficient_attention_xformers(
|
| 310 |
+
self,
|
| 311 |
+
use_memory_efficient_attention_xformers: bool,
|
| 312 |
+
attention_op: Optional[Callable] = None,
|
| 313 |
+
):
|
| 314 |
+
if use_memory_efficient_attention_xformers:
|
| 315 |
+
if not is_xformers_available():
|
| 316 |
+
raise ModuleNotFoundError(
|
| 317 |
+
(
|
| 318 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
| 319 |
+
" xformers"
|
| 320 |
+
),
|
| 321 |
+
name="xformers",
|
| 322 |
+
)
|
| 323 |
+
elif not torch.cuda.is_available():
|
| 324 |
+
raise ValueError(
|
| 325 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
| 326 |
+
" only available for GPU "
|
| 327 |
+
)
|
| 328 |
+
else:
|
| 329 |
+
try:
|
| 330 |
+
# Make sure we can run the memory efficient attention
|
| 331 |
+
_ = xformers.ops.memory_efficient_attention(
|
| 332 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 333 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 334 |
+
torch.randn((1, 2, 40), device="cuda"),
|
| 335 |
+
)
|
| 336 |
+
except Exception as e:
|
| 337 |
+
raise e
|
| 338 |
+
|
| 339 |
+
# XFormersAttnProcessor corrupts video generation and work with Pytorch 1.13.
|
| 340 |
+
# Pytorch 2.0.1 AttnProcessor works the same as XFormersAttnProcessor in Pytorch 1.13.
|
| 341 |
+
# You don't need XFormersAttnProcessor here.
|
| 342 |
+
# processor = XFormersAttnProcessor(
|
| 343 |
+
# attention_op=attention_op,
|
| 344 |
+
# )
|
| 345 |
+
processor = AttnProcessor()
|
| 346 |
+
else:
|
| 347 |
+
processor = AttnProcessor()
|
| 348 |
+
|
| 349 |
+
self.set_processor(processor)
|
| 350 |
+
|
| 351 |
+
def forward(
|
| 352 |
+
self,
|
| 353 |
+
hidden_states,
|
| 354 |
+
encoder_hidden_states=None,
|
| 355 |
+
attention_mask=None,
|
| 356 |
+
video_length=None,
|
| 357 |
+
**cross_attention_kwargs,
|
| 358 |
+
):
|
| 359 |
+
if self.attention_mode == "Temporal":
|
| 360 |
+
d = hidden_states.shape[1] # d means HxW
|
| 361 |
+
hidden_states = rearrange(
|
| 362 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
if self.pos_encoder is not None:
|
| 366 |
+
hidden_states = self.pos_encoder(hidden_states)
|
| 367 |
+
|
| 368 |
+
encoder_hidden_states = (
|
| 369 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
| 370 |
+
if encoder_hidden_states is not None
|
| 371 |
+
else encoder_hidden_states
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
else:
|
| 375 |
+
raise NotImplementedError
|
| 376 |
+
|
| 377 |
+
hidden_states = self.processor(
|
| 378 |
+
self,
|
| 379 |
+
hidden_states,
|
| 380 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 381 |
+
attention_mask=attention_mask,
|
| 382 |
+
**cross_attention_kwargs,
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
if self.attention_mode == "Temporal":
|
| 386 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
| 387 |
+
|
| 388 |
+
return hidden_states
|
src/models/mutual_self_attention.py
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py
|
| 2 |
+
from typing import Any, Dict, Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
|
| 7 |
+
from src.models.attention import TemporalBasicTransformerBlock
|
| 8 |
+
|
| 9 |
+
#from .attention import BasicTransformerBlock
|
| 10 |
+
from diffusers.models.attention import BasicTransformerBlock
|
| 11 |
+
|
| 12 |
+
def torch_dfs(model: torch.nn.Module):
|
| 13 |
+
result = [model]
|
| 14 |
+
for child in model.children():
|
| 15 |
+
result += torch_dfs(child)
|
| 16 |
+
return result
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ReferenceAttentionControl:
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
unet,
|
| 23 |
+
mode="write",
|
| 24 |
+
do_classifier_free_guidance=False,
|
| 25 |
+
attention_auto_machine_weight=float("inf"),
|
| 26 |
+
gn_auto_machine_weight=1.0,
|
| 27 |
+
style_fidelity=1.0,
|
| 28 |
+
reference_attn=True,
|
| 29 |
+
reference_adain=False,
|
| 30 |
+
fusion_blocks="midup",
|
| 31 |
+
batch_size=1,
|
| 32 |
+
) -> None:
|
| 33 |
+
# 10. Modify self attention and group norm
|
| 34 |
+
self.unet = unet
|
| 35 |
+
assert mode in ["read", "write"]
|
| 36 |
+
assert fusion_blocks in ["midup", "full"]
|
| 37 |
+
self.reference_attn = reference_attn
|
| 38 |
+
self.reference_adain = reference_adain
|
| 39 |
+
self.fusion_blocks = fusion_blocks
|
| 40 |
+
self.register_reference_hooks(
|
| 41 |
+
mode,
|
| 42 |
+
do_classifier_free_guidance,
|
| 43 |
+
attention_auto_machine_weight,
|
| 44 |
+
gn_auto_machine_weight,
|
| 45 |
+
style_fidelity,
|
| 46 |
+
reference_attn,
|
| 47 |
+
reference_adain,
|
| 48 |
+
fusion_blocks,
|
| 49 |
+
batch_size=batch_size,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def register_reference_hooks(
|
| 53 |
+
self,
|
| 54 |
+
mode,
|
| 55 |
+
do_classifier_free_guidance,
|
| 56 |
+
attention_auto_machine_weight,
|
| 57 |
+
gn_auto_machine_weight,
|
| 58 |
+
style_fidelity,
|
| 59 |
+
reference_attn,
|
| 60 |
+
reference_adain,
|
| 61 |
+
dtype=torch.float16,
|
| 62 |
+
batch_size=1,
|
| 63 |
+
num_images_per_prompt=1,
|
| 64 |
+
device=torch.device("cpu"),
|
| 65 |
+
fusion_blocks="midup",
|
| 66 |
+
):
|
| 67 |
+
MODE = mode
|
| 68 |
+
do_classifier_free_guidance = do_classifier_free_guidance
|
| 69 |
+
attention_auto_machine_weight = attention_auto_machine_weight
|
| 70 |
+
gn_auto_machine_weight = gn_auto_machine_weight
|
| 71 |
+
style_fidelity = style_fidelity
|
| 72 |
+
reference_attn = reference_attn
|
| 73 |
+
reference_adain = reference_adain
|
| 74 |
+
fusion_blocks = fusion_blocks
|
| 75 |
+
num_images_per_prompt = num_images_per_prompt
|
| 76 |
+
dtype = dtype
|
| 77 |
+
if do_classifier_free_guidance:
|
| 78 |
+
uc_mask = (
|
| 79 |
+
torch.Tensor(
|
| 80 |
+
[1] * batch_size * num_images_per_prompt * 16
|
| 81 |
+
+ [0] * batch_size * num_images_per_prompt * 16
|
| 82 |
+
)
|
| 83 |
+
.to(device)
|
| 84 |
+
.bool()
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
uc_mask = (
|
| 88 |
+
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
|
| 89 |
+
.to(device)
|
| 90 |
+
.bool()
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
def hacked_basic_transformer_inner_forward(
|
| 94 |
+
self,
|
| 95 |
+
hidden_states: torch.FloatTensor,
|
| 96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 97 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 98 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 99 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 100 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 101 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 102 |
+
video_length=None,
|
| 103 |
+
self_attention_additional_feats=None,
|
| 104 |
+
mode=None,
|
| 105 |
+
):
|
| 106 |
+
if self.use_ada_layer_norm: # False
|
| 107 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 108 |
+
elif self.use_ada_layer_norm_zero:
|
| 109 |
+
(
|
| 110 |
+
norm_hidden_states,
|
| 111 |
+
gate_msa,
|
| 112 |
+
shift_mlp,
|
| 113 |
+
scale_mlp,
|
| 114 |
+
gate_mlp,
|
| 115 |
+
) = self.norm1(
|
| 116 |
+
hidden_states,
|
| 117 |
+
timestep,
|
| 118 |
+
class_labels,
|
| 119 |
+
hidden_dtype=hidden_states.dtype,
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 123 |
+
|
| 124 |
+
# 1. Self-Attention
|
| 125 |
+
# self.only_cross_attention = False
|
| 126 |
+
cross_attention_kwargs = (
|
| 127 |
+
cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 128 |
+
)
|
| 129 |
+
if self.only_cross_attention:
|
| 130 |
+
attn_output = self.attn1(
|
| 131 |
+
norm_hidden_states,
|
| 132 |
+
encoder_hidden_states=encoder_hidden_states
|
| 133 |
+
if self.only_cross_attention
|
| 134 |
+
else None,
|
| 135 |
+
attention_mask=attention_mask,
|
| 136 |
+
**cross_attention_kwargs,
|
| 137 |
+
)
|
| 138 |
+
else:
|
| 139 |
+
if MODE == "write":
|
| 140 |
+
self.bank.append(norm_hidden_states.clone())
|
| 141 |
+
attn_output = self.attn1(
|
| 142 |
+
norm_hidden_states,
|
| 143 |
+
encoder_hidden_states=encoder_hidden_states
|
| 144 |
+
if self.only_cross_attention
|
| 145 |
+
else None,
|
| 146 |
+
attention_mask=attention_mask,
|
| 147 |
+
**cross_attention_kwargs,
|
| 148 |
+
)
|
| 149 |
+
if MODE == "read":
|
| 150 |
+
bank_fea = [
|
| 151 |
+
rearrange(
|
| 152 |
+
d.unsqueeze(1).repeat(1, video_length, 1, 1),
|
| 153 |
+
"b t l c -> (b t) l c",
|
| 154 |
+
)
|
| 155 |
+
for d in self.bank
|
| 156 |
+
]
|
| 157 |
+
modify_norm_hidden_states = torch.cat(
|
| 158 |
+
[norm_hidden_states] + bank_fea, dim=1
|
| 159 |
+
)
|
| 160 |
+
hidden_states_uc = (
|
| 161 |
+
self.attn1(
|
| 162 |
+
norm_hidden_states,
|
| 163 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
| 164 |
+
attention_mask=attention_mask,
|
| 165 |
+
)
|
| 166 |
+
+ hidden_states
|
| 167 |
+
)
|
| 168 |
+
if do_classifier_free_guidance:
|
| 169 |
+
hidden_states_c = hidden_states_uc.clone()
|
| 170 |
+
_uc_mask = uc_mask.clone()
|
| 171 |
+
if hidden_states.shape[0] != _uc_mask.shape[0]:
|
| 172 |
+
_uc_mask = (
|
| 173 |
+
torch.Tensor(
|
| 174 |
+
[1] * (hidden_states.shape[0] // 2)
|
| 175 |
+
+ [0] * (hidden_states.shape[0] // 2)
|
| 176 |
+
)
|
| 177 |
+
.to(device)
|
| 178 |
+
.bool()
|
| 179 |
+
)
|
| 180 |
+
hidden_states_c[_uc_mask] = (
|
| 181 |
+
self.attn1(
|
| 182 |
+
norm_hidden_states[_uc_mask],
|
| 183 |
+
encoder_hidden_states=norm_hidden_states[_uc_mask],
|
| 184 |
+
attention_mask=attention_mask,
|
| 185 |
+
)
|
| 186 |
+
+ hidden_states[_uc_mask]
|
| 187 |
+
)
|
| 188 |
+
hidden_states = hidden_states_c.clone()
|
| 189 |
+
else:
|
| 190 |
+
hidden_states = hidden_states_uc
|
| 191 |
+
|
| 192 |
+
# self.bank.clear()
|
| 193 |
+
if self.attn2 is not None:
|
| 194 |
+
# Cross-Attention
|
| 195 |
+
norm_hidden_states = (
|
| 196 |
+
self.norm2(hidden_states, timestep)
|
| 197 |
+
if self.use_ada_layer_norm
|
| 198 |
+
else self.norm2(hidden_states)
|
| 199 |
+
)
|
| 200 |
+
hidden_states = (
|
| 201 |
+
self.attn2(
|
| 202 |
+
norm_hidden_states,
|
| 203 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 204 |
+
attention_mask=attention_mask,
|
| 205 |
+
)
|
| 206 |
+
+ hidden_states
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Feed-forward
|
| 210 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
| 211 |
+
|
| 212 |
+
# Temporal-Attention
|
| 213 |
+
if self.unet_use_temporal_attention:
|
| 214 |
+
d = hidden_states.shape[1]
|
| 215 |
+
hidden_states = rearrange(
|
| 216 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
| 217 |
+
)
|
| 218 |
+
norm_hidden_states = (
|
| 219 |
+
self.norm_temp(hidden_states, timestep)
|
| 220 |
+
if self.use_ada_layer_norm
|
| 221 |
+
else self.norm_temp(hidden_states)
|
| 222 |
+
)
|
| 223 |
+
hidden_states = (
|
| 224 |
+
self.attn_temp(norm_hidden_states) + hidden_states
|
| 225 |
+
)
|
| 226 |
+
hidden_states = rearrange(
|
| 227 |
+
hidden_states, "(b d) f c -> (b f) d c", d=d
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return hidden_states
|
| 231 |
+
|
| 232 |
+
if self.use_ada_layer_norm_zero:
|
| 233 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 234 |
+
hidden_states = attn_output + hidden_states
|
| 235 |
+
|
| 236 |
+
if self.attn2 is not None:
|
| 237 |
+
norm_hidden_states = (
|
| 238 |
+
self.norm2(hidden_states, timestep)
|
| 239 |
+
if self.use_ada_layer_norm
|
| 240 |
+
else self.norm2(hidden_states)
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# 2. Cross-Attention
|
| 244 |
+
attn_output = self.attn2(
|
| 245 |
+
norm_hidden_states,
|
| 246 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 247 |
+
attention_mask=encoder_attention_mask,
|
| 248 |
+
**cross_attention_kwargs,
|
| 249 |
+
)
|
| 250 |
+
hidden_states = attn_output + hidden_states
|
| 251 |
+
|
| 252 |
+
# 3. Feed-forward
|
| 253 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 254 |
+
|
| 255 |
+
if self.use_ada_layer_norm_zero:
|
| 256 |
+
norm_hidden_states = (
|
| 257 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
ff_output = self.ff(norm_hidden_states)
|
| 261 |
+
|
| 262 |
+
if self.use_ada_layer_norm_zero:
|
| 263 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 264 |
+
|
| 265 |
+
hidden_states = ff_output + hidden_states
|
| 266 |
+
|
| 267 |
+
return hidden_states
|
| 268 |
+
|
| 269 |
+
if self.reference_attn:
|
| 270 |
+
if self.fusion_blocks == "midup":
|
| 271 |
+
attn_modules = [
|
| 272 |
+
module
|
| 273 |
+
for module in (
|
| 274 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
| 275 |
+
)
|
| 276 |
+
if isinstance(module, BasicTransformerBlock)
|
| 277 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 278 |
+
]
|
| 279 |
+
elif self.fusion_blocks == "full":
|
| 280 |
+
attn_modules = [
|
| 281 |
+
module
|
| 282 |
+
for module in torch_dfs(self.unet)
|
| 283 |
+
if isinstance(module, BasicTransformerBlock)
|
| 284 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 285 |
+
]
|
| 286 |
+
attn_modules = sorted(
|
| 287 |
+
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
for i, module in enumerate(attn_modules):
|
| 291 |
+
module._original_inner_forward = module.forward
|
| 292 |
+
if isinstance(module, BasicTransformerBlock):
|
| 293 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
| 294 |
+
module, BasicTransformerBlock
|
| 295 |
+
)
|
| 296 |
+
if isinstance(module, TemporalBasicTransformerBlock):
|
| 297 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
| 298 |
+
module, TemporalBasicTransformerBlock
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
module.bank = []
|
| 302 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
| 303 |
+
|
| 304 |
+
def update(self, writer, dtype=torch.float16):
|
| 305 |
+
if self.reference_attn:
|
| 306 |
+
if self.fusion_blocks == "midup":
|
| 307 |
+
reader_attn_modules = [
|
| 308 |
+
module
|
| 309 |
+
for module in (
|
| 310 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
| 311 |
+
)
|
| 312 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
| 313 |
+
]
|
| 314 |
+
writer_attn_modules = [
|
| 315 |
+
module
|
| 316 |
+
for module in (
|
| 317 |
+
torch_dfs(writer.unet.mid_block)
|
| 318 |
+
+ torch_dfs(writer.unet.up_blocks)
|
| 319 |
+
)
|
| 320 |
+
if isinstance(module, BasicTransformerBlock)
|
| 321 |
+
]
|
| 322 |
+
elif self.fusion_blocks == "full":
|
| 323 |
+
reader_attn_modules = [
|
| 324 |
+
module
|
| 325 |
+
for module in torch_dfs(self.unet)
|
| 326 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
| 327 |
+
]
|
| 328 |
+
writer_attn_modules = [
|
| 329 |
+
module
|
| 330 |
+
for module in torch_dfs(writer.unet)
|
| 331 |
+
if isinstance(module, BasicTransformerBlock)
|
| 332 |
+
]
|
| 333 |
+
reader_attn_modules = sorted(
|
| 334 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 335 |
+
)
|
| 336 |
+
writer_attn_modules = sorted(
|
| 337 |
+
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 338 |
+
)
|
| 339 |
+
for r, w in zip(reader_attn_modules, writer_attn_modules):
|
| 340 |
+
r.bank = [v.clone().to(dtype) for v in w.bank]
|
| 341 |
+
# w.bank.clear()
|
| 342 |
+
|
| 343 |
+
def clear(self):
|
| 344 |
+
if self.reference_attn:
|
| 345 |
+
if self.fusion_blocks == "midup":
|
| 346 |
+
reader_attn_modules = [
|
| 347 |
+
module
|
| 348 |
+
for module in (
|
| 349 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
| 350 |
+
)
|
| 351 |
+
if isinstance(module, BasicTransformerBlock)
|
| 352 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 353 |
+
]
|
| 354 |
+
elif self.fusion_blocks == "full":
|
| 355 |
+
reader_attn_modules = [
|
| 356 |
+
module
|
| 357 |
+
for module in torch_dfs(self.unet)
|
| 358 |
+
if isinstance(module, BasicTransformerBlock)
|
| 359 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
| 360 |
+
]
|
| 361 |
+
reader_attn_modules = sorted(
|
| 362 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
| 363 |
+
)
|
| 364 |
+
for r in reader_attn_modules:
|
| 365 |
+
r.bank.clear()
|
src/models/pose_guider.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import torch.nn.init as init
|
| 6 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 7 |
+
|
| 8 |
+
from src.models.motion_module import zero_module
|
| 9 |
+
from src.models.resnet import InflatedConv3d
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class PoseGuider(ModelMixin):
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
conditioning_embedding_channels: int,
|
| 16 |
+
conditioning_channels: int = 3,
|
| 17 |
+
block_out_channels: Tuple[int] = (16, 32, 64, 128),
|
| 18 |
+
):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.conv_in = InflatedConv3d(
|
| 21 |
+
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
self.blocks = nn.ModuleList([])
|
| 25 |
+
|
| 26 |
+
for i in range(len(block_out_channels) - 1):
|
| 27 |
+
channel_in = block_out_channels[i]
|
| 28 |
+
channel_out = block_out_channels[i + 1]
|
| 29 |
+
self.blocks.append(
|
| 30 |
+
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
|
| 31 |
+
)
|
| 32 |
+
self.blocks.append(
|
| 33 |
+
InflatedConv3d(
|
| 34 |
+
channel_in, channel_out, kernel_size=3, padding=1, stride=2
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
self.conv_out = zero_module(
|
| 39 |
+
InflatedConv3d(
|
| 40 |
+
block_out_channels[-1],
|
| 41 |
+
conditioning_embedding_channels,
|
| 42 |
+
kernel_size=3,
|
| 43 |
+
padding=1,
|
| 44 |
+
)
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def forward(self, conditioning):
|
| 48 |
+
embedding = self.conv_in(conditioning)
|
| 49 |
+
embedding = F.silu(embedding)
|
| 50 |
+
|
| 51 |
+
for block in self.blocks:
|
| 52 |
+
embedding = block(embedding)
|
| 53 |
+
embedding = F.silu(embedding)
|
| 54 |
+
|
| 55 |
+
embedding = self.conv_out(embedding)
|
| 56 |
+
|
| 57 |
+
return embedding
|
src/models/resnet.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class InflatedConv3d(nn.Conv2d):
|
| 10 |
+
def forward(self, x):
|
| 11 |
+
video_length = x.shape[2]
|
| 12 |
+
|
| 13 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
| 14 |
+
x = super().forward(x)
|
| 15 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
| 16 |
+
|
| 17 |
+
return x
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
video_length = x.shape[2]
|
| 23 |
+
|
| 24 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
| 25 |
+
x = super().forward(x)
|
| 26 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
| 27 |
+
|
| 28 |
+
return x
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Upsample3D(nn.Module):
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
channels,
|
| 35 |
+
use_conv=False,
|
| 36 |
+
use_conv_transpose=False,
|
| 37 |
+
out_channels=None,
|
| 38 |
+
name="conv",
|
| 39 |
+
):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.channels = channels
|
| 42 |
+
self.out_channels = out_channels or channels
|
| 43 |
+
self.use_conv = use_conv
|
| 44 |
+
self.use_conv_transpose = use_conv_transpose
|
| 45 |
+
self.name = name
|
| 46 |
+
|
| 47 |
+
conv = None
|
| 48 |
+
if use_conv_transpose:
|
| 49 |
+
raise NotImplementedError
|
| 50 |
+
elif use_conv:
|
| 51 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
| 52 |
+
|
| 53 |
+
def forward(self, hidden_states, output_size=None):
|
| 54 |
+
assert hidden_states.shape[1] == self.channels
|
| 55 |
+
|
| 56 |
+
if self.use_conv_transpose:
|
| 57 |
+
raise NotImplementedError
|
| 58 |
+
|
| 59 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
| 60 |
+
dtype = hidden_states.dtype
|
| 61 |
+
if dtype == torch.bfloat16:
|
| 62 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 63 |
+
|
| 64 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
| 65 |
+
if hidden_states.shape[0] >= 64:
|
| 66 |
+
hidden_states = hidden_states.contiguous()
|
| 67 |
+
|
| 68 |
+
# if `output_size` is passed we force the interpolation output
|
| 69 |
+
# size and do not make use of `scale_factor=2`
|
| 70 |
+
if output_size is None:
|
| 71 |
+
hidden_states = F.interpolate(
|
| 72 |
+
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest"
|
| 73 |
+
)
|
| 74 |
+
else:
|
| 75 |
+
hidden_states = F.interpolate(
|
| 76 |
+
hidden_states, size=output_size, mode="nearest"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# If the input is bfloat16, we cast back to bfloat16
|
| 80 |
+
if dtype == torch.bfloat16:
|
| 81 |
+
hidden_states = hidden_states.to(dtype)
|
| 82 |
+
|
| 83 |
+
# if self.use_conv:
|
| 84 |
+
# if self.name == "conv":
|
| 85 |
+
# hidden_states = self.conv(hidden_states)
|
| 86 |
+
# else:
|
| 87 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
| 88 |
+
hidden_states = self.conv(hidden_states)
|
| 89 |
+
|
| 90 |
+
return hidden_states
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class Downsample3D(nn.Module):
|
| 94 |
+
def __init__(
|
| 95 |
+
self, channels, use_conv=False, out_channels=None, padding=1, name="conv"
|
| 96 |
+
):
|
| 97 |
+
super().__init__()
|
| 98 |
+
self.channels = channels
|
| 99 |
+
self.out_channels = out_channels or channels
|
| 100 |
+
self.use_conv = use_conv
|
| 101 |
+
self.padding = padding
|
| 102 |
+
stride = 2
|
| 103 |
+
self.name = name
|
| 104 |
+
|
| 105 |
+
if use_conv:
|
| 106 |
+
self.conv = InflatedConv3d(
|
| 107 |
+
self.channels, self.out_channels, 3, stride=stride, padding=padding
|
| 108 |
+
)
|
| 109 |
+
else:
|
| 110 |
+
raise NotImplementedError
|
| 111 |
+
|
| 112 |
+
def forward(self, hidden_states):
|
| 113 |
+
assert hidden_states.shape[1] == self.channels
|
| 114 |
+
if self.use_conv and self.padding == 0:
|
| 115 |
+
raise NotImplementedError
|
| 116 |
+
|
| 117 |
+
assert hidden_states.shape[1] == self.channels
|
| 118 |
+
hidden_states = self.conv(hidden_states)
|
| 119 |
+
|
| 120 |
+
return hidden_states
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class ResnetBlock3D(nn.Module):
|
| 124 |
+
def __init__(
|
| 125 |
+
self,
|
| 126 |
+
*,
|
| 127 |
+
in_channels,
|
| 128 |
+
out_channels=None,
|
| 129 |
+
conv_shortcut=False,
|
| 130 |
+
dropout=0.0,
|
| 131 |
+
temb_channels=512,
|
| 132 |
+
groups=32,
|
| 133 |
+
groups_out=None,
|
| 134 |
+
pre_norm=True,
|
| 135 |
+
eps=1e-6,
|
| 136 |
+
non_linearity="swish",
|
| 137 |
+
time_embedding_norm="default",
|
| 138 |
+
output_scale_factor=1.0,
|
| 139 |
+
use_in_shortcut=None,
|
| 140 |
+
use_inflated_groupnorm=None,
|
| 141 |
+
):
|
| 142 |
+
super().__init__()
|
| 143 |
+
self.pre_norm = pre_norm
|
| 144 |
+
self.pre_norm = True
|
| 145 |
+
self.in_channels = in_channels
|
| 146 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 147 |
+
self.out_channels = out_channels
|
| 148 |
+
self.use_conv_shortcut = conv_shortcut
|
| 149 |
+
self.time_embedding_norm = time_embedding_norm
|
| 150 |
+
self.output_scale_factor = output_scale_factor
|
| 151 |
+
|
| 152 |
+
if groups_out is None:
|
| 153 |
+
groups_out = groups
|
| 154 |
+
|
| 155 |
+
assert use_inflated_groupnorm != None
|
| 156 |
+
if use_inflated_groupnorm:
|
| 157 |
+
self.norm1 = InflatedGroupNorm(
|
| 158 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
| 159 |
+
)
|
| 160 |
+
else:
|
| 161 |
+
self.norm1 = torch.nn.GroupNorm(
|
| 162 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
self.conv1 = InflatedConv3d(
|
| 166 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
if temb_channels is not None:
|
| 170 |
+
if self.time_embedding_norm == "default":
|
| 171 |
+
time_emb_proj_out_channels = out_channels
|
| 172 |
+
elif self.time_embedding_norm == "scale_shift":
|
| 173 |
+
time_emb_proj_out_channels = out_channels * 2
|
| 174 |
+
else:
|
| 175 |
+
raise ValueError(
|
| 176 |
+
f"unknown time_embedding_norm : {self.time_embedding_norm} "
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
self.time_emb_proj = torch.nn.Linear(
|
| 180 |
+
temb_channels, time_emb_proj_out_channels
|
| 181 |
+
)
|
| 182 |
+
else:
|
| 183 |
+
self.time_emb_proj = None
|
| 184 |
+
|
| 185 |
+
if use_inflated_groupnorm:
|
| 186 |
+
self.norm2 = InflatedGroupNorm(
|
| 187 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
| 188 |
+
)
|
| 189 |
+
else:
|
| 190 |
+
self.norm2 = torch.nn.GroupNorm(
|
| 191 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
| 192 |
+
)
|
| 193 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 194 |
+
self.conv2 = InflatedConv3d(
|
| 195 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
if non_linearity == "swish":
|
| 199 |
+
self.nonlinearity = lambda x: F.silu(x)
|
| 200 |
+
elif non_linearity == "mish":
|
| 201 |
+
self.nonlinearity = Mish()
|
| 202 |
+
elif non_linearity == "silu":
|
| 203 |
+
self.nonlinearity = nn.SiLU()
|
| 204 |
+
|
| 205 |
+
self.use_in_shortcut = (
|
| 206 |
+
self.in_channels != self.out_channels
|
| 207 |
+
if use_in_shortcut is None
|
| 208 |
+
else use_in_shortcut
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
self.conv_shortcut = None
|
| 212 |
+
if self.use_in_shortcut:
|
| 213 |
+
self.conv_shortcut = InflatedConv3d(
|
| 214 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
def forward(self, input_tensor, temb):
|
| 218 |
+
hidden_states = input_tensor
|
| 219 |
+
|
| 220 |
+
hidden_states = self.norm1(hidden_states)
|
| 221 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 222 |
+
|
| 223 |
+
hidden_states = self.conv1(hidden_states)
|
| 224 |
+
|
| 225 |
+
if temb is not None:
|
| 226 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
| 227 |
+
|
| 228 |
+
if temb is not None and self.time_embedding_norm == "default":
|
| 229 |
+
hidden_states = hidden_states + temb
|
| 230 |
+
|
| 231 |
+
hidden_states = self.norm2(hidden_states)
|
| 232 |
+
|
| 233 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
| 234 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
| 235 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 236 |
+
|
| 237 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 238 |
+
|
| 239 |
+
hidden_states = self.dropout(hidden_states)
|
| 240 |
+
hidden_states = self.conv2(hidden_states)
|
| 241 |
+
|
| 242 |
+
if self.conv_shortcut is not None:
|
| 243 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
| 244 |
+
|
| 245 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
| 246 |
+
|
| 247 |
+
return output_tensor
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class Mish(torch.nn.Module):
|
| 251 |
+
def forward(self, hidden_states):
|
| 252 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
src/models/transformer_2d.py
ADDED
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Any, Dict, Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 7 |
+
from diffusers.models.embeddings import CaptionProjection
|
| 8 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
| 9 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 10 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
| 11 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
| 12 |
+
from torch import nn
|
| 13 |
+
|
| 14 |
+
from .attention import BasicTransformerBlock
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class Transformer2DModelOutput(BaseOutput):
|
| 19 |
+
"""
|
| 20 |
+
The output of [`Transformer2DModel`].
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
| 24 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
| 25 |
+
distributions for the unnoised latent pixels.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
sample: torch.FloatTensor
|
| 29 |
+
ref_feature: torch.FloatTensor
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
| 33 |
+
"""
|
| 34 |
+
A 2D Transformer model for image-like data.
|
| 35 |
+
|
| 36 |
+
Parameters:
|
| 37 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 38 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 39 |
+
in_channels (`int`, *optional*):
|
| 40 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
| 41 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 42 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 43 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 44 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
| 45 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
| 46 |
+
num_vector_embeds (`int`, *optional*):
|
| 47 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
| 48 |
+
Includes the class for the masked latent pixel.
|
| 49 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
| 50 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
| 51 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
| 52 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
| 53 |
+
added to the hidden states.
|
| 54 |
+
|
| 55 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
| 56 |
+
attention_bias (`bool`, *optional*):
|
| 57 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
_supports_gradient_checkpointing = True
|
| 61 |
+
|
| 62 |
+
@register_to_config
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
num_attention_heads: int = 16,
|
| 66 |
+
attention_head_dim: int = 88,
|
| 67 |
+
in_channels: Optional[int] = None,
|
| 68 |
+
out_channels: Optional[int] = None,
|
| 69 |
+
num_layers: int = 1,
|
| 70 |
+
dropout: float = 0.0,
|
| 71 |
+
norm_num_groups: int = 32,
|
| 72 |
+
cross_attention_dim: Optional[int] = None,
|
| 73 |
+
attention_bias: bool = False,
|
| 74 |
+
sample_size: Optional[int] = None,
|
| 75 |
+
num_vector_embeds: Optional[int] = None,
|
| 76 |
+
patch_size: Optional[int] = None,
|
| 77 |
+
activation_fn: str = "geglu",
|
| 78 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 79 |
+
use_linear_projection: bool = False,
|
| 80 |
+
only_cross_attention: bool = False,
|
| 81 |
+
double_self_attention: bool = False,
|
| 82 |
+
upcast_attention: bool = False,
|
| 83 |
+
norm_type: str = "layer_norm",
|
| 84 |
+
norm_elementwise_affine: bool = True,
|
| 85 |
+
norm_eps: float = 1e-5,
|
| 86 |
+
attention_type: str = "default",
|
| 87 |
+
caption_channels: int = None,
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.use_linear_projection = use_linear_projection
|
| 91 |
+
self.num_attention_heads = num_attention_heads
|
| 92 |
+
self.attention_head_dim = attention_head_dim
|
| 93 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 94 |
+
|
| 95 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
| 96 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
| 97 |
+
|
| 98 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
| 99 |
+
# Define whether input is continuous or discrete depending on configuration
|
| 100 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
| 101 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
| 102 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
| 103 |
+
|
| 104 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
| 105 |
+
deprecation_message = (
|
| 106 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
| 107 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
| 108 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
| 109 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
| 110 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
| 111 |
+
)
|
| 112 |
+
deprecate(
|
| 113 |
+
"norm_type!=num_embeds_ada_norm",
|
| 114 |
+
"1.0.0",
|
| 115 |
+
deprecation_message,
|
| 116 |
+
standard_warn=False,
|
| 117 |
+
)
|
| 118 |
+
norm_type = "ada_norm"
|
| 119 |
+
|
| 120 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
| 121 |
+
raise ValueError(
|
| 122 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
| 123 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
| 124 |
+
)
|
| 125 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
| 126 |
+
raise ValueError(
|
| 127 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
| 128 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
| 129 |
+
)
|
| 130 |
+
elif (
|
| 131 |
+
not self.is_input_continuous
|
| 132 |
+
and not self.is_input_vectorized
|
| 133 |
+
and not self.is_input_patches
|
| 134 |
+
):
|
| 135 |
+
raise ValueError(
|
| 136 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
| 137 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# 2. Define input layers
|
| 141 |
+
self.in_channels = in_channels
|
| 142 |
+
|
| 143 |
+
self.norm = torch.nn.GroupNorm(
|
| 144 |
+
num_groups=norm_num_groups,
|
| 145 |
+
num_channels=in_channels,
|
| 146 |
+
eps=1e-6,
|
| 147 |
+
affine=True,
|
| 148 |
+
)
|
| 149 |
+
if use_linear_projection:
|
| 150 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
| 151 |
+
else:
|
| 152 |
+
self.proj_in = conv_cls(
|
| 153 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# 3. Define transformers blocks
|
| 157 |
+
self.transformer_blocks = nn.ModuleList(
|
| 158 |
+
[
|
| 159 |
+
BasicTransformerBlock(
|
| 160 |
+
inner_dim,
|
| 161 |
+
num_attention_heads,
|
| 162 |
+
attention_head_dim,
|
| 163 |
+
dropout=dropout,
|
| 164 |
+
cross_attention_dim=cross_attention_dim,
|
| 165 |
+
activation_fn=activation_fn,
|
| 166 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 167 |
+
attention_bias=attention_bias,
|
| 168 |
+
only_cross_attention=only_cross_attention,
|
| 169 |
+
double_self_attention=double_self_attention,
|
| 170 |
+
upcast_attention=upcast_attention,
|
| 171 |
+
norm_type=norm_type,
|
| 172 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 173 |
+
norm_eps=norm_eps,
|
| 174 |
+
attention_type=attention_type,
|
| 175 |
+
)
|
| 176 |
+
for d in range(num_layers)
|
| 177 |
+
]
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# 4. Define output layers
|
| 181 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 182 |
+
# TODO: should use out_channels for continuous projections
|
| 183 |
+
if use_linear_projection:
|
| 184 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
| 185 |
+
else:
|
| 186 |
+
self.proj_out = conv_cls(
|
| 187 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# 5. PixArt-Alpha blocks.
|
| 191 |
+
self.adaln_single = None
|
| 192 |
+
self.use_additional_conditions = False
|
| 193 |
+
if norm_type == "ada_norm_single":
|
| 194 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
| 195 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
| 196 |
+
# additional conditions until we find better name
|
| 197 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 198 |
+
inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
self.caption_projection = None
|
| 202 |
+
if caption_channels is not None:
|
| 203 |
+
self.caption_projection = CaptionProjection(
|
| 204 |
+
in_features=caption_channels, hidden_size=inner_dim
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
self.gradient_checkpointing = False
|
| 208 |
+
|
| 209 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 210 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 211 |
+
module.gradient_checkpointing = value
|
| 212 |
+
|
| 213 |
+
def forward(
|
| 214 |
+
self,
|
| 215 |
+
hidden_states: torch.Tensor,
|
| 216 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 217 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 218 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 219 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 220 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 221 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 222 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 223 |
+
return_dict: bool = True,
|
| 224 |
+
):
|
| 225 |
+
"""
|
| 226 |
+
The [`Transformer2DModel`] forward method.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
| 230 |
+
Input `hidden_states`.
|
| 231 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 232 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 233 |
+
self-attention.
|
| 234 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 235 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 236 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
| 237 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
| 238 |
+
`AdaLayerZeroNorm`.
|
| 239 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 240 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 241 |
+
`self.processor` in
|
| 242 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 243 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
| 244 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 245 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 246 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 247 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 248 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 249 |
+
|
| 250 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 251 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 252 |
+
|
| 253 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 254 |
+
above. This bias will be added to the cross-attention scores.
|
| 255 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 256 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 257 |
+
tuple.
|
| 258 |
+
|
| 259 |
+
Returns:
|
| 260 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 261 |
+
`tuple` where the first element is the sample tensor.
|
| 262 |
+
"""
|
| 263 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 264 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 265 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 266 |
+
# expects mask of shape:
|
| 267 |
+
# [batch, key_tokens]
|
| 268 |
+
# adds singleton query_tokens dimension:
|
| 269 |
+
# [batch, 1, key_tokens]
|
| 270 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 271 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 272 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 273 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 274 |
+
# assume that mask is expressed as:
|
| 275 |
+
# (1 = keep, 0 = discard)
|
| 276 |
+
# convert mask into a bias that can be added to attention scores:
|
| 277 |
+
# (keep = +0, discard = -10000.0)
|
| 278 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 279 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 280 |
+
|
| 281 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 282 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 283 |
+
encoder_attention_mask = (
|
| 284 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
| 285 |
+
) * -10000.0
|
| 286 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 287 |
+
|
| 288 |
+
# Retrieve lora scale.
|
| 289 |
+
lora_scale = (
|
| 290 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 291 |
+
if cross_attention_kwargs is not None
|
| 292 |
+
else 1.0
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# 1. Input
|
| 296 |
+
batch, _, height, width = hidden_states.shape
|
| 297 |
+
residual = hidden_states
|
| 298 |
+
|
| 299 |
+
hidden_states = self.norm(hidden_states)
|
| 300 |
+
if not self.use_linear_projection:
|
| 301 |
+
hidden_states = (
|
| 302 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
| 303 |
+
if not USE_PEFT_BACKEND
|
| 304 |
+
else self.proj_in(hidden_states)
|
| 305 |
+
)
|
| 306 |
+
inner_dim = hidden_states.shape[1]
|
| 307 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 308 |
+
batch, height * width, inner_dim
|
| 309 |
+
)
|
| 310 |
+
else:
|
| 311 |
+
inner_dim = hidden_states.shape[1]
|
| 312 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 313 |
+
batch, height * width, inner_dim
|
| 314 |
+
)
|
| 315 |
+
hidden_states = (
|
| 316 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
| 317 |
+
if not USE_PEFT_BACKEND
|
| 318 |
+
else self.proj_in(hidden_states)
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
# 2. Blocks
|
| 322 |
+
if self.caption_projection is not None:
|
| 323 |
+
batch_size = hidden_states.shape[0]
|
| 324 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 325 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 326 |
+
batch_size, -1, hidden_states.shape[-1]
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
ref_feature = hidden_states.reshape(batch, height, width, inner_dim)
|
| 330 |
+
for block in self.transformer_blocks:
|
| 331 |
+
if self.training and self.gradient_checkpointing:
|
| 332 |
+
|
| 333 |
+
def create_custom_forward(module, return_dict=None):
|
| 334 |
+
def custom_forward(*inputs):
|
| 335 |
+
if return_dict is not None:
|
| 336 |
+
return module(*inputs, return_dict=return_dict)
|
| 337 |
+
else:
|
| 338 |
+
return module(*inputs)
|
| 339 |
+
|
| 340 |
+
return custom_forward
|
| 341 |
+
|
| 342 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 343 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 344 |
+
)
|
| 345 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 346 |
+
create_custom_forward(block),
|
| 347 |
+
hidden_states,
|
| 348 |
+
attention_mask,
|
| 349 |
+
encoder_hidden_states,
|
| 350 |
+
encoder_attention_mask,
|
| 351 |
+
timestep,
|
| 352 |
+
cross_attention_kwargs,
|
| 353 |
+
class_labels,
|
| 354 |
+
**ckpt_kwargs,
|
| 355 |
+
)
|
| 356 |
+
else:
|
| 357 |
+
hidden_states = block(
|
| 358 |
+
hidden_states,
|
| 359 |
+
attention_mask=attention_mask,
|
| 360 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 361 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 362 |
+
timestep=timestep,
|
| 363 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 364 |
+
class_labels=class_labels,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# 3. Output
|
| 368 |
+
if self.is_input_continuous:
|
| 369 |
+
if not self.use_linear_projection:
|
| 370 |
+
hidden_states = (
|
| 371 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
| 372 |
+
.permute(0, 3, 1, 2)
|
| 373 |
+
.contiguous()
|
| 374 |
+
)
|
| 375 |
+
hidden_states = (
|
| 376 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
| 377 |
+
if not USE_PEFT_BACKEND
|
| 378 |
+
else self.proj_out(hidden_states)
|
| 379 |
+
)
|
| 380 |
+
else:
|
| 381 |
+
hidden_states = (
|
| 382 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
| 383 |
+
if not USE_PEFT_BACKEND
|
| 384 |
+
else self.proj_out(hidden_states)
|
| 385 |
+
)
|
| 386 |
+
hidden_states = (
|
| 387 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
| 388 |
+
.permute(0, 3, 1, 2)
|
| 389 |
+
.contiguous()
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
output = hidden_states + residual
|
| 393 |
+
if not return_dict:
|
| 394 |
+
return (output, ref_feature)
|
| 395 |
+
|
| 396 |
+
return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
|
src/models/transformer_3d.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 6 |
+
from diffusers.models import ModelMixin
|
| 7 |
+
from diffusers.utils import BaseOutput
|
| 8 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
from .attention import TemporalBasicTransformerBlock
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class Transformer3DModelOutput(BaseOutput):
|
| 17 |
+
sample: torch.FloatTensor
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
if is_xformers_available():
|
| 21 |
+
import xformers
|
| 22 |
+
import xformers.ops
|
| 23 |
+
else:
|
| 24 |
+
xformers = None
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
| 28 |
+
_supports_gradient_checkpointing = True
|
| 29 |
+
|
| 30 |
+
@register_to_config
|
| 31 |
+
def __init__(
|
| 32 |
+
self,
|
| 33 |
+
num_attention_heads: int = 16,
|
| 34 |
+
attention_head_dim: int = 88,
|
| 35 |
+
in_channels: Optional[int] = None,
|
| 36 |
+
num_layers: int = 1,
|
| 37 |
+
dropout: float = 0.0,
|
| 38 |
+
norm_num_groups: int = 32,
|
| 39 |
+
cross_attention_dim: Optional[int] = None,
|
| 40 |
+
attention_bias: bool = False,
|
| 41 |
+
activation_fn: str = "geglu",
|
| 42 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 43 |
+
use_linear_projection: bool = False,
|
| 44 |
+
only_cross_attention: bool = False,
|
| 45 |
+
upcast_attention: bool = False,
|
| 46 |
+
unet_use_cross_frame_attention=None,
|
| 47 |
+
unet_use_temporal_attention=None,
|
| 48 |
+
name=None,
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.use_linear_projection = use_linear_projection
|
| 52 |
+
self.num_attention_heads = num_attention_heads
|
| 53 |
+
self.attention_head_dim = attention_head_dim
|
| 54 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 55 |
+
|
| 56 |
+
# Define input layers
|
| 57 |
+
self.in_channels = in_channels
|
| 58 |
+
self.name=name
|
| 59 |
+
|
| 60 |
+
self.norm = torch.nn.GroupNorm(
|
| 61 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
| 62 |
+
)
|
| 63 |
+
if use_linear_projection:
|
| 64 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
| 65 |
+
else:
|
| 66 |
+
self.proj_in = nn.Conv2d(
|
| 67 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Define transformers blocks
|
| 71 |
+
self.transformer_blocks = nn.ModuleList(
|
| 72 |
+
[
|
| 73 |
+
TemporalBasicTransformerBlock(
|
| 74 |
+
inner_dim,
|
| 75 |
+
num_attention_heads,
|
| 76 |
+
attention_head_dim,
|
| 77 |
+
dropout=dropout,
|
| 78 |
+
cross_attention_dim=cross_attention_dim,
|
| 79 |
+
activation_fn=activation_fn,
|
| 80 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 81 |
+
attention_bias=attention_bias,
|
| 82 |
+
only_cross_attention=only_cross_attention,
|
| 83 |
+
upcast_attention=upcast_attention,
|
| 84 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 85 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 86 |
+
name=f"{self.name}_{d}_TransformerBlock" if self.name else None,
|
| 87 |
+
)
|
| 88 |
+
for d in range(num_layers)
|
| 89 |
+
]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# 4. Define output layers
|
| 93 |
+
if use_linear_projection:
|
| 94 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
| 95 |
+
else:
|
| 96 |
+
self.proj_out = nn.Conv2d(
|
| 97 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.gradient_checkpointing = False
|
| 101 |
+
|
| 102 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 103 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 104 |
+
module.gradient_checkpointing = value
|
| 105 |
+
|
| 106 |
+
def forward(
|
| 107 |
+
self,
|
| 108 |
+
hidden_states,
|
| 109 |
+
encoder_hidden_states=None,
|
| 110 |
+
self_attention_additional_feats=None,
|
| 111 |
+
mode=None,
|
| 112 |
+
timestep=None,
|
| 113 |
+
return_dict: bool = True,
|
| 114 |
+
):
|
| 115 |
+
# Input
|
| 116 |
+
assert (
|
| 117 |
+
hidden_states.dim() == 5
|
| 118 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
| 119 |
+
video_length = hidden_states.shape[2]
|
| 120 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
| 121 |
+
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
|
| 122 |
+
encoder_hidden_states = repeat(
|
| 123 |
+
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
batch, channel, height, weight = hidden_states.shape
|
| 127 |
+
residual = hidden_states
|
| 128 |
+
|
| 129 |
+
hidden_states = self.norm(hidden_states)
|
| 130 |
+
if not self.use_linear_projection:
|
| 131 |
+
hidden_states = self.proj_in(hidden_states)
|
| 132 |
+
inner_dim = hidden_states.shape[1]
|
| 133 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 134 |
+
batch, height * weight, inner_dim
|
| 135 |
+
)
|
| 136 |
+
else:
|
| 137 |
+
inner_dim = hidden_states.shape[1]
|
| 138 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 139 |
+
batch, height * weight, inner_dim
|
| 140 |
+
)
|
| 141 |
+
hidden_states = self.proj_in(hidden_states)
|
| 142 |
+
|
| 143 |
+
# Blocks
|
| 144 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 145 |
+
|
| 146 |
+
if self.training and self.gradient_checkpointing:
|
| 147 |
+
|
| 148 |
+
def create_custom_forward(module, return_dict=None):
|
| 149 |
+
def custom_forward(*inputs):
|
| 150 |
+
if return_dict is not None:
|
| 151 |
+
return module(*inputs, return_dict=return_dict)
|
| 152 |
+
else:
|
| 153 |
+
return module(*inputs)
|
| 154 |
+
|
| 155 |
+
return custom_forward
|
| 156 |
+
|
| 157 |
+
# if hasattr(self.block, 'bank') and len(self.block.bank) > 0:
|
| 158 |
+
# hidden_states
|
| 159 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 160 |
+
create_custom_forward(block),
|
| 161 |
+
hidden_states,
|
| 162 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 163 |
+
timestep=timestep,
|
| 164 |
+
attention_mask=None,
|
| 165 |
+
video_length=video_length,
|
| 166 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 167 |
+
mode=mode,
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
|
| 171 |
+
hidden_states = block(
|
| 172 |
+
hidden_states,
|
| 173 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 174 |
+
timestep=timestep,
|
| 175 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 176 |
+
mode=mode,
|
| 177 |
+
video_length=video_length,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Output
|
| 181 |
+
if not self.use_linear_projection:
|
| 182 |
+
hidden_states = (
|
| 183 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
| 184 |
+
.permute(0, 3, 1, 2)
|
| 185 |
+
.contiguous()
|
| 186 |
+
)
|
| 187 |
+
hidden_states = self.proj_out(hidden_states)
|
| 188 |
+
else:
|
| 189 |
+
hidden_states = self.proj_out(hidden_states)
|
| 190 |
+
hidden_states = (
|
| 191 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
| 192 |
+
.permute(0, 3, 1, 2)
|
| 193 |
+
.contiguous()
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
output = hidden_states + residual
|
| 197 |
+
|
| 198 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
| 199 |
+
if not return_dict:
|
| 200 |
+
return (output,)
|
| 201 |
+
|
| 202 |
+
return Transformer3DModelOutput(sample=output)
|
src/models/unet_2d_blocks.py
ADDED
|
@@ -0,0 +1,1074 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
| 2 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from diffusers.models.activations import get_activation
|
| 8 |
+
from diffusers.models.attention_processor import Attention
|
| 9 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
| 10 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
| 11 |
+
from diffusers.utils import is_torch_version, logging
|
| 12 |
+
from diffusers.utils.torch_utils import apply_freeu
|
| 13 |
+
from torch import nn
|
| 14 |
+
|
| 15 |
+
from .transformer_2d import Transformer2DModel
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_down_block(
|
| 21 |
+
down_block_type: str,
|
| 22 |
+
num_layers: int,
|
| 23 |
+
in_channels: int,
|
| 24 |
+
out_channels: int,
|
| 25 |
+
temb_channels: int,
|
| 26 |
+
add_downsample: bool,
|
| 27 |
+
resnet_eps: float,
|
| 28 |
+
resnet_act_fn: str,
|
| 29 |
+
transformer_layers_per_block: int = 1,
|
| 30 |
+
num_attention_heads: Optional[int] = None,
|
| 31 |
+
resnet_groups: Optional[int] = None,
|
| 32 |
+
cross_attention_dim: Optional[int] = None,
|
| 33 |
+
downsample_padding: Optional[int] = None,
|
| 34 |
+
dual_cross_attention: bool = False,
|
| 35 |
+
use_linear_projection: bool = False,
|
| 36 |
+
only_cross_attention: bool = False,
|
| 37 |
+
upcast_attention: bool = False,
|
| 38 |
+
resnet_time_scale_shift: str = "default",
|
| 39 |
+
attention_type: str = "default",
|
| 40 |
+
resnet_skip_time_act: bool = False,
|
| 41 |
+
resnet_out_scale_factor: float = 1.0,
|
| 42 |
+
cross_attention_norm: Optional[str] = None,
|
| 43 |
+
attention_head_dim: Optional[int] = None,
|
| 44 |
+
downsample_type: Optional[str] = None,
|
| 45 |
+
dropout: float = 0.0,
|
| 46 |
+
):
|
| 47 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 48 |
+
if attention_head_dim is None:
|
| 49 |
+
logger.warn(
|
| 50 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 51 |
+
)
|
| 52 |
+
attention_head_dim = num_attention_heads
|
| 53 |
+
|
| 54 |
+
down_block_type = (
|
| 55 |
+
down_block_type[7:]
|
| 56 |
+
if down_block_type.startswith("UNetRes")
|
| 57 |
+
else down_block_type
|
| 58 |
+
)
|
| 59 |
+
if down_block_type == "DownBlock2D":
|
| 60 |
+
return DownBlock2D(
|
| 61 |
+
num_layers=num_layers,
|
| 62 |
+
in_channels=in_channels,
|
| 63 |
+
out_channels=out_channels,
|
| 64 |
+
temb_channels=temb_channels,
|
| 65 |
+
dropout=dropout,
|
| 66 |
+
add_downsample=add_downsample,
|
| 67 |
+
resnet_eps=resnet_eps,
|
| 68 |
+
resnet_act_fn=resnet_act_fn,
|
| 69 |
+
resnet_groups=resnet_groups,
|
| 70 |
+
downsample_padding=downsample_padding,
|
| 71 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 72 |
+
)
|
| 73 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
| 74 |
+
if cross_attention_dim is None:
|
| 75 |
+
raise ValueError(
|
| 76 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
|
| 77 |
+
)
|
| 78 |
+
return CrossAttnDownBlock2D(
|
| 79 |
+
num_layers=num_layers,
|
| 80 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 81 |
+
in_channels=in_channels,
|
| 82 |
+
out_channels=out_channels,
|
| 83 |
+
temb_channels=temb_channels,
|
| 84 |
+
dropout=dropout,
|
| 85 |
+
add_downsample=add_downsample,
|
| 86 |
+
resnet_eps=resnet_eps,
|
| 87 |
+
resnet_act_fn=resnet_act_fn,
|
| 88 |
+
resnet_groups=resnet_groups,
|
| 89 |
+
downsample_padding=downsample_padding,
|
| 90 |
+
cross_attention_dim=cross_attention_dim,
|
| 91 |
+
num_attention_heads=num_attention_heads,
|
| 92 |
+
dual_cross_attention=dual_cross_attention,
|
| 93 |
+
use_linear_projection=use_linear_projection,
|
| 94 |
+
only_cross_attention=only_cross_attention,
|
| 95 |
+
upcast_attention=upcast_attention,
|
| 96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 97 |
+
attention_type=attention_type,
|
| 98 |
+
)
|
| 99 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_up_block(
|
| 103 |
+
up_block_type: str,
|
| 104 |
+
num_layers: int,
|
| 105 |
+
in_channels: int,
|
| 106 |
+
out_channels: int,
|
| 107 |
+
prev_output_channel: int,
|
| 108 |
+
temb_channels: int,
|
| 109 |
+
add_upsample: bool,
|
| 110 |
+
resnet_eps: float,
|
| 111 |
+
resnet_act_fn: str,
|
| 112 |
+
resolution_idx: Optional[int] = None,
|
| 113 |
+
transformer_layers_per_block: int = 1,
|
| 114 |
+
num_attention_heads: Optional[int] = None,
|
| 115 |
+
resnet_groups: Optional[int] = None,
|
| 116 |
+
cross_attention_dim: Optional[int] = None,
|
| 117 |
+
dual_cross_attention: bool = False,
|
| 118 |
+
use_linear_projection: bool = False,
|
| 119 |
+
only_cross_attention: bool = False,
|
| 120 |
+
upcast_attention: bool = False,
|
| 121 |
+
resnet_time_scale_shift: str = "default",
|
| 122 |
+
attention_type: str = "default",
|
| 123 |
+
resnet_skip_time_act: bool = False,
|
| 124 |
+
resnet_out_scale_factor: float = 1.0,
|
| 125 |
+
cross_attention_norm: Optional[str] = None,
|
| 126 |
+
attention_head_dim: Optional[int] = None,
|
| 127 |
+
upsample_type: Optional[str] = None,
|
| 128 |
+
dropout: float = 0.0,
|
| 129 |
+
) -> nn.Module:
|
| 130 |
+
# If attn head dim is not defined, we default it to the number of heads
|
| 131 |
+
if attention_head_dim is None:
|
| 132 |
+
logger.warn(
|
| 133 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
| 134 |
+
)
|
| 135 |
+
attention_head_dim = num_attention_heads
|
| 136 |
+
|
| 137 |
+
up_block_type = (
|
| 138 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 139 |
+
)
|
| 140 |
+
if up_block_type == "UpBlock2D":
|
| 141 |
+
return UpBlock2D(
|
| 142 |
+
num_layers=num_layers,
|
| 143 |
+
in_channels=in_channels,
|
| 144 |
+
out_channels=out_channels,
|
| 145 |
+
prev_output_channel=prev_output_channel,
|
| 146 |
+
temb_channels=temb_channels,
|
| 147 |
+
resolution_idx=resolution_idx,
|
| 148 |
+
dropout=dropout,
|
| 149 |
+
add_upsample=add_upsample,
|
| 150 |
+
resnet_eps=resnet_eps,
|
| 151 |
+
resnet_act_fn=resnet_act_fn,
|
| 152 |
+
resnet_groups=resnet_groups,
|
| 153 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 154 |
+
)
|
| 155 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
| 156 |
+
if cross_attention_dim is None:
|
| 157 |
+
raise ValueError(
|
| 158 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
|
| 159 |
+
)
|
| 160 |
+
return CrossAttnUpBlock2D(
|
| 161 |
+
num_layers=num_layers,
|
| 162 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 163 |
+
in_channels=in_channels,
|
| 164 |
+
out_channels=out_channels,
|
| 165 |
+
prev_output_channel=prev_output_channel,
|
| 166 |
+
temb_channels=temb_channels,
|
| 167 |
+
resolution_idx=resolution_idx,
|
| 168 |
+
dropout=dropout,
|
| 169 |
+
add_upsample=add_upsample,
|
| 170 |
+
resnet_eps=resnet_eps,
|
| 171 |
+
resnet_act_fn=resnet_act_fn,
|
| 172 |
+
resnet_groups=resnet_groups,
|
| 173 |
+
cross_attention_dim=cross_attention_dim,
|
| 174 |
+
num_attention_heads=num_attention_heads,
|
| 175 |
+
dual_cross_attention=dual_cross_attention,
|
| 176 |
+
use_linear_projection=use_linear_projection,
|
| 177 |
+
only_cross_attention=only_cross_attention,
|
| 178 |
+
upcast_attention=upcast_attention,
|
| 179 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 180 |
+
attention_type=attention_type,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class AutoencoderTinyBlock(nn.Module):
|
| 187 |
+
"""
|
| 188 |
+
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
| 189 |
+
blocks.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
in_channels (`int`): The number of input channels.
|
| 193 |
+
out_channels (`int`): The number of output channels.
|
| 194 |
+
act_fn (`str`):
|
| 195 |
+
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
| 196 |
+
|
| 197 |
+
Returns:
|
| 198 |
+
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
| 199 |
+
`out_channels`.
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
| 203 |
+
super().__init__()
|
| 204 |
+
act_fn = get_activation(act_fn)
|
| 205 |
+
self.conv = nn.Sequential(
|
| 206 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
| 207 |
+
act_fn,
|
| 208 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
| 209 |
+
act_fn,
|
| 210 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
| 211 |
+
)
|
| 212 |
+
self.skip = (
|
| 213 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
| 214 |
+
if in_channels != out_channels
|
| 215 |
+
else nn.Identity()
|
| 216 |
+
)
|
| 217 |
+
self.fuse = nn.ReLU()
|
| 218 |
+
|
| 219 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
| 220 |
+
return self.fuse(self.conv(x) + self.skip(x))
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class UNetMidBlock2D(nn.Module):
|
| 224 |
+
"""
|
| 225 |
+
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
in_channels (`int`): The number of input channels.
|
| 229 |
+
temb_channels (`int`): The number of temporal embedding channels.
|
| 230 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
| 231 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
| 232 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
| 233 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
| 234 |
+
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
| 235 |
+
model on tasks with long-range temporal dependencies.
|
| 236 |
+
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
| 237 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
| 238 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
| 239 |
+
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
| 240 |
+
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
| 241 |
+
Whether to use pre-normalization for the resnet blocks.
|
| 242 |
+
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
| 243 |
+
attention_head_dim (`int`, *optional*, defaults to 1):
|
| 244 |
+
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
| 245 |
+
the number of input channels.
|
| 246 |
+
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
| 247 |
+
|
| 248 |
+
Returns:
|
| 249 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
| 250 |
+
in_channels, height, width)`.
|
| 251 |
+
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
def __init__(
|
| 255 |
+
self,
|
| 256 |
+
in_channels: int,
|
| 257 |
+
temb_channels: int,
|
| 258 |
+
dropout: float = 0.0,
|
| 259 |
+
num_layers: int = 1,
|
| 260 |
+
resnet_eps: float = 1e-6,
|
| 261 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
| 262 |
+
resnet_act_fn: str = "swish",
|
| 263 |
+
resnet_groups: int = 32,
|
| 264 |
+
attn_groups: Optional[int] = None,
|
| 265 |
+
resnet_pre_norm: bool = True,
|
| 266 |
+
add_attention: bool = True,
|
| 267 |
+
attention_head_dim: int = 1,
|
| 268 |
+
output_scale_factor: float = 1.0,
|
| 269 |
+
):
|
| 270 |
+
super().__init__()
|
| 271 |
+
resnet_groups = (
|
| 272 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 273 |
+
)
|
| 274 |
+
self.add_attention = add_attention
|
| 275 |
+
|
| 276 |
+
if attn_groups is None:
|
| 277 |
+
attn_groups = (
|
| 278 |
+
resnet_groups if resnet_time_scale_shift == "default" else None
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# there is always at least one resnet
|
| 282 |
+
resnets = [
|
| 283 |
+
ResnetBlock2D(
|
| 284 |
+
in_channels=in_channels,
|
| 285 |
+
out_channels=in_channels,
|
| 286 |
+
temb_channels=temb_channels,
|
| 287 |
+
eps=resnet_eps,
|
| 288 |
+
groups=resnet_groups,
|
| 289 |
+
dropout=dropout,
|
| 290 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 291 |
+
non_linearity=resnet_act_fn,
|
| 292 |
+
output_scale_factor=output_scale_factor,
|
| 293 |
+
pre_norm=resnet_pre_norm,
|
| 294 |
+
)
|
| 295 |
+
]
|
| 296 |
+
attentions = []
|
| 297 |
+
|
| 298 |
+
if attention_head_dim is None:
|
| 299 |
+
logger.warn(
|
| 300 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
| 301 |
+
)
|
| 302 |
+
attention_head_dim = in_channels
|
| 303 |
+
|
| 304 |
+
for _ in range(num_layers):
|
| 305 |
+
if self.add_attention:
|
| 306 |
+
attentions.append(
|
| 307 |
+
Attention(
|
| 308 |
+
in_channels,
|
| 309 |
+
heads=in_channels // attention_head_dim,
|
| 310 |
+
dim_head=attention_head_dim,
|
| 311 |
+
rescale_output_factor=output_scale_factor,
|
| 312 |
+
eps=resnet_eps,
|
| 313 |
+
norm_num_groups=attn_groups,
|
| 314 |
+
spatial_norm_dim=temb_channels
|
| 315 |
+
if resnet_time_scale_shift == "spatial"
|
| 316 |
+
else None,
|
| 317 |
+
residual_connection=True,
|
| 318 |
+
bias=True,
|
| 319 |
+
upcast_softmax=True,
|
| 320 |
+
_from_deprecated_attn_block=True,
|
| 321 |
+
)
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
attentions.append(None)
|
| 325 |
+
|
| 326 |
+
resnets.append(
|
| 327 |
+
ResnetBlock2D(
|
| 328 |
+
in_channels=in_channels,
|
| 329 |
+
out_channels=in_channels,
|
| 330 |
+
temb_channels=temb_channels,
|
| 331 |
+
eps=resnet_eps,
|
| 332 |
+
groups=resnet_groups,
|
| 333 |
+
dropout=dropout,
|
| 334 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 335 |
+
non_linearity=resnet_act_fn,
|
| 336 |
+
output_scale_factor=output_scale_factor,
|
| 337 |
+
pre_norm=resnet_pre_norm,
|
| 338 |
+
)
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
self.attentions = nn.ModuleList(attentions)
|
| 342 |
+
self.resnets = nn.ModuleList(resnets)
|
| 343 |
+
|
| 344 |
+
def forward(
|
| 345 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
|
| 346 |
+
) -> torch.FloatTensor:
|
| 347 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 348 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 349 |
+
if attn is not None:
|
| 350 |
+
hidden_states = attn(hidden_states, temb=temb)
|
| 351 |
+
hidden_states = resnet(hidden_states, temb)
|
| 352 |
+
|
| 353 |
+
return hidden_states
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
| 357 |
+
def __init__(
|
| 358 |
+
self,
|
| 359 |
+
in_channels: int,
|
| 360 |
+
temb_channels: int,
|
| 361 |
+
dropout: float = 0.0,
|
| 362 |
+
num_layers: int = 1,
|
| 363 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 364 |
+
resnet_eps: float = 1e-6,
|
| 365 |
+
resnet_time_scale_shift: str = "default",
|
| 366 |
+
resnet_act_fn: str = "swish",
|
| 367 |
+
resnet_groups: int = 32,
|
| 368 |
+
resnet_pre_norm: bool = True,
|
| 369 |
+
num_attention_heads: int = 1,
|
| 370 |
+
output_scale_factor: float = 1.0,
|
| 371 |
+
cross_attention_dim: int = 1280,
|
| 372 |
+
dual_cross_attention: bool = False,
|
| 373 |
+
use_linear_projection: bool = False,
|
| 374 |
+
upcast_attention: bool = False,
|
| 375 |
+
attention_type: str = "default",
|
| 376 |
+
):
|
| 377 |
+
super().__init__()
|
| 378 |
+
|
| 379 |
+
self.has_cross_attention = True
|
| 380 |
+
self.num_attention_heads = num_attention_heads
|
| 381 |
+
resnet_groups = (
|
| 382 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# support for variable transformer layers per block
|
| 386 |
+
if isinstance(transformer_layers_per_block, int):
|
| 387 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 388 |
+
|
| 389 |
+
# there is always at least one resnet
|
| 390 |
+
resnets = [
|
| 391 |
+
ResnetBlock2D(
|
| 392 |
+
in_channels=in_channels,
|
| 393 |
+
out_channels=in_channels,
|
| 394 |
+
temb_channels=temb_channels,
|
| 395 |
+
eps=resnet_eps,
|
| 396 |
+
groups=resnet_groups,
|
| 397 |
+
dropout=dropout,
|
| 398 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 399 |
+
non_linearity=resnet_act_fn,
|
| 400 |
+
output_scale_factor=output_scale_factor,
|
| 401 |
+
pre_norm=resnet_pre_norm,
|
| 402 |
+
)
|
| 403 |
+
]
|
| 404 |
+
attentions = []
|
| 405 |
+
|
| 406 |
+
for i in range(num_layers):
|
| 407 |
+
if not dual_cross_attention:
|
| 408 |
+
attentions.append(
|
| 409 |
+
Transformer2DModel(
|
| 410 |
+
num_attention_heads,
|
| 411 |
+
in_channels // num_attention_heads,
|
| 412 |
+
in_channels=in_channels,
|
| 413 |
+
num_layers=transformer_layers_per_block[i],
|
| 414 |
+
cross_attention_dim=cross_attention_dim,
|
| 415 |
+
norm_num_groups=resnet_groups,
|
| 416 |
+
use_linear_projection=use_linear_projection,
|
| 417 |
+
upcast_attention=upcast_attention,
|
| 418 |
+
attention_type=attention_type,
|
| 419 |
+
)
|
| 420 |
+
)
|
| 421 |
+
else:
|
| 422 |
+
attentions.append(
|
| 423 |
+
DualTransformer2DModel(
|
| 424 |
+
num_attention_heads,
|
| 425 |
+
in_channels // num_attention_heads,
|
| 426 |
+
in_channels=in_channels,
|
| 427 |
+
num_layers=1,
|
| 428 |
+
cross_attention_dim=cross_attention_dim,
|
| 429 |
+
norm_num_groups=resnet_groups,
|
| 430 |
+
)
|
| 431 |
+
)
|
| 432 |
+
resnets.append(
|
| 433 |
+
ResnetBlock2D(
|
| 434 |
+
in_channels=in_channels,
|
| 435 |
+
out_channels=in_channels,
|
| 436 |
+
temb_channels=temb_channels,
|
| 437 |
+
eps=resnet_eps,
|
| 438 |
+
groups=resnet_groups,
|
| 439 |
+
dropout=dropout,
|
| 440 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 441 |
+
non_linearity=resnet_act_fn,
|
| 442 |
+
output_scale_factor=output_scale_factor,
|
| 443 |
+
pre_norm=resnet_pre_norm,
|
| 444 |
+
)
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
self.attentions = nn.ModuleList(attentions)
|
| 448 |
+
self.resnets = nn.ModuleList(resnets)
|
| 449 |
+
|
| 450 |
+
self.gradient_checkpointing = False
|
| 451 |
+
|
| 452 |
+
def forward(
|
| 453 |
+
self,
|
| 454 |
+
hidden_states: torch.FloatTensor,
|
| 455 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 456 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 457 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 458 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 459 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 460 |
+
) -> torch.FloatTensor:
|
| 461 |
+
lora_scale = (
|
| 462 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 463 |
+
if cross_attention_kwargs is not None
|
| 464 |
+
else 1.0
|
| 465 |
+
)
|
| 466 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
| 467 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 468 |
+
if self.training and self.gradient_checkpointing:
|
| 469 |
+
|
| 470 |
+
def create_custom_forward(module, return_dict=None):
|
| 471 |
+
def custom_forward(*inputs):
|
| 472 |
+
if return_dict is not None:
|
| 473 |
+
return module(*inputs, return_dict=return_dict)
|
| 474 |
+
else:
|
| 475 |
+
return module(*inputs)
|
| 476 |
+
|
| 477 |
+
return custom_forward
|
| 478 |
+
|
| 479 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 480 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 481 |
+
)
|
| 482 |
+
hidden_states, ref_feature = attn(
|
| 483 |
+
hidden_states,
|
| 484 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 485 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 486 |
+
attention_mask=attention_mask,
|
| 487 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 488 |
+
return_dict=False,
|
| 489 |
+
)
|
| 490 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 491 |
+
create_custom_forward(resnet),
|
| 492 |
+
hidden_states,
|
| 493 |
+
temb,
|
| 494 |
+
**ckpt_kwargs,
|
| 495 |
+
)
|
| 496 |
+
else:
|
| 497 |
+
hidden_states, ref_feature = attn(
|
| 498 |
+
hidden_states,
|
| 499 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 500 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 501 |
+
attention_mask=attention_mask,
|
| 502 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 503 |
+
return_dict=False,
|
| 504 |
+
)
|
| 505 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
| 506 |
+
|
| 507 |
+
return hidden_states
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
class CrossAttnDownBlock2D(nn.Module):
|
| 511 |
+
def __init__(
|
| 512 |
+
self,
|
| 513 |
+
in_channels: int,
|
| 514 |
+
out_channels: int,
|
| 515 |
+
temb_channels: int,
|
| 516 |
+
dropout: float = 0.0,
|
| 517 |
+
num_layers: int = 1,
|
| 518 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 519 |
+
resnet_eps: float = 1e-6,
|
| 520 |
+
resnet_time_scale_shift: str = "default",
|
| 521 |
+
resnet_act_fn: str = "swish",
|
| 522 |
+
resnet_groups: int = 32,
|
| 523 |
+
resnet_pre_norm: bool = True,
|
| 524 |
+
num_attention_heads: int = 1,
|
| 525 |
+
cross_attention_dim: int = 1280,
|
| 526 |
+
output_scale_factor: float = 1.0,
|
| 527 |
+
downsample_padding: int = 1,
|
| 528 |
+
add_downsample: bool = True,
|
| 529 |
+
dual_cross_attention: bool = False,
|
| 530 |
+
use_linear_projection: bool = False,
|
| 531 |
+
only_cross_attention: bool = False,
|
| 532 |
+
upcast_attention: bool = False,
|
| 533 |
+
attention_type: str = "default",
|
| 534 |
+
):
|
| 535 |
+
super().__init__()
|
| 536 |
+
resnets = []
|
| 537 |
+
attentions = []
|
| 538 |
+
|
| 539 |
+
self.has_cross_attention = True
|
| 540 |
+
self.num_attention_heads = num_attention_heads
|
| 541 |
+
if isinstance(transformer_layers_per_block, int):
|
| 542 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 543 |
+
|
| 544 |
+
for i in range(num_layers):
|
| 545 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 546 |
+
resnets.append(
|
| 547 |
+
ResnetBlock2D(
|
| 548 |
+
in_channels=in_channels,
|
| 549 |
+
out_channels=out_channels,
|
| 550 |
+
temb_channels=temb_channels,
|
| 551 |
+
eps=resnet_eps,
|
| 552 |
+
groups=resnet_groups,
|
| 553 |
+
dropout=dropout,
|
| 554 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 555 |
+
non_linearity=resnet_act_fn,
|
| 556 |
+
output_scale_factor=output_scale_factor,
|
| 557 |
+
pre_norm=resnet_pre_norm,
|
| 558 |
+
)
|
| 559 |
+
)
|
| 560 |
+
if not dual_cross_attention:
|
| 561 |
+
attentions.append(
|
| 562 |
+
Transformer2DModel(
|
| 563 |
+
num_attention_heads,
|
| 564 |
+
out_channels // num_attention_heads,
|
| 565 |
+
in_channels=out_channels,
|
| 566 |
+
num_layers=transformer_layers_per_block[i],
|
| 567 |
+
cross_attention_dim=cross_attention_dim,
|
| 568 |
+
norm_num_groups=resnet_groups,
|
| 569 |
+
use_linear_projection=use_linear_projection,
|
| 570 |
+
only_cross_attention=only_cross_attention,
|
| 571 |
+
upcast_attention=upcast_attention,
|
| 572 |
+
attention_type=attention_type,
|
| 573 |
+
)
|
| 574 |
+
)
|
| 575 |
+
else:
|
| 576 |
+
attentions.append(
|
| 577 |
+
DualTransformer2DModel(
|
| 578 |
+
num_attention_heads,
|
| 579 |
+
out_channels // num_attention_heads,
|
| 580 |
+
in_channels=out_channels,
|
| 581 |
+
num_layers=1,
|
| 582 |
+
cross_attention_dim=cross_attention_dim,
|
| 583 |
+
norm_num_groups=resnet_groups,
|
| 584 |
+
)
|
| 585 |
+
)
|
| 586 |
+
self.attentions = nn.ModuleList(attentions)
|
| 587 |
+
self.resnets = nn.ModuleList(resnets)
|
| 588 |
+
|
| 589 |
+
if add_downsample:
|
| 590 |
+
self.downsamplers = nn.ModuleList(
|
| 591 |
+
[
|
| 592 |
+
Downsample2D(
|
| 593 |
+
out_channels,
|
| 594 |
+
use_conv=True,
|
| 595 |
+
out_channels=out_channels,
|
| 596 |
+
padding=downsample_padding,
|
| 597 |
+
name="op",
|
| 598 |
+
)
|
| 599 |
+
]
|
| 600 |
+
)
|
| 601 |
+
else:
|
| 602 |
+
self.downsamplers = None
|
| 603 |
+
|
| 604 |
+
self.gradient_checkpointing = False
|
| 605 |
+
|
| 606 |
+
def forward(
|
| 607 |
+
self,
|
| 608 |
+
hidden_states: torch.FloatTensor,
|
| 609 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 613 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 614 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
| 615 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
| 616 |
+
output_states = ()
|
| 617 |
+
|
| 618 |
+
lora_scale = (
|
| 619 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 620 |
+
if cross_attention_kwargs is not None
|
| 621 |
+
else 1.0
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
blocks = list(zip(self.resnets, self.attentions))
|
| 625 |
+
|
| 626 |
+
for i, (resnet, attn) in enumerate(blocks):
|
| 627 |
+
if self.training and self.gradient_checkpointing:
|
| 628 |
+
|
| 629 |
+
def create_custom_forward(module, return_dict=None):
|
| 630 |
+
def custom_forward(*inputs):
|
| 631 |
+
if return_dict is not None:
|
| 632 |
+
return module(*inputs, return_dict=return_dict)
|
| 633 |
+
else:
|
| 634 |
+
return module(*inputs)
|
| 635 |
+
|
| 636 |
+
return custom_forward
|
| 637 |
+
|
| 638 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 639 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 640 |
+
)
|
| 641 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 642 |
+
create_custom_forward(resnet),
|
| 643 |
+
hidden_states,
|
| 644 |
+
temb,
|
| 645 |
+
**ckpt_kwargs,
|
| 646 |
+
)
|
| 647 |
+
hidden_states, ref_feature = attn(
|
| 648 |
+
hidden_states,
|
| 649 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 650 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 651 |
+
attention_mask=attention_mask,
|
| 652 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 653 |
+
return_dict=False,
|
| 654 |
+
)
|
| 655 |
+
else:
|
| 656 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
| 657 |
+
hidden_states, ref_feature = attn(
|
| 658 |
+
hidden_states,
|
| 659 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 660 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 661 |
+
attention_mask=attention_mask,
|
| 662 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 663 |
+
return_dict=False,
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
| 667 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
| 668 |
+
hidden_states = hidden_states + additional_residuals
|
| 669 |
+
|
| 670 |
+
output_states = output_states + (hidden_states,)
|
| 671 |
+
|
| 672 |
+
if self.downsamplers is not None:
|
| 673 |
+
for downsampler in self.downsamplers:
|
| 674 |
+
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
| 675 |
+
|
| 676 |
+
output_states = output_states + (hidden_states,)
|
| 677 |
+
|
| 678 |
+
return hidden_states, output_states
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
class DownBlock2D(nn.Module):
|
| 682 |
+
def __init__(
|
| 683 |
+
self,
|
| 684 |
+
in_channels: int,
|
| 685 |
+
out_channels: int,
|
| 686 |
+
temb_channels: int,
|
| 687 |
+
dropout: float = 0.0,
|
| 688 |
+
num_layers: int = 1,
|
| 689 |
+
resnet_eps: float = 1e-6,
|
| 690 |
+
resnet_time_scale_shift: str = "default",
|
| 691 |
+
resnet_act_fn: str = "swish",
|
| 692 |
+
resnet_groups: int = 32,
|
| 693 |
+
resnet_pre_norm: bool = True,
|
| 694 |
+
output_scale_factor: float = 1.0,
|
| 695 |
+
add_downsample: bool = True,
|
| 696 |
+
downsample_padding: int = 1,
|
| 697 |
+
):
|
| 698 |
+
super().__init__()
|
| 699 |
+
resnets = []
|
| 700 |
+
|
| 701 |
+
for i in range(num_layers):
|
| 702 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 703 |
+
resnets.append(
|
| 704 |
+
ResnetBlock2D(
|
| 705 |
+
in_channels=in_channels,
|
| 706 |
+
out_channels=out_channels,
|
| 707 |
+
temb_channels=temb_channels,
|
| 708 |
+
eps=resnet_eps,
|
| 709 |
+
groups=resnet_groups,
|
| 710 |
+
dropout=dropout,
|
| 711 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 712 |
+
non_linearity=resnet_act_fn,
|
| 713 |
+
output_scale_factor=output_scale_factor,
|
| 714 |
+
pre_norm=resnet_pre_norm,
|
| 715 |
+
)
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
self.resnets = nn.ModuleList(resnets)
|
| 719 |
+
|
| 720 |
+
if add_downsample:
|
| 721 |
+
self.downsamplers = nn.ModuleList(
|
| 722 |
+
[
|
| 723 |
+
Downsample2D(
|
| 724 |
+
out_channels,
|
| 725 |
+
use_conv=True,
|
| 726 |
+
out_channels=out_channels,
|
| 727 |
+
padding=downsample_padding,
|
| 728 |
+
name="op",
|
| 729 |
+
)
|
| 730 |
+
]
|
| 731 |
+
)
|
| 732 |
+
else:
|
| 733 |
+
self.downsamplers = None
|
| 734 |
+
|
| 735 |
+
self.gradient_checkpointing = False
|
| 736 |
+
|
| 737 |
+
def forward(
|
| 738 |
+
self,
|
| 739 |
+
hidden_states: torch.FloatTensor,
|
| 740 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 741 |
+
scale: float = 1.0,
|
| 742 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
| 743 |
+
output_states = ()
|
| 744 |
+
|
| 745 |
+
for resnet in self.resnets:
|
| 746 |
+
if self.training and self.gradient_checkpointing:
|
| 747 |
+
|
| 748 |
+
def create_custom_forward(module):
|
| 749 |
+
def custom_forward(*inputs):
|
| 750 |
+
return module(*inputs)
|
| 751 |
+
|
| 752 |
+
return custom_forward
|
| 753 |
+
|
| 754 |
+
if is_torch_version(">=", "1.11.0"):
|
| 755 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 756 |
+
create_custom_forward(resnet),
|
| 757 |
+
hidden_states,
|
| 758 |
+
temb,
|
| 759 |
+
use_reentrant=False,
|
| 760 |
+
)
|
| 761 |
+
else:
|
| 762 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 763 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 764 |
+
)
|
| 765 |
+
else:
|
| 766 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
| 767 |
+
|
| 768 |
+
output_states = output_states + (hidden_states,)
|
| 769 |
+
|
| 770 |
+
if self.downsamplers is not None:
|
| 771 |
+
for downsampler in self.downsamplers:
|
| 772 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
| 773 |
+
|
| 774 |
+
output_states = output_states + (hidden_states,)
|
| 775 |
+
|
| 776 |
+
return hidden_states, output_states
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
class CrossAttnUpBlock2D(nn.Module):
|
| 780 |
+
def __init__(
|
| 781 |
+
self,
|
| 782 |
+
in_channels: int,
|
| 783 |
+
out_channels: int,
|
| 784 |
+
prev_output_channel: int,
|
| 785 |
+
temb_channels: int,
|
| 786 |
+
resolution_idx: Optional[int] = None,
|
| 787 |
+
dropout: float = 0.0,
|
| 788 |
+
num_layers: int = 1,
|
| 789 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 790 |
+
resnet_eps: float = 1e-6,
|
| 791 |
+
resnet_time_scale_shift: str = "default",
|
| 792 |
+
resnet_act_fn: str = "swish",
|
| 793 |
+
resnet_groups: int = 32,
|
| 794 |
+
resnet_pre_norm: bool = True,
|
| 795 |
+
num_attention_heads: int = 1,
|
| 796 |
+
cross_attention_dim: int = 1280,
|
| 797 |
+
output_scale_factor: float = 1.0,
|
| 798 |
+
add_upsample: bool = True,
|
| 799 |
+
dual_cross_attention: bool = False,
|
| 800 |
+
use_linear_projection: bool = False,
|
| 801 |
+
only_cross_attention: bool = False,
|
| 802 |
+
upcast_attention: bool = False,
|
| 803 |
+
attention_type: str = "default",
|
| 804 |
+
):
|
| 805 |
+
super().__init__()
|
| 806 |
+
resnets = []
|
| 807 |
+
attentions = []
|
| 808 |
+
|
| 809 |
+
self.has_cross_attention = True
|
| 810 |
+
self.num_attention_heads = num_attention_heads
|
| 811 |
+
|
| 812 |
+
if isinstance(transformer_layers_per_block, int):
|
| 813 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 814 |
+
|
| 815 |
+
for i in range(num_layers):
|
| 816 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 817 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 818 |
+
|
| 819 |
+
resnets.append(
|
| 820 |
+
ResnetBlock2D(
|
| 821 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 822 |
+
out_channels=out_channels,
|
| 823 |
+
temb_channels=temb_channels,
|
| 824 |
+
eps=resnet_eps,
|
| 825 |
+
groups=resnet_groups,
|
| 826 |
+
dropout=dropout,
|
| 827 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 828 |
+
non_linearity=resnet_act_fn,
|
| 829 |
+
output_scale_factor=output_scale_factor,
|
| 830 |
+
pre_norm=resnet_pre_norm,
|
| 831 |
+
)
|
| 832 |
+
)
|
| 833 |
+
if not dual_cross_attention:
|
| 834 |
+
attentions.append(
|
| 835 |
+
Transformer2DModel(
|
| 836 |
+
num_attention_heads,
|
| 837 |
+
out_channels // num_attention_heads,
|
| 838 |
+
in_channels=out_channels,
|
| 839 |
+
num_layers=transformer_layers_per_block[i],
|
| 840 |
+
cross_attention_dim=cross_attention_dim,
|
| 841 |
+
norm_num_groups=resnet_groups,
|
| 842 |
+
use_linear_projection=use_linear_projection,
|
| 843 |
+
only_cross_attention=only_cross_attention,
|
| 844 |
+
upcast_attention=upcast_attention,
|
| 845 |
+
attention_type=attention_type,
|
| 846 |
+
)
|
| 847 |
+
)
|
| 848 |
+
else:
|
| 849 |
+
attentions.append(
|
| 850 |
+
DualTransformer2DModel(
|
| 851 |
+
num_attention_heads,
|
| 852 |
+
out_channels // num_attention_heads,
|
| 853 |
+
in_channels=out_channels,
|
| 854 |
+
num_layers=1,
|
| 855 |
+
cross_attention_dim=cross_attention_dim,
|
| 856 |
+
norm_num_groups=resnet_groups,
|
| 857 |
+
)
|
| 858 |
+
)
|
| 859 |
+
self.attentions = nn.ModuleList(attentions)
|
| 860 |
+
self.resnets = nn.ModuleList(resnets)
|
| 861 |
+
|
| 862 |
+
if add_upsample:
|
| 863 |
+
self.upsamplers = nn.ModuleList(
|
| 864 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 865 |
+
)
|
| 866 |
+
else:
|
| 867 |
+
self.upsamplers = None
|
| 868 |
+
|
| 869 |
+
self.gradient_checkpointing = False
|
| 870 |
+
self.resolution_idx = resolution_idx
|
| 871 |
+
|
| 872 |
+
def forward(
|
| 873 |
+
self,
|
| 874 |
+
hidden_states: torch.FloatTensor,
|
| 875 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 876 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 877 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 878 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 879 |
+
upsample_size: Optional[int] = None,
|
| 880 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 881 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 882 |
+
) -> torch.FloatTensor:
|
| 883 |
+
lora_scale = (
|
| 884 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 885 |
+
if cross_attention_kwargs is not None
|
| 886 |
+
else 1.0
|
| 887 |
+
)
|
| 888 |
+
is_freeu_enabled = (
|
| 889 |
+
getattr(self, "s1", None)
|
| 890 |
+
and getattr(self, "s2", None)
|
| 891 |
+
and getattr(self, "b1", None)
|
| 892 |
+
and getattr(self, "b2", None)
|
| 893 |
+
)
|
| 894 |
+
|
| 895 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
| 896 |
+
# pop res hidden states
|
| 897 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 898 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 899 |
+
|
| 900 |
+
# FreeU: Only operate on the first two stages
|
| 901 |
+
if is_freeu_enabled:
|
| 902 |
+
hidden_states, res_hidden_states = apply_freeu(
|
| 903 |
+
self.resolution_idx,
|
| 904 |
+
hidden_states,
|
| 905 |
+
res_hidden_states,
|
| 906 |
+
s1=self.s1,
|
| 907 |
+
s2=self.s2,
|
| 908 |
+
b1=self.b1,
|
| 909 |
+
b2=self.b2,
|
| 910 |
+
)
|
| 911 |
+
|
| 912 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 913 |
+
|
| 914 |
+
if self.training and self.gradient_checkpointing:
|
| 915 |
+
|
| 916 |
+
def create_custom_forward(module, return_dict=None):
|
| 917 |
+
def custom_forward(*inputs):
|
| 918 |
+
if return_dict is not None:
|
| 919 |
+
return module(*inputs, return_dict=return_dict)
|
| 920 |
+
else:
|
| 921 |
+
return module(*inputs)
|
| 922 |
+
|
| 923 |
+
return custom_forward
|
| 924 |
+
|
| 925 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 926 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 927 |
+
)
|
| 928 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 929 |
+
create_custom_forward(resnet),
|
| 930 |
+
hidden_states,
|
| 931 |
+
temb,
|
| 932 |
+
**ckpt_kwargs,
|
| 933 |
+
)
|
| 934 |
+
hidden_states, ref_feature = attn(
|
| 935 |
+
hidden_states,
|
| 936 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 937 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 938 |
+
attention_mask=attention_mask,
|
| 939 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 940 |
+
return_dict=False,
|
| 941 |
+
)
|
| 942 |
+
else:
|
| 943 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
| 944 |
+
hidden_states, ref_feature = attn(
|
| 945 |
+
hidden_states,
|
| 946 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 947 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 948 |
+
attention_mask=attention_mask,
|
| 949 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 950 |
+
return_dict=False,
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
if self.upsamplers is not None:
|
| 954 |
+
for upsampler in self.upsamplers:
|
| 955 |
+
hidden_states = upsampler(
|
| 956 |
+
hidden_states, upsample_size, scale=lora_scale
|
| 957 |
+
)
|
| 958 |
+
|
| 959 |
+
return hidden_states
|
| 960 |
+
|
| 961 |
+
|
| 962 |
+
class UpBlock2D(nn.Module):
|
| 963 |
+
def __init__(
|
| 964 |
+
self,
|
| 965 |
+
in_channels: int,
|
| 966 |
+
prev_output_channel: int,
|
| 967 |
+
out_channels: int,
|
| 968 |
+
temb_channels: int,
|
| 969 |
+
resolution_idx: Optional[int] = None,
|
| 970 |
+
dropout: float = 0.0,
|
| 971 |
+
num_layers: int = 1,
|
| 972 |
+
resnet_eps: float = 1e-6,
|
| 973 |
+
resnet_time_scale_shift: str = "default",
|
| 974 |
+
resnet_act_fn: str = "swish",
|
| 975 |
+
resnet_groups: int = 32,
|
| 976 |
+
resnet_pre_norm: bool = True,
|
| 977 |
+
output_scale_factor: float = 1.0,
|
| 978 |
+
add_upsample: bool = True,
|
| 979 |
+
):
|
| 980 |
+
super().__init__()
|
| 981 |
+
resnets = []
|
| 982 |
+
|
| 983 |
+
for i in range(num_layers):
|
| 984 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 985 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 986 |
+
|
| 987 |
+
resnets.append(
|
| 988 |
+
ResnetBlock2D(
|
| 989 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 990 |
+
out_channels=out_channels,
|
| 991 |
+
temb_channels=temb_channels,
|
| 992 |
+
eps=resnet_eps,
|
| 993 |
+
groups=resnet_groups,
|
| 994 |
+
dropout=dropout,
|
| 995 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 996 |
+
non_linearity=resnet_act_fn,
|
| 997 |
+
output_scale_factor=output_scale_factor,
|
| 998 |
+
pre_norm=resnet_pre_norm,
|
| 999 |
+
)
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1003 |
+
|
| 1004 |
+
if add_upsample:
|
| 1005 |
+
self.upsamplers = nn.ModuleList(
|
| 1006 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 1007 |
+
)
|
| 1008 |
+
else:
|
| 1009 |
+
self.upsamplers = None
|
| 1010 |
+
|
| 1011 |
+
self.gradient_checkpointing = False
|
| 1012 |
+
self.resolution_idx = resolution_idx
|
| 1013 |
+
|
| 1014 |
+
def forward(
|
| 1015 |
+
self,
|
| 1016 |
+
hidden_states: torch.FloatTensor,
|
| 1017 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
| 1018 |
+
temb: Optional[torch.FloatTensor] = None,
|
| 1019 |
+
upsample_size: Optional[int] = None,
|
| 1020 |
+
scale: float = 1.0,
|
| 1021 |
+
) -> torch.FloatTensor:
|
| 1022 |
+
is_freeu_enabled = (
|
| 1023 |
+
getattr(self, "s1", None)
|
| 1024 |
+
and getattr(self, "s2", None)
|
| 1025 |
+
and getattr(self, "b1", None)
|
| 1026 |
+
and getattr(self, "b2", None)
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
for resnet in self.resnets:
|
| 1030 |
+
# pop res hidden states
|
| 1031 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 1032 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 1033 |
+
|
| 1034 |
+
# FreeU: Only operate on the first two stages
|
| 1035 |
+
if is_freeu_enabled:
|
| 1036 |
+
hidden_states, res_hidden_states = apply_freeu(
|
| 1037 |
+
self.resolution_idx,
|
| 1038 |
+
hidden_states,
|
| 1039 |
+
res_hidden_states,
|
| 1040 |
+
s1=self.s1,
|
| 1041 |
+
s2=self.s2,
|
| 1042 |
+
b1=self.b1,
|
| 1043 |
+
b2=self.b2,
|
| 1044 |
+
)
|
| 1045 |
+
|
| 1046 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 1047 |
+
|
| 1048 |
+
if self.training and self.gradient_checkpointing:
|
| 1049 |
+
|
| 1050 |
+
def create_custom_forward(module):
|
| 1051 |
+
def custom_forward(*inputs):
|
| 1052 |
+
return module(*inputs)
|
| 1053 |
+
|
| 1054 |
+
return custom_forward
|
| 1055 |
+
|
| 1056 |
+
if is_torch_version(">=", "1.11.0"):
|
| 1057 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1058 |
+
create_custom_forward(resnet),
|
| 1059 |
+
hidden_states,
|
| 1060 |
+
temb,
|
| 1061 |
+
use_reentrant=False,
|
| 1062 |
+
)
|
| 1063 |
+
else:
|
| 1064 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1065 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 1066 |
+
)
|
| 1067 |
+
else:
|
| 1068 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
| 1069 |
+
|
| 1070 |
+
if self.upsamplers is not None:
|
| 1071 |
+
for upsampler in self.upsamplers:
|
| 1072 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
| 1073 |
+
|
| 1074 |
+
return hidden_states
|
src/models/unet_2d_condition.py
ADDED
|
@@ -0,0 +1,1308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
| 10 |
+
from diffusers.models.activations import get_activation
|
| 11 |
+
from diffusers.models.attention_processor import (
|
| 12 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 13 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 14 |
+
AttentionProcessor,
|
| 15 |
+
AttnAddedKVProcessor,
|
| 16 |
+
AttnProcessor,
|
| 17 |
+
)
|
| 18 |
+
from diffusers.models.embeddings import (
|
| 19 |
+
GaussianFourierProjection,
|
| 20 |
+
ImageHintTimeEmbedding,
|
| 21 |
+
ImageProjection,
|
| 22 |
+
ImageTimeEmbedding,
|
| 23 |
+
PositionNet,
|
| 24 |
+
TextImageProjection,
|
| 25 |
+
TextImageTimeEmbedding,
|
| 26 |
+
TextTimeEmbedding,
|
| 27 |
+
TimestepEmbedding,
|
| 28 |
+
Timesteps,
|
| 29 |
+
)
|
| 30 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 31 |
+
from diffusers.utils import (
|
| 32 |
+
USE_PEFT_BACKEND,
|
| 33 |
+
BaseOutput,
|
| 34 |
+
deprecate,
|
| 35 |
+
logging,
|
| 36 |
+
scale_lora_layers,
|
| 37 |
+
unscale_lora_layers,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
from .unet_2d_blocks import (
|
| 41 |
+
UNetMidBlock2D,
|
| 42 |
+
UNetMidBlock2DCrossAttn,
|
| 43 |
+
get_down_block,
|
| 44 |
+
get_up_block,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
@dataclass
|
| 51 |
+
class UNet2DConditionOutput(BaseOutput):
|
| 52 |
+
"""
|
| 53 |
+
The output of [`UNet2DConditionModel`].
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 57 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
sample: torch.FloatTensor = None
|
| 61 |
+
ref_features: Tuple[torch.FloatTensor] = None
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
| 65 |
+
r"""
|
| 66 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
| 67 |
+
shaped output.
|
| 68 |
+
|
| 69 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 70 |
+
for all models (such as downloading or saving).
|
| 71 |
+
|
| 72 |
+
Parameters:
|
| 73 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
| 74 |
+
Height and width of input/output sample.
|
| 75 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
| 76 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
| 77 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
| 78 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
| 79 |
+
Whether to flip the sin to cos in the time embedding.
|
| 80 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 81 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 82 |
+
The tuple of downsample blocks to use.
|
| 83 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
| 84 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
| 85 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
| 86 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
| 87 |
+
The tuple of upsample blocks to use.
|
| 88 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
| 89 |
+
Whether to include self-attention in the basic transformer blocks, see
|
| 90 |
+
[`~models.attention.BasicTransformerBlock`].
|
| 91 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 92 |
+
The tuple of output channels for each block.
|
| 93 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
| 94 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
| 95 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
| 96 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 97 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 98 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
| 99 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
| 100 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
| 101 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
| 102 |
+
The dimension of the cross attention features.
|
| 103 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
| 104 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 105 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 106 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 107 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
| 108 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
| 109 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
| 110 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 111 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 112 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 113 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 114 |
+
dimension to `cross_attention_dim`.
|
| 115 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 116 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 117 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 118 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
| 119 |
+
num_attention_heads (`int`, *optional*):
|
| 120 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
| 121 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
| 122 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
| 123 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 124 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
| 125 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 126 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 127 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 128 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 129 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
| 130 |
+
Dimension for the timestep embeddings.
|
| 131 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
| 132 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 133 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 134 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
| 135 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
| 136 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
| 137 |
+
An optional override for the dimension of the projected time embedding.
|
| 138 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
| 139 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
| 140 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
| 141 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
| 142 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
| 143 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
| 144 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
| 145 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
| 146 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
| 147 |
+
*optional*): The dimension of the `class_labels` input when
|
| 148 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
| 149 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
| 150 |
+
embeddings with the class embeddings.
|
| 151 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
| 152 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
| 153 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
| 154 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
| 155 |
+
otherwise.
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
_supports_gradient_checkpointing = True
|
| 159 |
+
|
| 160 |
+
@register_to_config
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
sample_size: Optional[int] = None,
|
| 164 |
+
in_channels: int = 4,
|
| 165 |
+
out_channels: int = 4,
|
| 166 |
+
center_input_sample: bool = False,
|
| 167 |
+
flip_sin_to_cos: bool = True,
|
| 168 |
+
freq_shift: int = 0,
|
| 169 |
+
down_block_types: Tuple[str] = (
|
| 170 |
+
"CrossAttnDownBlock2D",
|
| 171 |
+
"CrossAttnDownBlock2D",
|
| 172 |
+
"CrossAttnDownBlock2D",
|
| 173 |
+
"DownBlock2D",
|
| 174 |
+
),
|
| 175 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 176 |
+
up_block_types: Tuple[str] = (
|
| 177 |
+
"UpBlock2D",
|
| 178 |
+
"CrossAttnUpBlock2D",
|
| 179 |
+
"CrossAttnUpBlock2D",
|
| 180 |
+
"CrossAttnUpBlock2D",
|
| 181 |
+
),
|
| 182 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 183 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 184 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
| 185 |
+
downsample_padding: int = 1,
|
| 186 |
+
mid_block_scale_factor: float = 1,
|
| 187 |
+
dropout: float = 0.0,
|
| 188 |
+
act_fn: str = "silu",
|
| 189 |
+
norm_num_groups: Optional[int] = 32,
|
| 190 |
+
norm_eps: float = 1e-5,
|
| 191 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
| 192 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
| 193 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
| 194 |
+
encoder_hid_dim: Optional[int] = None,
|
| 195 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 196 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 197 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
| 198 |
+
dual_cross_attention: bool = False,
|
| 199 |
+
use_linear_projection: bool = False,
|
| 200 |
+
class_embed_type: Optional[str] = None,
|
| 201 |
+
addition_embed_type: Optional[str] = None,
|
| 202 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 203 |
+
num_class_embeds: Optional[int] = None,
|
| 204 |
+
upcast_attention: bool = False,
|
| 205 |
+
resnet_time_scale_shift: str = "default",
|
| 206 |
+
resnet_skip_time_act: bool = False,
|
| 207 |
+
resnet_out_scale_factor: int = 1.0,
|
| 208 |
+
time_embedding_type: str = "positional",
|
| 209 |
+
time_embedding_dim: Optional[int] = None,
|
| 210 |
+
time_embedding_act_fn: Optional[str] = None,
|
| 211 |
+
timestep_post_act: Optional[str] = None,
|
| 212 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 213 |
+
conv_in_kernel: int = 3,
|
| 214 |
+
conv_out_kernel: int = 3,
|
| 215 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 216 |
+
attention_type: str = "default",
|
| 217 |
+
class_embeddings_concat: bool = False,
|
| 218 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
| 219 |
+
cross_attention_norm: Optional[str] = None,
|
| 220 |
+
addition_embed_type_num_heads=64,
|
| 221 |
+
):
|
| 222 |
+
super().__init__()
|
| 223 |
+
|
| 224 |
+
self.sample_size = sample_size
|
| 225 |
+
|
| 226 |
+
if num_attention_heads is not None:
|
| 227 |
+
raise ValueError(
|
| 228 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 232 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 233 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 234 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 235 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 236 |
+
# which is why we correct for the naming here.
|
| 237 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 238 |
+
|
| 239 |
+
# Check inputs
|
| 240 |
+
if len(down_block_types) != len(up_block_types):
|
| 241 |
+
raise ValueError(
|
| 242 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
if len(block_out_channels) != len(down_block_types):
|
| 246 |
+
raise ValueError(
|
| 247 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
if not isinstance(only_cross_attention, bool) and len(
|
| 251 |
+
only_cross_attention
|
| 252 |
+
) != len(down_block_types):
|
| 253 |
+
raise ValueError(
|
| 254 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
| 258 |
+
down_block_types
|
| 259 |
+
):
|
| 260 |
+
raise ValueError(
|
| 261 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(
|
| 265 |
+
down_block_types
|
| 266 |
+
):
|
| 267 |
+
raise ValueError(
|
| 268 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(
|
| 272 |
+
down_block_types
|
| 273 |
+
):
|
| 274 |
+
raise ValueError(
|
| 275 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(
|
| 279 |
+
down_block_types
|
| 280 |
+
):
|
| 281 |
+
raise ValueError(
|
| 282 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
| 283 |
+
)
|
| 284 |
+
if (
|
| 285 |
+
isinstance(transformer_layers_per_block, list)
|
| 286 |
+
and reverse_transformer_layers_per_block is None
|
| 287 |
+
):
|
| 288 |
+
for layer_number_per_block in transformer_layers_per_block:
|
| 289 |
+
if isinstance(layer_number_per_block, list):
|
| 290 |
+
raise ValueError(
|
| 291 |
+
"Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet."
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# input
|
| 295 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 296 |
+
self.conv_in = nn.Conv2d(
|
| 297 |
+
in_channels,
|
| 298 |
+
block_out_channels[0],
|
| 299 |
+
kernel_size=conv_in_kernel,
|
| 300 |
+
padding=conv_in_padding,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# time
|
| 304 |
+
if time_embedding_type == "fourier":
|
| 305 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
| 306 |
+
if time_embed_dim % 2 != 0:
|
| 307 |
+
raise ValueError(
|
| 308 |
+
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
|
| 309 |
+
)
|
| 310 |
+
self.time_proj = GaussianFourierProjection(
|
| 311 |
+
time_embed_dim // 2,
|
| 312 |
+
set_W_to_weight=False,
|
| 313 |
+
log=False,
|
| 314 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
| 315 |
+
)
|
| 316 |
+
timestep_input_dim = time_embed_dim
|
| 317 |
+
elif time_embedding_type == "positional":
|
| 318 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
| 319 |
+
|
| 320 |
+
self.time_proj = Timesteps(
|
| 321 |
+
block_out_channels[0], flip_sin_to_cos, freq_shift
|
| 322 |
+
)
|
| 323 |
+
timestep_input_dim = block_out_channels[0]
|
| 324 |
+
else:
|
| 325 |
+
raise ValueError(
|
| 326 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
self.time_embedding = TimestepEmbedding(
|
| 330 |
+
timestep_input_dim,
|
| 331 |
+
time_embed_dim,
|
| 332 |
+
act_fn=act_fn,
|
| 333 |
+
post_act_fn=timestep_post_act,
|
| 334 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 338 |
+
encoder_hid_dim_type = "text_proj"
|
| 339 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 340 |
+
logger.info(
|
| 341 |
+
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 345 |
+
raise ValueError(
|
| 346 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if encoder_hid_dim_type == "text_proj":
|
| 350 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 351 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 352 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 353 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 354 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
| 355 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 356 |
+
text_embed_dim=encoder_hid_dim,
|
| 357 |
+
image_embed_dim=cross_attention_dim,
|
| 358 |
+
cross_attention_dim=cross_attention_dim,
|
| 359 |
+
)
|
| 360 |
+
elif encoder_hid_dim_type == "image_proj":
|
| 361 |
+
# Kandinsky 2.2
|
| 362 |
+
self.encoder_hid_proj = ImageProjection(
|
| 363 |
+
image_embed_dim=encoder_hid_dim,
|
| 364 |
+
cross_attention_dim=cross_attention_dim,
|
| 365 |
+
)
|
| 366 |
+
elif encoder_hid_dim_type is not None:
|
| 367 |
+
raise ValueError(
|
| 368 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 369 |
+
)
|
| 370 |
+
else:
|
| 371 |
+
self.encoder_hid_proj = None
|
| 372 |
+
|
| 373 |
+
# class embedding
|
| 374 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 375 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 376 |
+
elif class_embed_type == "timestep":
|
| 377 |
+
self.class_embedding = TimestepEmbedding(
|
| 378 |
+
timestep_input_dim, time_embed_dim, act_fn=act_fn
|
| 379 |
+
)
|
| 380 |
+
elif class_embed_type == "identity":
|
| 381 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 382 |
+
elif class_embed_type == "projection":
|
| 383 |
+
if projection_class_embeddings_input_dim is None:
|
| 384 |
+
raise ValueError(
|
| 385 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 386 |
+
)
|
| 387 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 388 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 389 |
+
# 2. it projects from an arbitrary input dimension.
|
| 390 |
+
#
|
| 391 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 392 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 393 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 394 |
+
self.class_embedding = TimestepEmbedding(
|
| 395 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
| 396 |
+
)
|
| 397 |
+
elif class_embed_type == "simple_projection":
|
| 398 |
+
if projection_class_embeddings_input_dim is None:
|
| 399 |
+
raise ValueError(
|
| 400 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
| 401 |
+
)
|
| 402 |
+
self.class_embedding = nn.Linear(
|
| 403 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
| 404 |
+
)
|
| 405 |
+
else:
|
| 406 |
+
self.class_embedding = None
|
| 407 |
+
|
| 408 |
+
if addition_embed_type == "text":
|
| 409 |
+
if encoder_hid_dim is not None:
|
| 410 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 411 |
+
else:
|
| 412 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 413 |
+
|
| 414 |
+
self.add_embedding = TextTimeEmbedding(
|
| 415 |
+
text_time_embedding_from_dim,
|
| 416 |
+
time_embed_dim,
|
| 417 |
+
num_heads=addition_embed_type_num_heads,
|
| 418 |
+
)
|
| 419 |
+
elif addition_embed_type == "text_image":
|
| 420 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 421 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 422 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
| 423 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 424 |
+
text_embed_dim=cross_attention_dim,
|
| 425 |
+
image_embed_dim=cross_attention_dim,
|
| 426 |
+
time_embed_dim=time_embed_dim,
|
| 427 |
+
)
|
| 428 |
+
elif addition_embed_type == "text_time":
|
| 429 |
+
self.add_time_proj = Timesteps(
|
| 430 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
| 431 |
+
)
|
| 432 |
+
self.add_embedding = TimestepEmbedding(
|
| 433 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
| 434 |
+
)
|
| 435 |
+
elif addition_embed_type == "image":
|
| 436 |
+
# Kandinsky 2.2
|
| 437 |
+
self.add_embedding = ImageTimeEmbedding(
|
| 438 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
| 439 |
+
)
|
| 440 |
+
elif addition_embed_type == "image_hint":
|
| 441 |
+
# Kandinsky 2.2 ControlNet
|
| 442 |
+
self.add_embedding = ImageHintTimeEmbedding(
|
| 443 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
| 444 |
+
)
|
| 445 |
+
elif addition_embed_type is not None:
|
| 446 |
+
raise ValueError(
|
| 447 |
+
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
if time_embedding_act_fn is None:
|
| 451 |
+
self.time_embed_act = None
|
| 452 |
+
else:
|
| 453 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
| 454 |
+
|
| 455 |
+
self.down_blocks = nn.ModuleList([])
|
| 456 |
+
self.up_blocks = nn.ModuleList([])
|
| 457 |
+
|
| 458 |
+
if isinstance(only_cross_attention, bool):
|
| 459 |
+
if mid_block_only_cross_attention is None:
|
| 460 |
+
mid_block_only_cross_attention = only_cross_attention
|
| 461 |
+
|
| 462 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 463 |
+
|
| 464 |
+
if mid_block_only_cross_attention is None:
|
| 465 |
+
mid_block_only_cross_attention = False
|
| 466 |
+
|
| 467 |
+
if isinstance(num_attention_heads, int):
|
| 468 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 469 |
+
|
| 470 |
+
if isinstance(attention_head_dim, int):
|
| 471 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 472 |
+
|
| 473 |
+
if isinstance(cross_attention_dim, int):
|
| 474 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
| 475 |
+
|
| 476 |
+
if isinstance(layers_per_block, int):
|
| 477 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
| 478 |
+
|
| 479 |
+
if isinstance(transformer_layers_per_block, int):
|
| 480 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
| 481 |
+
down_block_types
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
if class_embeddings_concat:
|
| 485 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
| 486 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
| 487 |
+
# regular time embeddings
|
| 488 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
| 489 |
+
else:
|
| 490 |
+
blocks_time_embed_dim = time_embed_dim
|
| 491 |
+
|
| 492 |
+
# down
|
| 493 |
+
output_channel = block_out_channels[0]
|
| 494 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 495 |
+
input_channel = output_channel
|
| 496 |
+
output_channel = block_out_channels[i]
|
| 497 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 498 |
+
|
| 499 |
+
down_block = get_down_block(
|
| 500 |
+
down_block_type,
|
| 501 |
+
num_layers=layers_per_block[i],
|
| 502 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 503 |
+
in_channels=input_channel,
|
| 504 |
+
out_channels=output_channel,
|
| 505 |
+
temb_channels=blocks_time_embed_dim,
|
| 506 |
+
add_downsample=not is_final_block,
|
| 507 |
+
resnet_eps=norm_eps,
|
| 508 |
+
resnet_act_fn=act_fn,
|
| 509 |
+
resnet_groups=norm_num_groups,
|
| 510 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 511 |
+
num_attention_heads=num_attention_heads[i],
|
| 512 |
+
downsample_padding=downsample_padding,
|
| 513 |
+
dual_cross_attention=dual_cross_attention,
|
| 514 |
+
use_linear_projection=use_linear_projection,
|
| 515 |
+
only_cross_attention=only_cross_attention[i],
|
| 516 |
+
upcast_attention=upcast_attention,
|
| 517 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 518 |
+
attention_type=attention_type,
|
| 519 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 520 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 521 |
+
cross_attention_norm=cross_attention_norm,
|
| 522 |
+
attention_head_dim=attention_head_dim[i]
|
| 523 |
+
if attention_head_dim[i] is not None
|
| 524 |
+
else output_channel,
|
| 525 |
+
dropout=dropout,
|
| 526 |
+
)
|
| 527 |
+
self.down_blocks.append(down_block)
|
| 528 |
+
|
| 529 |
+
# mid
|
| 530 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 531 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 532 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 533 |
+
in_channels=block_out_channels[-1],
|
| 534 |
+
temb_channels=blocks_time_embed_dim,
|
| 535 |
+
dropout=dropout,
|
| 536 |
+
resnet_eps=norm_eps,
|
| 537 |
+
resnet_act_fn=act_fn,
|
| 538 |
+
output_scale_factor=mid_block_scale_factor,
|
| 539 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 540 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 541 |
+
num_attention_heads=num_attention_heads[-1],
|
| 542 |
+
resnet_groups=norm_num_groups,
|
| 543 |
+
dual_cross_attention=dual_cross_attention,
|
| 544 |
+
use_linear_projection=use_linear_projection,
|
| 545 |
+
upcast_attention=upcast_attention,
|
| 546 |
+
attention_type=attention_type,
|
| 547 |
+
)
|
| 548 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
| 549 |
+
raise NotImplementedError(f"Unsupport mid_block_type: {mid_block_type}")
|
| 550 |
+
elif mid_block_type == "UNetMidBlock2D":
|
| 551 |
+
self.mid_block = UNetMidBlock2D(
|
| 552 |
+
in_channels=block_out_channels[-1],
|
| 553 |
+
temb_channels=blocks_time_embed_dim,
|
| 554 |
+
dropout=dropout,
|
| 555 |
+
num_layers=0,
|
| 556 |
+
resnet_eps=norm_eps,
|
| 557 |
+
resnet_act_fn=act_fn,
|
| 558 |
+
output_scale_factor=mid_block_scale_factor,
|
| 559 |
+
resnet_groups=norm_num_groups,
|
| 560 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 561 |
+
add_attention=False,
|
| 562 |
+
)
|
| 563 |
+
elif mid_block_type is None:
|
| 564 |
+
self.mid_block = None
|
| 565 |
+
else:
|
| 566 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 567 |
+
|
| 568 |
+
# count how many layers upsample the images
|
| 569 |
+
self.num_upsamplers = 0
|
| 570 |
+
|
| 571 |
+
# up
|
| 572 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 573 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
| 574 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
| 575 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 576 |
+
reversed_transformer_layers_per_block = (
|
| 577 |
+
list(reversed(transformer_layers_per_block))
|
| 578 |
+
if reverse_transformer_layers_per_block is None
|
| 579 |
+
else reverse_transformer_layers_per_block
|
| 580 |
+
)
|
| 581 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 582 |
+
|
| 583 |
+
output_channel = reversed_block_out_channels[0]
|
| 584 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 585 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 586 |
+
|
| 587 |
+
prev_output_channel = output_channel
|
| 588 |
+
output_channel = reversed_block_out_channels[i]
|
| 589 |
+
input_channel = reversed_block_out_channels[
|
| 590 |
+
min(i + 1, len(block_out_channels) - 1)
|
| 591 |
+
]
|
| 592 |
+
|
| 593 |
+
# add upsample block for all BUT final layer
|
| 594 |
+
if not is_final_block:
|
| 595 |
+
add_upsample = True
|
| 596 |
+
self.num_upsamplers += 1
|
| 597 |
+
else:
|
| 598 |
+
add_upsample = False
|
| 599 |
+
|
| 600 |
+
up_block = get_up_block(
|
| 601 |
+
up_block_type,
|
| 602 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
| 603 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
| 604 |
+
in_channels=input_channel,
|
| 605 |
+
out_channels=output_channel,
|
| 606 |
+
prev_output_channel=prev_output_channel,
|
| 607 |
+
temb_channels=blocks_time_embed_dim,
|
| 608 |
+
add_upsample=add_upsample,
|
| 609 |
+
resnet_eps=norm_eps,
|
| 610 |
+
resnet_act_fn=act_fn,
|
| 611 |
+
resolution_idx=i,
|
| 612 |
+
resnet_groups=norm_num_groups,
|
| 613 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
| 614 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
| 615 |
+
dual_cross_attention=dual_cross_attention,
|
| 616 |
+
use_linear_projection=use_linear_projection,
|
| 617 |
+
only_cross_attention=only_cross_attention[i],
|
| 618 |
+
upcast_attention=upcast_attention,
|
| 619 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 620 |
+
attention_type=attention_type,
|
| 621 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
| 622 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
| 623 |
+
cross_attention_norm=cross_attention_norm,
|
| 624 |
+
attention_head_dim=attention_head_dim[i]
|
| 625 |
+
if attention_head_dim[i] is not None
|
| 626 |
+
else output_channel,
|
| 627 |
+
dropout=dropout,
|
| 628 |
+
)
|
| 629 |
+
self.up_blocks.append(up_block)
|
| 630 |
+
prev_output_channel = output_channel
|
| 631 |
+
|
| 632 |
+
# out
|
| 633 |
+
if norm_num_groups is not None:
|
| 634 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 635 |
+
num_channels=block_out_channels[0],
|
| 636 |
+
num_groups=norm_num_groups,
|
| 637 |
+
eps=norm_eps,
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
self.conv_act = get_activation(act_fn)
|
| 641 |
+
|
| 642 |
+
else:
|
| 643 |
+
self.conv_norm_out = None
|
| 644 |
+
self.conv_act = None
|
| 645 |
+
self.conv_norm_out = None
|
| 646 |
+
|
| 647 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
| 648 |
+
# self.conv_out = nn.Conv2d(
|
| 649 |
+
# block_out_channels[0],
|
| 650 |
+
# out_channels,
|
| 651 |
+
# kernel_size=conv_out_kernel,
|
| 652 |
+
# padding=conv_out_padding,
|
| 653 |
+
# )
|
| 654 |
+
|
| 655 |
+
if attention_type in ["gated", "gated-text-image"]:
|
| 656 |
+
positive_len = 768
|
| 657 |
+
if isinstance(cross_attention_dim, int):
|
| 658 |
+
positive_len = cross_attention_dim
|
| 659 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(
|
| 660 |
+
cross_attention_dim, list
|
| 661 |
+
):
|
| 662 |
+
positive_len = cross_attention_dim[0]
|
| 663 |
+
|
| 664 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
| 665 |
+
self.position_net = PositionNet(
|
| 666 |
+
positive_len=positive_len,
|
| 667 |
+
out_dim=cross_attention_dim,
|
| 668 |
+
feature_type=feature_type,
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
@property
|
| 672 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 673 |
+
r"""
|
| 674 |
+
Returns:
|
| 675 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 676 |
+
indexed by its weight name.
|
| 677 |
+
"""
|
| 678 |
+
# set recursively
|
| 679 |
+
processors = {}
|
| 680 |
+
|
| 681 |
+
def fn_recursive_add_processors(
|
| 682 |
+
name: str,
|
| 683 |
+
module: torch.nn.Module,
|
| 684 |
+
processors: Dict[str, AttentionProcessor],
|
| 685 |
+
):
|
| 686 |
+
if hasattr(module, "get_processor"):
|
| 687 |
+
processors[f"{name}.processor"] = module.get_processor(
|
| 688 |
+
return_deprecated_lora=True
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
for sub_name, child in module.named_children():
|
| 692 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 693 |
+
|
| 694 |
+
return processors
|
| 695 |
+
|
| 696 |
+
for name, module in self.named_children():
|
| 697 |
+
fn_recursive_add_processors(name, module, processors)
|
| 698 |
+
|
| 699 |
+
return processors
|
| 700 |
+
|
| 701 |
+
def set_attn_processor(
|
| 702 |
+
self,
|
| 703 |
+
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
| 704 |
+
_remove_lora=False,
|
| 705 |
+
):
|
| 706 |
+
r"""
|
| 707 |
+
Sets the attention processor to use to compute attention.
|
| 708 |
+
|
| 709 |
+
Parameters:
|
| 710 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 711 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 712 |
+
for **all** `Attention` layers.
|
| 713 |
+
|
| 714 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 715 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 716 |
+
|
| 717 |
+
"""
|
| 718 |
+
count = len(self.attn_processors.keys())
|
| 719 |
+
|
| 720 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 721 |
+
raise ValueError(
|
| 722 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 723 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 724 |
+
)
|
| 725 |
+
|
| 726 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 727 |
+
if hasattr(module, "set_processor"):
|
| 728 |
+
if not isinstance(processor, dict):
|
| 729 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
| 730 |
+
else:
|
| 731 |
+
module.set_processor(
|
| 732 |
+
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
for sub_name, child in module.named_children():
|
| 736 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 737 |
+
|
| 738 |
+
for name, module in self.named_children():
|
| 739 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 740 |
+
|
| 741 |
+
def set_default_attn_processor(self):
|
| 742 |
+
"""
|
| 743 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 744 |
+
"""
|
| 745 |
+
if all(
|
| 746 |
+
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
| 747 |
+
for proc in self.attn_processors.values()
|
| 748 |
+
):
|
| 749 |
+
processor = AttnAddedKVProcessor()
|
| 750 |
+
elif all(
|
| 751 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
| 752 |
+
for proc in self.attn_processors.values()
|
| 753 |
+
):
|
| 754 |
+
processor = AttnProcessor()
|
| 755 |
+
else:
|
| 756 |
+
raise ValueError(
|
| 757 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
| 761 |
+
|
| 762 |
+
def set_attention_slice(self, slice_size):
|
| 763 |
+
r"""
|
| 764 |
+
Enable sliced attention computation.
|
| 765 |
+
|
| 766 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 767 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 768 |
+
|
| 769 |
+
Args:
|
| 770 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 771 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 772 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 773 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 774 |
+
must be a multiple of `slice_size`.
|
| 775 |
+
"""
|
| 776 |
+
sliceable_head_dims = []
|
| 777 |
+
|
| 778 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 779 |
+
if hasattr(module, "set_attention_slice"):
|
| 780 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 781 |
+
|
| 782 |
+
for child in module.children():
|
| 783 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 784 |
+
|
| 785 |
+
# retrieve number of attention layers
|
| 786 |
+
for module in self.children():
|
| 787 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 788 |
+
|
| 789 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 790 |
+
|
| 791 |
+
if slice_size == "auto":
|
| 792 |
+
# half the attention head size is usually a good trade-off between
|
| 793 |
+
# speed and memory
|
| 794 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 795 |
+
elif slice_size == "max":
|
| 796 |
+
# make smallest slice possible
|
| 797 |
+
slice_size = num_sliceable_layers * [1]
|
| 798 |
+
|
| 799 |
+
slice_size = (
|
| 800 |
+
num_sliceable_layers * [slice_size]
|
| 801 |
+
if not isinstance(slice_size, list)
|
| 802 |
+
else slice_size
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 806 |
+
raise ValueError(
|
| 807 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 808 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
for i in range(len(slice_size)):
|
| 812 |
+
size = slice_size[i]
|
| 813 |
+
dim = sliceable_head_dims[i]
|
| 814 |
+
if size is not None and size > dim:
|
| 815 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 816 |
+
|
| 817 |
+
# Recursively walk through all the children.
|
| 818 |
+
# Any children which exposes the set_attention_slice method
|
| 819 |
+
# gets the message
|
| 820 |
+
def fn_recursive_set_attention_slice(
|
| 821 |
+
module: torch.nn.Module, slice_size: List[int]
|
| 822 |
+
):
|
| 823 |
+
if hasattr(module, "set_attention_slice"):
|
| 824 |
+
module.set_attention_slice(slice_size.pop())
|
| 825 |
+
|
| 826 |
+
for child in module.children():
|
| 827 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 828 |
+
|
| 829 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 830 |
+
for module in self.children():
|
| 831 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 832 |
+
|
| 833 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 834 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 835 |
+
module.gradient_checkpointing = value
|
| 836 |
+
|
| 837 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
| 838 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
| 839 |
+
|
| 840 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
| 841 |
+
|
| 842 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
| 843 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
| 844 |
+
|
| 845 |
+
Args:
|
| 846 |
+
s1 (`float`):
|
| 847 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
| 848 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 849 |
+
s2 (`float`):
|
| 850 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
| 851 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 852 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 853 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 854 |
+
"""
|
| 855 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 856 |
+
setattr(upsample_block, "s1", s1)
|
| 857 |
+
setattr(upsample_block, "s2", s2)
|
| 858 |
+
setattr(upsample_block, "b1", b1)
|
| 859 |
+
setattr(upsample_block, "b2", b2)
|
| 860 |
+
|
| 861 |
+
def disable_freeu(self):
|
| 862 |
+
"""Disables the FreeU mechanism."""
|
| 863 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
| 864 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 865 |
+
for k in freeu_keys:
|
| 866 |
+
if (
|
| 867 |
+
hasattr(upsample_block, k)
|
| 868 |
+
or getattr(upsample_block, k, None) is not None
|
| 869 |
+
):
|
| 870 |
+
setattr(upsample_block, k, None)
|
| 871 |
+
|
| 872 |
+
def forward(
|
| 873 |
+
self,
|
| 874 |
+
sample: torch.FloatTensor,
|
| 875 |
+
timestep: Union[torch.Tensor, float, int],
|
| 876 |
+
encoder_hidden_states: torch.Tensor,
|
| 877 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 878 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 879 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 880 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 881 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 882 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 883 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 884 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 885 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 886 |
+
return_dict: bool = True,
|
| 887 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 888 |
+
r"""
|
| 889 |
+
The [`UNet2DConditionModel`] forward method.
|
| 890 |
+
|
| 891 |
+
Args:
|
| 892 |
+
sample (`torch.FloatTensor`):
|
| 893 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
| 894 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
| 895 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
| 896 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
| 897 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 898 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 899 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
| 900 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
| 901 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
| 902 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 903 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 904 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 905 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 906 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 907 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 908 |
+
`self.processor` in
|
| 909 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 910 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 911 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
| 912 |
+
are passed along to the UNet blocks.
|
| 913 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
| 914 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
| 915 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
| 916 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
| 917 |
+
encoder_attention_mask (`torch.Tensor`):
|
| 918 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
| 919 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
| 920 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
| 921 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 922 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 923 |
+
tuple.
|
| 924 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 925 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
| 926 |
+
added_cond_kwargs: (`dict`, *optional*):
|
| 927 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
| 928 |
+
are passed along to the UNet blocks.
|
| 929 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
| 930 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
| 931 |
+
example from ControlNet side model(s)
|
| 932 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
| 933 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
| 934 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
| 935 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
| 936 |
+
|
| 937 |
+
Returns:
|
| 938 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 939 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
| 940 |
+
a `tuple` is returned where the first element is the sample tensor.
|
| 941 |
+
"""
|
| 942 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 943 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 944 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 945 |
+
# on the fly if necessary.
|
| 946 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 947 |
+
|
| 948 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 949 |
+
forward_upsample_size = False
|
| 950 |
+
upsample_size = None
|
| 951 |
+
|
| 952 |
+
for dim in sample.shape[-2:]:
|
| 953 |
+
if dim % default_overall_up_factor != 0:
|
| 954 |
+
# Forward upsample size to force interpolation output size.
|
| 955 |
+
forward_upsample_size = True
|
| 956 |
+
break
|
| 957 |
+
|
| 958 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
| 959 |
+
# expects mask of shape:
|
| 960 |
+
# [batch, key_tokens]
|
| 961 |
+
# adds singleton query_tokens dimension:
|
| 962 |
+
# [batch, 1, key_tokens]
|
| 963 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 964 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 965 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 966 |
+
if attention_mask is not None:
|
| 967 |
+
# assume that mask is expressed as:
|
| 968 |
+
# (1 = keep, 0 = discard)
|
| 969 |
+
# convert mask into a bias that can be added to attention scores:
|
| 970 |
+
# (keep = +0, discard = -10000.0)
|
| 971 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 972 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 973 |
+
|
| 974 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 975 |
+
if encoder_attention_mask is not None:
|
| 976 |
+
encoder_attention_mask = (
|
| 977 |
+
1 - encoder_attention_mask.to(sample.dtype)
|
| 978 |
+
) * -10000.0
|
| 979 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 980 |
+
|
| 981 |
+
# 0. center input if necessary
|
| 982 |
+
if self.config.center_input_sample:
|
| 983 |
+
sample = 2 * sample - 1.0
|
| 984 |
+
|
| 985 |
+
# 1. time
|
| 986 |
+
timesteps = timestep
|
| 987 |
+
if not torch.is_tensor(timesteps):
|
| 988 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 989 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 990 |
+
is_mps = sample.device.type == "mps"
|
| 991 |
+
if isinstance(timestep, float):
|
| 992 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 993 |
+
else:
|
| 994 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 995 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 996 |
+
elif len(timesteps.shape) == 0:
|
| 997 |
+
timesteps = timesteps[None].to(sample.device)
|
| 998 |
+
|
| 999 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1000 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 1001 |
+
|
| 1002 |
+
t_emb = self.time_proj(timesteps)
|
| 1003 |
+
|
| 1004 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 1005 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 1006 |
+
# there might be better ways to encapsulate this.
|
| 1007 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 1008 |
+
|
| 1009 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 1010 |
+
aug_emb = None
|
| 1011 |
+
|
| 1012 |
+
if self.class_embedding is not None:
|
| 1013 |
+
if class_labels is None:
|
| 1014 |
+
raise ValueError(
|
| 1015 |
+
"class_labels should be provided when num_class_embeds > 0"
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
if self.config.class_embed_type == "timestep":
|
| 1019 |
+
class_labels = self.time_proj(class_labels)
|
| 1020 |
+
|
| 1021 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 1022 |
+
# there might be better ways to encapsulate this.
|
| 1023 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 1024 |
+
|
| 1025 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
| 1026 |
+
|
| 1027 |
+
if self.config.class_embeddings_concat:
|
| 1028 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 1029 |
+
else:
|
| 1030 |
+
emb = emb + class_emb
|
| 1031 |
+
|
| 1032 |
+
if self.config.addition_embed_type == "text":
|
| 1033 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 1034 |
+
elif self.config.addition_embed_type == "text_image":
|
| 1035 |
+
# Kandinsky 2.1 - style
|
| 1036 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1037 |
+
raise ValueError(
|
| 1038 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 1039 |
+
)
|
| 1040 |
+
|
| 1041 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1042 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
| 1043 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
| 1044 |
+
elif self.config.addition_embed_type == "text_time":
|
| 1045 |
+
# SDXL - style
|
| 1046 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 1047 |
+
raise ValueError(
|
| 1048 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 1049 |
+
)
|
| 1050 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 1051 |
+
if "time_ids" not in added_cond_kwargs:
|
| 1052 |
+
raise ValueError(
|
| 1053 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 1054 |
+
)
|
| 1055 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 1056 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 1057 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 1058 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 1059 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 1060 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 1061 |
+
elif self.config.addition_embed_type == "image":
|
| 1062 |
+
# Kandinsky 2.2 - style
|
| 1063 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1064 |
+
raise ValueError(
|
| 1065 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
| 1066 |
+
)
|
| 1067 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1068 |
+
aug_emb = self.add_embedding(image_embs)
|
| 1069 |
+
elif self.config.addition_embed_type == "image_hint":
|
| 1070 |
+
# Kandinsky 2.2 - style
|
| 1071 |
+
if (
|
| 1072 |
+
"image_embeds" not in added_cond_kwargs
|
| 1073 |
+
or "hint" not in added_cond_kwargs
|
| 1074 |
+
):
|
| 1075 |
+
raise ValueError(
|
| 1076 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
| 1077 |
+
)
|
| 1078 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
| 1079 |
+
hint = added_cond_kwargs.get("hint")
|
| 1080 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
| 1081 |
+
sample = torch.cat([sample, hint], dim=1)
|
| 1082 |
+
|
| 1083 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 1084 |
+
|
| 1085 |
+
if self.time_embed_act is not None:
|
| 1086 |
+
emb = self.time_embed_act(emb)
|
| 1087 |
+
|
| 1088 |
+
if (
|
| 1089 |
+
self.encoder_hid_proj is not None
|
| 1090 |
+
and self.config.encoder_hid_dim_type == "text_proj"
|
| 1091 |
+
):
|
| 1092 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 1093 |
+
elif (
|
| 1094 |
+
self.encoder_hid_proj is not None
|
| 1095 |
+
and self.config.encoder_hid_dim_type == "text_image_proj"
|
| 1096 |
+
):
|
| 1097 |
+
# Kadinsky 2.1 - style
|
| 1098 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1099 |
+
raise ValueError(
|
| 1100 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1101 |
+
)
|
| 1102 |
+
|
| 1103 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1104 |
+
encoder_hidden_states = self.encoder_hid_proj(
|
| 1105 |
+
encoder_hidden_states, image_embeds
|
| 1106 |
+
)
|
| 1107 |
+
elif (
|
| 1108 |
+
self.encoder_hid_proj is not None
|
| 1109 |
+
and self.config.encoder_hid_dim_type == "image_proj"
|
| 1110 |
+
):
|
| 1111 |
+
# Kandinsky 2.2 - style
|
| 1112 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1113 |
+
raise ValueError(
|
| 1114 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1115 |
+
)
|
| 1116 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1117 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
| 1118 |
+
elif (
|
| 1119 |
+
self.encoder_hid_proj is not None
|
| 1120 |
+
and self.config.encoder_hid_dim_type == "ip_image_proj"
|
| 1121 |
+
):
|
| 1122 |
+
if "image_embeds" not in added_cond_kwargs:
|
| 1123 |
+
raise ValueError(
|
| 1124 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
| 1125 |
+
)
|
| 1126 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
| 1127 |
+
image_embeds = self.encoder_hid_proj(image_embeds).to(
|
| 1128 |
+
encoder_hidden_states.dtype
|
| 1129 |
+
)
|
| 1130 |
+
encoder_hidden_states = torch.cat(
|
| 1131 |
+
[encoder_hidden_states, image_embeds], dim=1
|
| 1132 |
+
)
|
| 1133 |
+
|
| 1134 |
+
# 2. pre-process
|
| 1135 |
+
sample = self.conv_in(sample)
|
| 1136 |
+
|
| 1137 |
+
# 2.5 GLIGEN position net
|
| 1138 |
+
if (
|
| 1139 |
+
cross_attention_kwargs is not None
|
| 1140 |
+
and cross_attention_kwargs.get("gligen", None) is not None
|
| 1141 |
+
):
|
| 1142 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
| 1143 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
| 1144 |
+
cross_attention_kwargs["gligen"] = {
|
| 1145 |
+
"objs": self.position_net(**gligen_args)
|
| 1146 |
+
}
|
| 1147 |
+
|
| 1148 |
+
# 3. down
|
| 1149 |
+
lora_scale = (
|
| 1150 |
+
cross_attention_kwargs.get("scale", 1.0)
|
| 1151 |
+
if cross_attention_kwargs is not None
|
| 1152 |
+
else 1.0
|
| 1153 |
+
)
|
| 1154 |
+
if USE_PEFT_BACKEND:
|
| 1155 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 1156 |
+
scale_lora_layers(self, lora_scale)
|
| 1157 |
+
|
| 1158 |
+
is_controlnet = (
|
| 1159 |
+
mid_block_additional_residual is not None
|
| 1160 |
+
and down_block_additional_residuals is not None
|
| 1161 |
+
)
|
| 1162 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
| 1163 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
| 1164 |
+
# maintain backward compatibility for legacy usage, where
|
| 1165 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
| 1166 |
+
# but can only use one or the other
|
| 1167 |
+
if (
|
| 1168 |
+
not is_adapter
|
| 1169 |
+
and mid_block_additional_residual is None
|
| 1170 |
+
and down_block_additional_residuals is not None
|
| 1171 |
+
):
|
| 1172 |
+
deprecate(
|
| 1173 |
+
"T2I should not use down_block_additional_residuals",
|
| 1174 |
+
"1.3.0",
|
| 1175 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
| 1176 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
| 1177 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
| 1178 |
+
standard_warn=False,
|
| 1179 |
+
)
|
| 1180 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
| 1181 |
+
is_adapter = True
|
| 1182 |
+
|
| 1183 |
+
down_block_res_samples = (sample,)
|
| 1184 |
+
tot_referece_features = ()
|
| 1185 |
+
for downsample_block in self.down_blocks:
|
| 1186 |
+
if (
|
| 1187 |
+
hasattr(downsample_block, "has_cross_attention")
|
| 1188 |
+
and downsample_block.has_cross_attention
|
| 1189 |
+
):
|
| 1190 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
| 1191 |
+
additional_residuals = {}
|
| 1192 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
| 1193 |
+
additional_residuals[
|
| 1194 |
+
"additional_residuals"
|
| 1195 |
+
] = down_intrablock_additional_residuals.pop(0)
|
| 1196 |
+
|
| 1197 |
+
sample, res_samples = downsample_block(
|
| 1198 |
+
hidden_states=sample,
|
| 1199 |
+
temb=emb,
|
| 1200 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1201 |
+
attention_mask=attention_mask,
|
| 1202 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1203 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1204 |
+
**additional_residuals,
|
| 1205 |
+
)
|
| 1206 |
+
else:
|
| 1207 |
+
sample, res_samples = downsample_block(
|
| 1208 |
+
hidden_states=sample, temb=emb, scale=lora_scale
|
| 1209 |
+
)
|
| 1210 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
| 1211 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
| 1212 |
+
|
| 1213 |
+
down_block_res_samples += res_samples
|
| 1214 |
+
|
| 1215 |
+
if is_controlnet:
|
| 1216 |
+
new_down_block_res_samples = ()
|
| 1217 |
+
|
| 1218 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 1219 |
+
down_block_res_samples, down_block_additional_residuals
|
| 1220 |
+
):
|
| 1221 |
+
down_block_res_sample = (
|
| 1222 |
+
down_block_res_sample + down_block_additional_residual
|
| 1223 |
+
)
|
| 1224 |
+
new_down_block_res_samples = new_down_block_res_samples + (
|
| 1225 |
+
down_block_res_sample,
|
| 1226 |
+
)
|
| 1227 |
+
|
| 1228 |
+
down_block_res_samples = new_down_block_res_samples
|
| 1229 |
+
|
| 1230 |
+
# 4. mid
|
| 1231 |
+
if self.mid_block is not None:
|
| 1232 |
+
if (
|
| 1233 |
+
hasattr(self.mid_block, "has_cross_attention")
|
| 1234 |
+
and self.mid_block.has_cross_attention
|
| 1235 |
+
):
|
| 1236 |
+
sample = self.mid_block(
|
| 1237 |
+
sample,
|
| 1238 |
+
emb,
|
| 1239 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1240 |
+
attention_mask=attention_mask,
|
| 1241 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1242 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1243 |
+
)
|
| 1244 |
+
else:
|
| 1245 |
+
sample = self.mid_block(sample, emb)
|
| 1246 |
+
|
| 1247 |
+
# To support T2I-Adapter-XL
|
| 1248 |
+
if (
|
| 1249 |
+
is_adapter
|
| 1250 |
+
and len(down_intrablock_additional_residuals) > 0
|
| 1251 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
| 1252 |
+
):
|
| 1253 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
| 1254 |
+
|
| 1255 |
+
if is_controlnet:
|
| 1256 |
+
sample = sample + mid_block_additional_residual
|
| 1257 |
+
|
| 1258 |
+
# 5. up
|
| 1259 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1260 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 1261 |
+
|
| 1262 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 1263 |
+
down_block_res_samples = down_block_res_samples[
|
| 1264 |
+
: -len(upsample_block.resnets)
|
| 1265 |
+
]
|
| 1266 |
+
|
| 1267 |
+
# if we have not reached the final block and need to forward the
|
| 1268 |
+
# upsample size, we do it here
|
| 1269 |
+
if not is_final_block and forward_upsample_size:
|
| 1270 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 1271 |
+
|
| 1272 |
+
if (
|
| 1273 |
+
hasattr(upsample_block, "has_cross_attention")
|
| 1274 |
+
and upsample_block.has_cross_attention
|
| 1275 |
+
):
|
| 1276 |
+
sample = upsample_block(
|
| 1277 |
+
hidden_states=sample,
|
| 1278 |
+
temb=emb,
|
| 1279 |
+
res_hidden_states_tuple=res_samples,
|
| 1280 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1281 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1282 |
+
upsample_size=upsample_size,
|
| 1283 |
+
attention_mask=attention_mask,
|
| 1284 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1285 |
+
)
|
| 1286 |
+
else:
|
| 1287 |
+
sample = upsample_block(
|
| 1288 |
+
hidden_states=sample,
|
| 1289 |
+
temb=emb,
|
| 1290 |
+
res_hidden_states_tuple=res_samples,
|
| 1291 |
+
upsample_size=upsample_size,
|
| 1292 |
+
scale=lora_scale,
|
| 1293 |
+
)
|
| 1294 |
+
|
| 1295 |
+
# 6. post-process
|
| 1296 |
+
# if self.conv_norm_out:
|
| 1297 |
+
# sample = self.conv_norm_out(sample)
|
| 1298 |
+
# sample = self.conv_act(sample)
|
| 1299 |
+
# sample = self.conv_out(sample)
|
| 1300 |
+
|
| 1301 |
+
if USE_PEFT_BACKEND:
|
| 1302 |
+
# remove `lora_scale` from each PEFT layer
|
| 1303 |
+
unscale_lora_layers(self, lora_scale)
|
| 1304 |
+
|
| 1305 |
+
if not return_dict:
|
| 1306 |
+
return (sample,)
|
| 1307 |
+
|
| 1308 |
+
return UNet2DConditionOutput(sample=sample)
|
src/models/unet_3d.py
ADDED
|
@@ -0,0 +1,707 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
| 2 |
+
|
| 3 |
+
from collections import OrderedDict
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from os import PathLike
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 13 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
| 14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 15 |
+
try:
|
| 16 |
+
from diffusers.modeling_utils import ModelMixin
|
| 17 |
+
except:
|
| 18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 19 |
+
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging
|
| 20 |
+
from safetensors.torch import load_file
|
| 21 |
+
|
| 22 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
| 23 |
+
from .unet_3d_blocks import UNetMidBlock3DCrossAttn, get_down_block, get_up_block
|
| 24 |
+
|
| 25 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 26 |
+
from einops import rearrange
|
| 27 |
+
from scipy.io import loadmat, savemat
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class UNet3DConditionOutput(BaseOutput):
|
| 32 |
+
sample: torch.FloatTensor
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
| 36 |
+
_supports_gradient_checkpointing = True
|
| 37 |
+
|
| 38 |
+
@register_to_config
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
sample_size: Optional[int] = None,
|
| 42 |
+
in_channels: int = 4,
|
| 43 |
+
out_channels: int = 4,
|
| 44 |
+
center_input_sample: bool = False,
|
| 45 |
+
flip_sin_to_cos: bool = True,
|
| 46 |
+
freq_shift: int = 0,
|
| 47 |
+
down_block_types: Tuple[str] = (
|
| 48 |
+
"CrossAttnDownBlock3D",
|
| 49 |
+
"CrossAttnDownBlock3D",
|
| 50 |
+
"CrossAttnDownBlock3D",
|
| 51 |
+
"DownBlock3D",
|
| 52 |
+
),
|
| 53 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
| 54 |
+
up_block_types: Tuple[str] = (
|
| 55 |
+
"UpBlock3D",
|
| 56 |
+
"CrossAttnUpBlock3D",
|
| 57 |
+
"CrossAttnUpBlock3D",
|
| 58 |
+
"CrossAttnUpBlock3D",
|
| 59 |
+
),
|
| 60 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 61 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 62 |
+
layers_per_block: int = 2,
|
| 63 |
+
downsample_padding: int = 1,
|
| 64 |
+
mid_block_scale_factor: float = 1,
|
| 65 |
+
act_fn: str = "silu",
|
| 66 |
+
norm_num_groups: int = 32,
|
| 67 |
+
norm_eps: float = 1e-5,
|
| 68 |
+
cross_attention_dim: int = 1280,
|
| 69 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
| 70 |
+
dual_cross_attention: bool = False,
|
| 71 |
+
use_linear_projection: bool = False,
|
| 72 |
+
class_embed_type: Optional[str] = None,
|
| 73 |
+
num_class_embeds: Optional[int] = None,
|
| 74 |
+
upcast_attention: bool = False,
|
| 75 |
+
resnet_time_scale_shift: str = "default",
|
| 76 |
+
use_inflated_groupnorm=False,
|
| 77 |
+
# Additional
|
| 78 |
+
use_motion_module=False, ######
|
| 79 |
+
motion_module_resolutions=(1, 2, 4, 8), ####
|
| 80 |
+
motion_module_mid_block=False, #####
|
| 81 |
+
motion_module_decoder_only=False, #####
|
| 82 |
+
motion_module_type=None, #####
|
| 83 |
+
motion_module_kwargs={}, #####
|
| 84 |
+
unet_use_cross_frame_attention=None, #####
|
| 85 |
+
unet_use_temporal_attention=None, #####
|
| 86 |
+
mode=None, #####
|
| 87 |
+
task_type="action", #####
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
|
| 91 |
+
self.sample_size = sample_size
|
| 92 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 93 |
+
|
| 94 |
+
# input
|
| 95 |
+
self.conv_in = InflatedConv3d(
|
| 96 |
+
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# time
|
| 100 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 101 |
+
timestep_input_dim = block_out_channels[0]
|
| 102 |
+
|
| 103 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 104 |
+
|
| 105 |
+
# class embedding
|
| 106 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 107 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 108 |
+
elif class_embed_type == "timestep":
|
| 109 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 110 |
+
elif class_embed_type == "identity":
|
| 111 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 112 |
+
else:
|
| 113 |
+
self.class_embedding = None
|
| 114 |
+
|
| 115 |
+
self.down_blocks = nn.ModuleList([])
|
| 116 |
+
self.mid_block = None
|
| 117 |
+
self.up_blocks = nn.ModuleList([])
|
| 118 |
+
|
| 119 |
+
if isinstance(only_cross_attention, bool):
|
| 120 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 121 |
+
|
| 122 |
+
if isinstance(attention_head_dim, int):
|
| 123 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 124 |
+
|
| 125 |
+
# down
|
| 126 |
+
output_channel = block_out_channels[0]
|
| 127 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 128 |
+
if task_type == "action":
|
| 129 |
+
name_index, mid_name = None, None
|
| 130 |
+
else:
|
| 131 |
+
name_index, mid_name = i, "MidBlock"
|
| 132 |
+
res = 2**i
|
| 133 |
+
input_channel = output_channel
|
| 134 |
+
output_channel = block_out_channels[i]
|
| 135 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 136 |
+
|
| 137 |
+
down_block = get_down_block(
|
| 138 |
+
down_block_type,
|
| 139 |
+
num_layers=layers_per_block,
|
| 140 |
+
in_channels=input_channel,
|
| 141 |
+
out_channels=output_channel,
|
| 142 |
+
temb_channels=time_embed_dim,
|
| 143 |
+
add_downsample=not is_final_block,
|
| 144 |
+
resnet_eps=norm_eps,
|
| 145 |
+
resnet_act_fn=act_fn,
|
| 146 |
+
resnet_groups=norm_num_groups,
|
| 147 |
+
cross_attention_dim=cross_attention_dim,
|
| 148 |
+
attn_num_head_channels=attention_head_dim[i],
|
| 149 |
+
downsample_padding=downsample_padding,
|
| 150 |
+
dual_cross_attention=dual_cross_attention,
|
| 151 |
+
use_linear_projection=use_linear_projection,
|
| 152 |
+
only_cross_attention=only_cross_attention[i],
|
| 153 |
+
upcast_attention=upcast_attention,
|
| 154 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 155 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 156 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 157 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 158 |
+
use_motion_module=use_motion_module
|
| 159 |
+
and (res in motion_module_resolutions)
|
| 160 |
+
and (not motion_module_decoder_only),
|
| 161 |
+
motion_module_type=motion_module_type,
|
| 162 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 163 |
+
name_index=name_index, #####
|
| 164 |
+
)
|
| 165 |
+
self.down_blocks.append(down_block)
|
| 166 |
+
|
| 167 |
+
# mid
|
| 168 |
+
|
| 169 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
| 170 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
| 171 |
+
in_channels=block_out_channels[-1],
|
| 172 |
+
temb_channels=time_embed_dim,
|
| 173 |
+
resnet_eps=norm_eps,
|
| 174 |
+
resnet_act_fn=act_fn,
|
| 175 |
+
output_scale_factor=mid_block_scale_factor,
|
| 176 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 177 |
+
cross_attention_dim=cross_attention_dim,
|
| 178 |
+
attn_num_head_channels=attention_head_dim[-1],
|
| 179 |
+
resnet_groups=norm_num_groups,
|
| 180 |
+
dual_cross_attention=dual_cross_attention,
|
| 181 |
+
use_linear_projection=use_linear_projection,
|
| 182 |
+
upcast_attention=upcast_attention,
|
| 183 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 184 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 185 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 186 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
| 187 |
+
motion_module_type=motion_module_type,
|
| 188 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 189 |
+
name=mid_name,
|
| 190 |
+
)
|
| 191 |
+
else:
|
| 192 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 193 |
+
|
| 194 |
+
# count how many layers upsample the videos
|
| 195 |
+
self.num_upsamplers = 0
|
| 196 |
+
|
| 197 |
+
# up
|
| 198 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 199 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
| 200 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
| 201 |
+
output_channel = reversed_block_out_channels[0]
|
| 202 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 203 |
+
res = 2 ** (3 - i)
|
| 204 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 205 |
+
|
| 206 |
+
if task_type == "action":
|
| 207 |
+
name_index = None
|
| 208 |
+
else:
|
| 209 |
+
name_index = i
|
| 210 |
+
|
| 211 |
+
prev_output_channel = output_channel
|
| 212 |
+
output_channel = reversed_block_out_channels[i]
|
| 213 |
+
input_channel = reversed_block_out_channels[
|
| 214 |
+
min(i + 1, len(block_out_channels) - 1)
|
| 215 |
+
]
|
| 216 |
+
|
| 217 |
+
# add upsample block for all BUT final layer
|
| 218 |
+
if not is_final_block:
|
| 219 |
+
add_upsample = True
|
| 220 |
+
self.num_upsamplers += 1
|
| 221 |
+
else:
|
| 222 |
+
add_upsample = False
|
| 223 |
+
|
| 224 |
+
up_block = get_up_block(
|
| 225 |
+
up_block_type,
|
| 226 |
+
num_layers=layers_per_block + 1,
|
| 227 |
+
in_channels=input_channel,
|
| 228 |
+
out_channels=output_channel,
|
| 229 |
+
prev_output_channel=prev_output_channel,
|
| 230 |
+
temb_channels=time_embed_dim,
|
| 231 |
+
add_upsample=add_upsample,
|
| 232 |
+
resnet_eps=norm_eps,
|
| 233 |
+
resnet_act_fn=act_fn,
|
| 234 |
+
resnet_groups=norm_num_groups,
|
| 235 |
+
cross_attention_dim=cross_attention_dim,
|
| 236 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
| 237 |
+
dual_cross_attention=dual_cross_attention,
|
| 238 |
+
use_linear_projection=use_linear_projection,
|
| 239 |
+
only_cross_attention=only_cross_attention[i],
|
| 240 |
+
upcast_attention=upcast_attention,
|
| 241 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 242 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 243 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 244 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 245 |
+
use_motion_module=use_motion_module
|
| 246 |
+
and (res in motion_module_resolutions),
|
| 247 |
+
motion_module_type=motion_module_type,
|
| 248 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 249 |
+
name_index=name_index,
|
| 250 |
+
)
|
| 251 |
+
self.up_blocks.append(up_block)
|
| 252 |
+
prev_output_channel = output_channel
|
| 253 |
+
|
| 254 |
+
# out
|
| 255 |
+
if use_inflated_groupnorm:
|
| 256 |
+
self.conv_norm_out = InflatedGroupNorm(
|
| 257 |
+
num_channels=block_out_channels[0],
|
| 258 |
+
num_groups=norm_num_groups,
|
| 259 |
+
eps=norm_eps,
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 263 |
+
num_channels=block_out_channels[0],
|
| 264 |
+
num_groups=norm_num_groups,
|
| 265 |
+
eps=norm_eps,
|
| 266 |
+
)
|
| 267 |
+
self.conv_act = nn.SiLU()
|
| 268 |
+
self.conv_out = InflatedConv3d(
|
| 269 |
+
block_out_channels[0], out_channels, kernel_size=3, padding=1
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
self.mode = mode
|
| 273 |
+
|
| 274 |
+
@property
|
| 275 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 276 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 277 |
+
r"""
|
| 278 |
+
Returns:
|
| 279 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 280 |
+
indexed by its weight name.
|
| 281 |
+
"""
|
| 282 |
+
# set recursively
|
| 283 |
+
processors = {}
|
| 284 |
+
|
| 285 |
+
def fn_recursive_add_processors(
|
| 286 |
+
name: str,
|
| 287 |
+
module: torch.nn.Module,
|
| 288 |
+
processors: Dict[str, AttentionProcessor],
|
| 289 |
+
):
|
| 290 |
+
if hasattr(module, "set_processor"):
|
| 291 |
+
processors[f"{name}.processor"] = module.processor
|
| 292 |
+
|
| 293 |
+
for sub_name, child in module.named_children():
|
| 294 |
+
if "temporal_transformer" not in sub_name:
|
| 295 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 296 |
+
|
| 297 |
+
return processors
|
| 298 |
+
|
| 299 |
+
for name, module in self.named_children():
|
| 300 |
+
if "temporal_transformer" not in name:
|
| 301 |
+
fn_recursive_add_processors(name, module, processors)
|
| 302 |
+
|
| 303 |
+
return processors
|
| 304 |
+
|
| 305 |
+
def set_attention_slice(self, slice_size):
|
| 306 |
+
r"""
|
| 307 |
+
Enable sliced attention computation.
|
| 308 |
+
|
| 309 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
| 310 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
| 311 |
+
|
| 312 |
+
Args:
|
| 313 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 314 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
| 315 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
| 316 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 317 |
+
must be a multiple of `slice_size`.
|
| 318 |
+
"""
|
| 319 |
+
sliceable_head_dims = []
|
| 320 |
+
|
| 321 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
| 322 |
+
if hasattr(module, "set_attention_slice"):
|
| 323 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 324 |
+
|
| 325 |
+
for child in module.children():
|
| 326 |
+
fn_recursive_retrieve_slicable_dims(child)
|
| 327 |
+
|
| 328 |
+
# retrieve number of attention layers
|
| 329 |
+
for module in self.children():
|
| 330 |
+
fn_recursive_retrieve_slicable_dims(module)
|
| 331 |
+
|
| 332 |
+
num_slicable_layers = len(sliceable_head_dims)
|
| 333 |
+
|
| 334 |
+
if slice_size == "auto":
|
| 335 |
+
# half the attention head size is usually a good trade-off between
|
| 336 |
+
# speed and memory
|
| 337 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 338 |
+
elif slice_size == "max":
|
| 339 |
+
# make smallest slice possible
|
| 340 |
+
slice_size = num_slicable_layers * [1]
|
| 341 |
+
|
| 342 |
+
slice_size = (
|
| 343 |
+
num_slicable_layers * [slice_size]
|
| 344 |
+
if not isinstance(slice_size, list)
|
| 345 |
+
else slice_size
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 349 |
+
raise ValueError(
|
| 350 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 351 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
for i in range(len(slice_size)):
|
| 355 |
+
size = slice_size[i]
|
| 356 |
+
dim = sliceable_head_dims[i]
|
| 357 |
+
if size is not None and size > dim:
|
| 358 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 359 |
+
|
| 360 |
+
# Recursively walk through all the children.
|
| 361 |
+
# Any children which exposes the set_attention_slice method
|
| 362 |
+
# gets the message
|
| 363 |
+
def fn_recursive_set_attention_slice(
|
| 364 |
+
module: torch.nn.Module, slice_size: List[int]
|
| 365 |
+
):
|
| 366 |
+
if hasattr(module, "set_attention_slice"):
|
| 367 |
+
module.set_attention_slice(slice_size.pop())
|
| 368 |
+
|
| 369 |
+
for child in module.children():
|
| 370 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 371 |
+
|
| 372 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 373 |
+
for module in self.children():
|
| 374 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 375 |
+
|
| 376 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 377 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 378 |
+
module.gradient_checkpointing = value
|
| 379 |
+
|
| 380 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 381 |
+
def set_attn_processor(
|
| 382 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
| 383 |
+
):
|
| 384 |
+
r"""
|
| 385 |
+
Sets the attention processor to use to compute attention.
|
| 386 |
+
|
| 387 |
+
Parameters:
|
| 388 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 389 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 390 |
+
for **all** `Attention` layers.
|
| 391 |
+
|
| 392 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 393 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 394 |
+
|
| 395 |
+
"""
|
| 396 |
+
count = len(self.attn_processors.keys())
|
| 397 |
+
|
| 398 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 399 |
+
raise ValueError(
|
| 400 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 401 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 405 |
+
if hasattr(module, "set_processor"):
|
| 406 |
+
if not isinstance(processor, dict):
|
| 407 |
+
module.set_processor(processor)
|
| 408 |
+
else:
|
| 409 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 410 |
+
|
| 411 |
+
for sub_name, child in module.named_children():
|
| 412 |
+
if "temporal_transformer" not in sub_name:
|
| 413 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 414 |
+
|
| 415 |
+
for name, module in self.named_children():
|
| 416 |
+
if "temporal_transformer" not in name:
|
| 417 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 418 |
+
|
| 419 |
+
def forward(
|
| 420 |
+
self,
|
| 421 |
+
sample: torch.FloatTensor,
|
| 422 |
+
timestep: Union[torch.Tensor, float, int],
|
| 423 |
+
encoder_hidden_states: torch.Tensor,
|
| 424 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 425 |
+
pose_cond_fea: Optional[torch.Tensor] = None,
|
| 426 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 427 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 428 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 429 |
+
return_dict: bool = True,
|
| 430 |
+
self_attention_additional_feats = None,
|
| 431 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
| 432 |
+
r"""
|
| 433 |
+
Args:
|
| 434 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
| 435 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
| 436 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
| 437 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 438 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
| 439 |
+
|
| 440 |
+
Returns:
|
| 441 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 442 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
| 443 |
+
returning a tuple, the first element is the sample tensor.
|
| 444 |
+
"""
|
| 445 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 446 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
| 447 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 448 |
+
# on the fly if necessary.
|
| 449 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 450 |
+
|
| 451 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 452 |
+
forward_upsample_size = False
|
| 453 |
+
upsample_size = None
|
| 454 |
+
|
| 455 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 456 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 457 |
+
forward_upsample_size = True
|
| 458 |
+
|
| 459 |
+
# prepare attention_mask
|
| 460 |
+
if attention_mask is not None:
|
| 461 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 462 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 463 |
+
|
| 464 |
+
# center input if necessary
|
| 465 |
+
if self.config.center_input_sample:
|
| 466 |
+
sample = 2 * sample - 1.0
|
| 467 |
+
|
| 468 |
+
# time
|
| 469 |
+
timesteps = timestep
|
| 470 |
+
if not torch.is_tensor(timesteps):
|
| 471 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 472 |
+
is_mps = sample.device.type == "mps"
|
| 473 |
+
if isinstance(timestep, float):
|
| 474 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 475 |
+
else:
|
| 476 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 477 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 478 |
+
elif len(timesteps.shape) == 0:
|
| 479 |
+
timesteps = timesteps[None].to(sample.device)
|
| 480 |
+
|
| 481 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 482 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 483 |
+
|
| 484 |
+
t_emb = self.time_proj(timesteps)
|
| 485 |
+
|
| 486 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 487 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 488 |
+
# there might be better ways to encapsulate this.
|
| 489 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 490 |
+
emb = self.time_embedding(t_emb)
|
| 491 |
+
|
| 492 |
+
if self.class_embedding is not None:
|
| 493 |
+
if class_labels is None:
|
| 494 |
+
raise ValueError(
|
| 495 |
+
"class_labels should be provided when num_class_embeds > 0"
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
if self.config.class_embed_type == "timestep":
|
| 499 |
+
class_labels = self.time_proj(class_labels)
|
| 500 |
+
|
| 501 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 502 |
+
emb = emb + class_emb
|
| 503 |
+
|
| 504 |
+
# pre-process
|
| 505 |
+
sample = self.conv_in(sample)
|
| 506 |
+
if pose_cond_fea is not None:
|
| 507 |
+
sample = sample + pose_cond_fea
|
| 508 |
+
|
| 509 |
+
# down
|
| 510 |
+
down_block_res_samples = (sample,)
|
| 511 |
+
for downsample_block in self.down_blocks:
|
| 512 |
+
if (
|
| 513 |
+
hasattr(downsample_block, "has_cross_attention")
|
| 514 |
+
and downsample_block.has_cross_attention
|
| 515 |
+
):
|
| 516 |
+
sample, res_samples = downsample_block(
|
| 517 |
+
hidden_states=sample,
|
| 518 |
+
temb=emb,
|
| 519 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 520 |
+
attention_mask=attention_mask,
|
| 521 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 522 |
+
mode=self.mode,
|
| 523 |
+
)
|
| 524 |
+
else:
|
| 525 |
+
sample, res_samples = downsample_block(
|
| 526 |
+
hidden_states=sample,
|
| 527 |
+
temb=emb,
|
| 528 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
down_block_res_samples += res_samples
|
| 532 |
+
|
| 533 |
+
if down_block_additional_residuals is not None:
|
| 534 |
+
new_down_block_res_samples = ()
|
| 535 |
+
|
| 536 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 537 |
+
down_block_res_samples, down_block_additional_residuals
|
| 538 |
+
):
|
| 539 |
+
down_block_additional_residual = rearrange(
|
| 540 |
+
down_block_additional_residual, "(b f) c h w -> b c f h w", f=down_block_res_sample.shape[2]
|
| 541 |
+
)
|
| 542 |
+
down_block_res_sample = (
|
| 543 |
+
down_block_res_sample + down_block_additional_residual
|
| 544 |
+
)
|
| 545 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
| 546 |
+
|
| 547 |
+
down_block_res_samples = new_down_block_res_samples
|
| 548 |
+
|
| 549 |
+
# mid
|
| 550 |
+
sample = self.mid_block(
|
| 551 |
+
sample,
|
| 552 |
+
emb,
|
| 553 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 554 |
+
attention_mask=attention_mask,
|
| 555 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 556 |
+
mode=self.mode,
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
if mid_block_additional_residual is not None:
|
| 560 |
+
mid_block_additional_residual = rearrange(
|
| 561 |
+
mid_block_additional_residual, "(b f) c h w -> b c f h w", f=sample.shape[2]
|
| 562 |
+
)
|
| 563 |
+
sample = sample + mid_block_additional_residual
|
| 564 |
+
|
| 565 |
+
# up
|
| 566 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 567 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 568 |
+
|
| 569 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 570 |
+
down_block_res_samples = down_block_res_samples[
|
| 571 |
+
: -len(upsample_block.resnets)
|
| 572 |
+
]
|
| 573 |
+
|
| 574 |
+
# if we have not reached the final block and need to forward the
|
| 575 |
+
# upsample size, we do it here
|
| 576 |
+
if not is_final_block and forward_upsample_size:
|
| 577 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 578 |
+
|
| 579 |
+
if (
|
| 580 |
+
hasattr(upsample_block, "has_cross_attention")
|
| 581 |
+
and upsample_block.has_cross_attention
|
| 582 |
+
):
|
| 583 |
+
sample = upsample_block(
|
| 584 |
+
hidden_states=sample,
|
| 585 |
+
temb=emb,
|
| 586 |
+
res_hidden_states_tuple=res_samples,
|
| 587 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 588 |
+
upsample_size=upsample_size,
|
| 589 |
+
attention_mask=attention_mask,
|
| 590 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 591 |
+
mode=self.mode,
|
| 592 |
+
)
|
| 593 |
+
else:
|
| 594 |
+
sample = upsample_block(
|
| 595 |
+
hidden_states=sample,
|
| 596 |
+
temb=emb,
|
| 597 |
+
res_hidden_states_tuple=res_samples,
|
| 598 |
+
upsample_size=upsample_size,
|
| 599 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
# post-process
|
| 603 |
+
sample = self.conv_norm_out(sample)
|
| 604 |
+
sample = self.conv_act(sample)
|
| 605 |
+
sample = self.conv_out(sample)
|
| 606 |
+
|
| 607 |
+
if not return_dict:
|
| 608 |
+
return (sample,)
|
| 609 |
+
|
| 610 |
+
return UNet3DConditionOutput(sample=sample)
|
| 611 |
+
|
| 612 |
+
@classmethod
|
| 613 |
+
def from_pretrained_2d(
|
| 614 |
+
cls,
|
| 615 |
+
pretrained_model_path: PathLike,
|
| 616 |
+
motion_module_path: PathLike,
|
| 617 |
+
subfolder=None,
|
| 618 |
+
unet_additional_kwargs=None,
|
| 619 |
+
mm_zero_proj_out=False,
|
| 620 |
+
):
|
| 621 |
+
pretrained_model_path = Path(pretrained_model_path)
|
| 622 |
+
motion_module_path = Path(motion_module_path)
|
| 623 |
+
if subfolder is not None:
|
| 624 |
+
pretrained_model_path = pretrained_model_path.joinpath(subfolder)
|
| 625 |
+
logger.info(
|
| 626 |
+
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..."
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
config_file = pretrained_model_path / "config.json"
|
| 630 |
+
if not (config_file.exists() and config_file.is_file()):
|
| 631 |
+
raise RuntimeError(f"{config_file} does not exist or is not a file")
|
| 632 |
+
|
| 633 |
+
unet_config = cls.load_config(config_file)
|
| 634 |
+
unet_config["_class_name"] = cls.__name__
|
| 635 |
+
unet_config["down_block_types"] = [
|
| 636 |
+
"CrossAttnDownBlock3D",
|
| 637 |
+
"CrossAttnDownBlock3D",
|
| 638 |
+
"CrossAttnDownBlock3D",
|
| 639 |
+
"DownBlock3D",
|
| 640 |
+
]
|
| 641 |
+
unet_config["up_block_types"] = [
|
| 642 |
+
"UpBlock3D",
|
| 643 |
+
"CrossAttnUpBlock3D",
|
| 644 |
+
"CrossAttnUpBlock3D",
|
| 645 |
+
"CrossAttnUpBlock3D",
|
| 646 |
+
]
|
| 647 |
+
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
| 648 |
+
|
| 649 |
+
model = cls.from_config(unet_config, **unet_additional_kwargs)
|
| 650 |
+
# load the vanilla weights
|
| 651 |
+
# for key in unet_additional_kwargs['motion_module_kwargs'].keys():
|
| 652 |
+
# print(key)
|
| 653 |
+
# print(unet_additional_kwargs['motion_module_kwargs'][key])
|
| 654 |
+
# print('__________________')
|
| 655 |
+
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists():
|
| 656 |
+
logger.debug(
|
| 657 |
+
f"loading safeTensors weights from {pretrained_model_path} ..."
|
| 658 |
+
)
|
| 659 |
+
state_dict = load_file(
|
| 660 |
+
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu"
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists():
|
| 664 |
+
logger.debug(f"loading weights from {pretrained_model_path} ...")
|
| 665 |
+
state_dict = torch.load(
|
| 666 |
+
pretrained_model_path.joinpath(WEIGHTS_NAME),
|
| 667 |
+
map_location="cpu",
|
| 668 |
+
weights_only=True,
|
| 669 |
+
)
|
| 670 |
+
else:
|
| 671 |
+
raise FileNotFoundError(f"no weights file found in {pretrained_model_path}")
|
| 672 |
+
|
| 673 |
+
# load the motion module weights
|
| 674 |
+
if motion_module_path.exists() and motion_module_path.is_file():
|
| 675 |
+
if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]:
|
| 676 |
+
logger.info(f"Load motion module params from {motion_module_path}")
|
| 677 |
+
motion_state_dict = torch.load(
|
| 678 |
+
motion_module_path, map_location="cpu", weights_only=True
|
| 679 |
+
)
|
| 680 |
+
elif motion_module_path.suffix.lower() == ".safetensors":
|
| 681 |
+
motion_state_dict = load_file(motion_module_path, device="cpu")
|
| 682 |
+
else:
|
| 683 |
+
raise RuntimeError(
|
| 684 |
+
f"unknown file format for motion module weights: {motion_module_path.suffix}"
|
| 685 |
+
)
|
| 686 |
+
if mm_zero_proj_out:
|
| 687 |
+
logger.info(f"Zero initialize proj_out layers in motion module...")
|
| 688 |
+
new_motion_state_dict = OrderedDict()
|
| 689 |
+
for k in motion_state_dict:
|
| 690 |
+
if "proj_out" in k:
|
| 691 |
+
continue
|
| 692 |
+
new_motion_state_dict[k] = motion_state_dict[k]
|
| 693 |
+
motion_state_dict = new_motion_state_dict
|
| 694 |
+
|
| 695 |
+
# merge the state dicts
|
| 696 |
+
state_dict.update(motion_state_dict)
|
| 697 |
+
|
| 698 |
+
# load the weights into the model
|
| 699 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
| 700 |
+
logger.debug(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
| 701 |
+
|
| 702 |
+
params = [
|
| 703 |
+
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
|
| 704 |
+
]
|
| 705 |
+
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")
|
| 706 |
+
|
| 707 |
+
return model
|
src/models/unet_3d_blocks.py
ADDED
|
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
| 2 |
+
|
| 3 |
+
import pdb
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
from .motion_module import get_motion_module
|
| 9 |
+
|
| 10 |
+
# from .motion_module import get_motion_module
|
| 11 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
| 12 |
+
from .transformer_3d import Transformer3DModel
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_down_block(
|
| 16 |
+
down_block_type,
|
| 17 |
+
num_layers,
|
| 18 |
+
in_channels,
|
| 19 |
+
out_channels,
|
| 20 |
+
temb_channels,
|
| 21 |
+
add_downsample,
|
| 22 |
+
resnet_eps,
|
| 23 |
+
resnet_act_fn,
|
| 24 |
+
attn_num_head_channels,
|
| 25 |
+
resnet_groups=None,
|
| 26 |
+
cross_attention_dim=None,
|
| 27 |
+
downsample_padding=None,
|
| 28 |
+
dual_cross_attention=False,
|
| 29 |
+
use_linear_projection=False,
|
| 30 |
+
only_cross_attention=False,
|
| 31 |
+
upcast_attention=False,
|
| 32 |
+
resnet_time_scale_shift="default",
|
| 33 |
+
unet_use_cross_frame_attention=None,
|
| 34 |
+
unet_use_temporal_attention=None,
|
| 35 |
+
use_inflated_groupnorm=None,
|
| 36 |
+
use_motion_module=None,
|
| 37 |
+
motion_module_type=None,
|
| 38 |
+
motion_module_kwargs=None,
|
| 39 |
+
name_index=None,
|
| 40 |
+
):
|
| 41 |
+
down_block_type = (
|
| 42 |
+
down_block_type[7:]
|
| 43 |
+
if down_block_type.startswith("UNetRes")
|
| 44 |
+
else down_block_type
|
| 45 |
+
)
|
| 46 |
+
if down_block_type == "DownBlock3D":
|
| 47 |
+
return DownBlock3D(
|
| 48 |
+
num_layers=num_layers,
|
| 49 |
+
in_channels=in_channels,
|
| 50 |
+
out_channels=out_channels,
|
| 51 |
+
temb_channels=temb_channels,
|
| 52 |
+
add_downsample=add_downsample,
|
| 53 |
+
resnet_eps=resnet_eps,
|
| 54 |
+
resnet_act_fn=resnet_act_fn,
|
| 55 |
+
resnet_groups=resnet_groups,
|
| 56 |
+
downsample_padding=downsample_padding,
|
| 57 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 58 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 59 |
+
use_motion_module=use_motion_module,
|
| 60 |
+
motion_module_type=motion_module_type,
|
| 61 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 62 |
+
)
|
| 63 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
| 64 |
+
if cross_attention_dim is None:
|
| 65 |
+
raise ValueError(
|
| 66 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock3D"
|
| 67 |
+
)
|
| 68 |
+
if name_index is not None:
|
| 69 |
+
name_index = f"CrossAttnDownBlock_{name_index}_"
|
| 70 |
+
return CrossAttnDownBlock3D(
|
| 71 |
+
num_layers=num_layers,
|
| 72 |
+
in_channels=in_channels,
|
| 73 |
+
out_channels=out_channels,
|
| 74 |
+
temb_channels=temb_channels,
|
| 75 |
+
add_downsample=add_downsample,
|
| 76 |
+
resnet_eps=resnet_eps,
|
| 77 |
+
resnet_act_fn=resnet_act_fn,
|
| 78 |
+
resnet_groups=resnet_groups,
|
| 79 |
+
downsample_padding=downsample_padding,
|
| 80 |
+
cross_attention_dim=cross_attention_dim,
|
| 81 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 82 |
+
dual_cross_attention=dual_cross_attention,
|
| 83 |
+
use_linear_projection=use_linear_projection,
|
| 84 |
+
only_cross_attention=only_cross_attention,
|
| 85 |
+
upcast_attention=upcast_attention,
|
| 86 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 87 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 88 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 89 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 90 |
+
use_motion_module=use_motion_module,
|
| 91 |
+
motion_module_type=motion_module_type,
|
| 92 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 93 |
+
name=name_index,
|
| 94 |
+
)
|
| 95 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_up_block(
|
| 99 |
+
up_block_type,
|
| 100 |
+
num_layers,
|
| 101 |
+
in_channels,
|
| 102 |
+
out_channels,
|
| 103 |
+
prev_output_channel,
|
| 104 |
+
temb_channels,
|
| 105 |
+
add_upsample,
|
| 106 |
+
resnet_eps,
|
| 107 |
+
resnet_act_fn,
|
| 108 |
+
attn_num_head_channels,
|
| 109 |
+
resnet_groups=None,
|
| 110 |
+
cross_attention_dim=None,
|
| 111 |
+
dual_cross_attention=False,
|
| 112 |
+
use_linear_projection=False,
|
| 113 |
+
only_cross_attention=False,
|
| 114 |
+
upcast_attention=False,
|
| 115 |
+
resnet_time_scale_shift="default",
|
| 116 |
+
unet_use_cross_frame_attention=None,
|
| 117 |
+
unet_use_temporal_attention=None,
|
| 118 |
+
use_inflated_groupnorm=None,
|
| 119 |
+
use_motion_module=None,
|
| 120 |
+
motion_module_type=None,
|
| 121 |
+
motion_module_kwargs=None,
|
| 122 |
+
name_index=None,
|
| 123 |
+
):
|
| 124 |
+
up_block_type = (
|
| 125 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
| 126 |
+
)
|
| 127 |
+
if up_block_type == "UpBlock3D":
|
| 128 |
+
return UpBlock3D(
|
| 129 |
+
num_layers=num_layers,
|
| 130 |
+
in_channels=in_channels,
|
| 131 |
+
out_channels=out_channels,
|
| 132 |
+
prev_output_channel=prev_output_channel,
|
| 133 |
+
temb_channels=temb_channels,
|
| 134 |
+
add_upsample=add_upsample,
|
| 135 |
+
resnet_eps=resnet_eps,
|
| 136 |
+
resnet_act_fn=resnet_act_fn,
|
| 137 |
+
resnet_groups=resnet_groups,
|
| 138 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 139 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 140 |
+
use_motion_module=use_motion_module,
|
| 141 |
+
motion_module_type=motion_module_type,
|
| 142 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 143 |
+
)
|
| 144 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
| 145 |
+
if cross_attention_dim is None:
|
| 146 |
+
raise ValueError(
|
| 147 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock3D"
|
| 148 |
+
)
|
| 149 |
+
if name_index is not None:
|
| 150 |
+
name_index = f"CrossAttnUpBlock_{name_index}_"
|
| 151 |
+
return CrossAttnUpBlock3D(
|
| 152 |
+
num_layers=num_layers,
|
| 153 |
+
in_channels=in_channels,
|
| 154 |
+
out_channels=out_channels,
|
| 155 |
+
prev_output_channel=prev_output_channel,
|
| 156 |
+
temb_channels=temb_channels,
|
| 157 |
+
add_upsample=add_upsample,
|
| 158 |
+
resnet_eps=resnet_eps,
|
| 159 |
+
resnet_act_fn=resnet_act_fn,
|
| 160 |
+
resnet_groups=resnet_groups,
|
| 161 |
+
cross_attention_dim=cross_attention_dim,
|
| 162 |
+
attn_num_head_channels=attn_num_head_channels,
|
| 163 |
+
dual_cross_attention=dual_cross_attention,
|
| 164 |
+
use_linear_projection=use_linear_projection,
|
| 165 |
+
only_cross_attention=only_cross_attention,
|
| 166 |
+
upcast_attention=upcast_attention,
|
| 167 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 168 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 169 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 170 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 171 |
+
use_motion_module=use_motion_module,
|
| 172 |
+
motion_module_type=motion_module_type,
|
| 173 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 174 |
+
name=name_index,
|
| 175 |
+
)
|
| 176 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
| 180 |
+
def __init__(
|
| 181 |
+
self,
|
| 182 |
+
in_channels: int,
|
| 183 |
+
temb_channels: int,
|
| 184 |
+
dropout: float = 0.0,
|
| 185 |
+
num_layers: int = 1,
|
| 186 |
+
resnet_eps: float = 1e-6,
|
| 187 |
+
resnet_time_scale_shift: str = "default",
|
| 188 |
+
resnet_act_fn: str = "swish",
|
| 189 |
+
resnet_groups: int = 32,
|
| 190 |
+
resnet_pre_norm: bool = True,
|
| 191 |
+
attn_num_head_channels=1,
|
| 192 |
+
output_scale_factor=1.0,
|
| 193 |
+
cross_attention_dim=1280,
|
| 194 |
+
dual_cross_attention=False,
|
| 195 |
+
use_linear_projection=False,
|
| 196 |
+
upcast_attention=False,
|
| 197 |
+
unet_use_cross_frame_attention=None,
|
| 198 |
+
unet_use_temporal_attention=None,
|
| 199 |
+
use_inflated_groupnorm=None,
|
| 200 |
+
use_motion_module=None,
|
| 201 |
+
motion_module_type=None,
|
| 202 |
+
motion_module_kwargs=None,
|
| 203 |
+
name=None
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
self.has_cross_attention = True
|
| 208 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 209 |
+
resnet_groups = (
|
| 210 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 211 |
+
)
|
| 212 |
+
self.name = name
|
| 213 |
+
# there is always at least one resnet
|
| 214 |
+
resnets = [
|
| 215 |
+
ResnetBlock3D(
|
| 216 |
+
in_channels=in_channels,
|
| 217 |
+
out_channels=in_channels,
|
| 218 |
+
temb_channels=temb_channels,
|
| 219 |
+
eps=resnet_eps,
|
| 220 |
+
groups=resnet_groups,
|
| 221 |
+
dropout=dropout,
|
| 222 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 223 |
+
non_linearity=resnet_act_fn,
|
| 224 |
+
output_scale_factor=output_scale_factor,
|
| 225 |
+
pre_norm=resnet_pre_norm,
|
| 226 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 227 |
+
)
|
| 228 |
+
]
|
| 229 |
+
attentions = []
|
| 230 |
+
motion_modules = []
|
| 231 |
+
for i in range(num_layers):
|
| 232 |
+
if dual_cross_attention:
|
| 233 |
+
raise NotImplementedError
|
| 234 |
+
if self.name is not None:
|
| 235 |
+
attn_name = f"{self.name}_{i}_TransformerModel"
|
| 236 |
+
else:
|
| 237 |
+
attn_name = None
|
| 238 |
+
attentions.append(
|
| 239 |
+
Transformer3DModel(
|
| 240 |
+
attn_num_head_channels,
|
| 241 |
+
in_channels // attn_num_head_channels,
|
| 242 |
+
in_channels=in_channels,
|
| 243 |
+
num_layers=1,
|
| 244 |
+
cross_attention_dim=cross_attention_dim,
|
| 245 |
+
norm_num_groups=resnet_groups,
|
| 246 |
+
use_linear_projection=use_linear_projection,
|
| 247 |
+
upcast_attention=upcast_attention,
|
| 248 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 249 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 250 |
+
name=attn_name,
|
| 251 |
+
)
|
| 252 |
+
)
|
| 253 |
+
motion_modules.append(
|
| 254 |
+
get_motion_module(
|
| 255 |
+
in_channels=in_channels,
|
| 256 |
+
motion_module_type=motion_module_type,
|
| 257 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 258 |
+
)
|
| 259 |
+
if use_motion_module
|
| 260 |
+
else None
|
| 261 |
+
)
|
| 262 |
+
resnets.append(
|
| 263 |
+
ResnetBlock3D(
|
| 264 |
+
in_channels=in_channels,
|
| 265 |
+
out_channels=in_channels,
|
| 266 |
+
temb_channels=temb_channels,
|
| 267 |
+
eps=resnet_eps,
|
| 268 |
+
groups=resnet_groups,
|
| 269 |
+
dropout=dropout,
|
| 270 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 271 |
+
non_linearity=resnet_act_fn,
|
| 272 |
+
output_scale_factor=output_scale_factor,
|
| 273 |
+
pre_norm=resnet_pre_norm,
|
| 274 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 275 |
+
)
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
self.attentions = nn.ModuleList(attentions)
|
| 279 |
+
self.resnets = nn.ModuleList(resnets)
|
| 280 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 281 |
+
|
| 282 |
+
def forward(
|
| 283 |
+
self,
|
| 284 |
+
hidden_states,
|
| 285 |
+
temb=None,
|
| 286 |
+
encoder_hidden_states=None,
|
| 287 |
+
attention_mask=None,
|
| 288 |
+
self_attention_additional_feats=None,
|
| 289 |
+
mode=None,
|
| 290 |
+
):
|
| 291 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
| 292 |
+
for attn, resnet, motion_module in zip(
|
| 293 |
+
self.attentions, self.resnets[1:], self.motion_modules
|
| 294 |
+
):
|
| 295 |
+
hidden_states = attn(
|
| 296 |
+
hidden_states,
|
| 297 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 298 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 299 |
+
mode=mode,
|
| 300 |
+
).sample
|
| 301 |
+
hidden_states = (
|
| 302 |
+
motion_module(
|
| 303 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 304 |
+
)
|
| 305 |
+
if motion_module is not None
|
| 306 |
+
else hidden_states
|
| 307 |
+
)
|
| 308 |
+
hidden_states = resnet(hidden_states, temb)
|
| 309 |
+
|
| 310 |
+
return hidden_states
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
class CrossAttnDownBlock3D(nn.Module):
|
| 314 |
+
def __init__(
|
| 315 |
+
self,
|
| 316 |
+
in_channels: int,
|
| 317 |
+
out_channels: int,
|
| 318 |
+
temb_channels: int,
|
| 319 |
+
dropout: float = 0.0,
|
| 320 |
+
num_layers: int = 1,
|
| 321 |
+
resnet_eps: float = 1e-6,
|
| 322 |
+
resnet_time_scale_shift: str = "default",
|
| 323 |
+
resnet_act_fn: str = "swish",
|
| 324 |
+
resnet_groups: int = 32,
|
| 325 |
+
resnet_pre_norm: bool = True,
|
| 326 |
+
attn_num_head_channels=1,
|
| 327 |
+
cross_attention_dim=1280,
|
| 328 |
+
output_scale_factor=1.0,
|
| 329 |
+
downsample_padding=1,
|
| 330 |
+
add_downsample=True,
|
| 331 |
+
dual_cross_attention=False,
|
| 332 |
+
use_linear_projection=False,
|
| 333 |
+
only_cross_attention=False,
|
| 334 |
+
upcast_attention=False,
|
| 335 |
+
unet_use_cross_frame_attention=None,
|
| 336 |
+
unet_use_temporal_attention=None,
|
| 337 |
+
use_inflated_groupnorm=None,
|
| 338 |
+
use_motion_module=None,
|
| 339 |
+
motion_module_type=None,
|
| 340 |
+
motion_module_kwargs=None,
|
| 341 |
+
name=None,
|
| 342 |
+
):
|
| 343 |
+
super().__init__()
|
| 344 |
+
resnets = []
|
| 345 |
+
attentions = []
|
| 346 |
+
motion_modules = []
|
| 347 |
+
|
| 348 |
+
self.has_cross_attention = True
|
| 349 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 350 |
+
self.name=name
|
| 351 |
+
|
| 352 |
+
for i in range(num_layers):
|
| 353 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 354 |
+
resnets.append(
|
| 355 |
+
ResnetBlock3D(
|
| 356 |
+
in_channels=in_channels,
|
| 357 |
+
out_channels=out_channels,
|
| 358 |
+
temb_channels=temb_channels,
|
| 359 |
+
eps=resnet_eps,
|
| 360 |
+
groups=resnet_groups,
|
| 361 |
+
dropout=dropout,
|
| 362 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 363 |
+
non_linearity=resnet_act_fn,
|
| 364 |
+
output_scale_factor=output_scale_factor,
|
| 365 |
+
pre_norm=resnet_pre_norm,
|
| 366 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 367 |
+
)
|
| 368 |
+
)
|
| 369 |
+
if dual_cross_attention:
|
| 370 |
+
raise NotImplementedError
|
| 371 |
+
if self.name is not None:
|
| 372 |
+
attn_name = f"{self.name}_{i}_TransformerModel"
|
| 373 |
+
else:
|
| 374 |
+
attn_name = None
|
| 375 |
+
attentions.append(
|
| 376 |
+
Transformer3DModel(
|
| 377 |
+
attn_num_head_channels,
|
| 378 |
+
out_channels // attn_num_head_channels,
|
| 379 |
+
in_channels=out_channels,
|
| 380 |
+
num_layers=1,
|
| 381 |
+
cross_attention_dim=cross_attention_dim,
|
| 382 |
+
norm_num_groups=resnet_groups,
|
| 383 |
+
use_linear_projection=use_linear_projection,
|
| 384 |
+
only_cross_attention=only_cross_attention,
|
| 385 |
+
upcast_attention=upcast_attention,
|
| 386 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 387 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 388 |
+
name=attn_name,
|
| 389 |
+
)
|
| 390 |
+
)
|
| 391 |
+
motion_modules.append(
|
| 392 |
+
get_motion_module(
|
| 393 |
+
in_channels=out_channels,
|
| 394 |
+
motion_module_type=motion_module_type,
|
| 395 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 396 |
+
)
|
| 397 |
+
if use_motion_module
|
| 398 |
+
else None
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
self.attentions = nn.ModuleList(attentions)
|
| 402 |
+
self.resnets = nn.ModuleList(resnets)
|
| 403 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 404 |
+
|
| 405 |
+
if add_downsample:
|
| 406 |
+
self.downsamplers = nn.ModuleList(
|
| 407 |
+
[
|
| 408 |
+
Downsample3D(
|
| 409 |
+
out_channels,
|
| 410 |
+
use_conv=True,
|
| 411 |
+
out_channels=out_channels,
|
| 412 |
+
padding=downsample_padding,
|
| 413 |
+
name="op",
|
| 414 |
+
)
|
| 415 |
+
]
|
| 416 |
+
)
|
| 417 |
+
else:
|
| 418 |
+
self.downsamplers = None
|
| 419 |
+
|
| 420 |
+
self.gradient_checkpointing = False
|
| 421 |
+
|
| 422 |
+
def forward(
|
| 423 |
+
self,
|
| 424 |
+
hidden_states,
|
| 425 |
+
temb=None,
|
| 426 |
+
encoder_hidden_states=None,
|
| 427 |
+
attention_mask=None,
|
| 428 |
+
self_attention_additional_feats=None,
|
| 429 |
+
mode=None,
|
| 430 |
+
):
|
| 431 |
+
output_states = ()
|
| 432 |
+
|
| 433 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
| 434 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
| 435 |
+
):
|
| 436 |
+
# self.gradient_checkpointing = False
|
| 437 |
+
if self.training and self.gradient_checkpointing:
|
| 438 |
+
|
| 439 |
+
def create_custom_forward(module, return_dict=None):
|
| 440 |
+
def custom_forward(*inputs):
|
| 441 |
+
if return_dict is not None:
|
| 442 |
+
return module(*inputs, return_dict=return_dict)
|
| 443 |
+
else:
|
| 444 |
+
return module(*inputs)
|
| 445 |
+
|
| 446 |
+
return custom_forward
|
| 447 |
+
|
| 448 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 449 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 450 |
+
)
|
| 451 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 452 |
+
create_custom_forward(attn, return_dict=False),
|
| 453 |
+
hidden_states,
|
| 454 |
+
encoder_hidden_states,
|
| 455 |
+
self_attention_additional_feats,
|
| 456 |
+
mode,
|
| 457 |
+
)[0]
|
| 458 |
+
|
| 459 |
+
# add motion module
|
| 460 |
+
if motion_module is not None:
|
| 461 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 462 |
+
create_custom_forward(motion_module),
|
| 463 |
+
hidden_states.requires_grad_(),
|
| 464 |
+
temb,
|
| 465 |
+
encoder_hidden_states,
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
else:
|
| 469 |
+
hidden_states = resnet(hidden_states, temb)
|
| 470 |
+
hidden_states = attn(
|
| 471 |
+
hidden_states,
|
| 472 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 473 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 474 |
+
mode=mode,
|
| 475 |
+
).sample
|
| 476 |
+
|
| 477 |
+
# add motion module
|
| 478 |
+
hidden_states = (
|
| 479 |
+
motion_module(
|
| 480 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 481 |
+
)
|
| 482 |
+
if motion_module is not None
|
| 483 |
+
else hidden_states
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
output_states += (hidden_states,)
|
| 487 |
+
|
| 488 |
+
if self.downsamplers is not None:
|
| 489 |
+
for downsampler in self.downsamplers:
|
| 490 |
+
hidden_states = downsampler(hidden_states)
|
| 491 |
+
|
| 492 |
+
output_states += (hidden_states,)
|
| 493 |
+
|
| 494 |
+
return hidden_states, output_states
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
class DownBlock3D(nn.Module):
|
| 498 |
+
def __init__(
|
| 499 |
+
self,
|
| 500 |
+
in_channels: int,
|
| 501 |
+
out_channels: int,
|
| 502 |
+
temb_channels: int,
|
| 503 |
+
dropout: float = 0.0,
|
| 504 |
+
num_layers: int = 1,
|
| 505 |
+
resnet_eps: float = 1e-6,
|
| 506 |
+
resnet_time_scale_shift: str = "default",
|
| 507 |
+
resnet_act_fn: str = "swish",
|
| 508 |
+
resnet_groups: int = 32,
|
| 509 |
+
resnet_pre_norm: bool = True,
|
| 510 |
+
output_scale_factor=1.0,
|
| 511 |
+
add_downsample=True,
|
| 512 |
+
downsample_padding=1,
|
| 513 |
+
use_inflated_groupnorm=None,
|
| 514 |
+
use_motion_module=None,
|
| 515 |
+
motion_module_type=None,
|
| 516 |
+
motion_module_kwargs=None,
|
| 517 |
+
):
|
| 518 |
+
super().__init__()
|
| 519 |
+
resnets = []
|
| 520 |
+
motion_modules = []
|
| 521 |
+
|
| 522 |
+
# use_motion_module = False
|
| 523 |
+
for i in range(num_layers):
|
| 524 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 525 |
+
resnets.append(
|
| 526 |
+
ResnetBlock3D(
|
| 527 |
+
in_channels=in_channels,
|
| 528 |
+
out_channels=out_channels,
|
| 529 |
+
temb_channels=temb_channels,
|
| 530 |
+
eps=resnet_eps,
|
| 531 |
+
groups=resnet_groups,
|
| 532 |
+
dropout=dropout,
|
| 533 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 534 |
+
non_linearity=resnet_act_fn,
|
| 535 |
+
output_scale_factor=output_scale_factor,
|
| 536 |
+
pre_norm=resnet_pre_norm,
|
| 537 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 538 |
+
)
|
| 539 |
+
)
|
| 540 |
+
motion_modules.append(
|
| 541 |
+
get_motion_module(
|
| 542 |
+
in_channels=out_channels,
|
| 543 |
+
motion_module_type=motion_module_type,
|
| 544 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 545 |
+
)
|
| 546 |
+
if use_motion_module
|
| 547 |
+
else None
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
self.resnets = nn.ModuleList(resnets)
|
| 551 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 552 |
+
|
| 553 |
+
if add_downsample:
|
| 554 |
+
self.downsamplers = nn.ModuleList(
|
| 555 |
+
[
|
| 556 |
+
Downsample3D(
|
| 557 |
+
out_channels,
|
| 558 |
+
use_conv=True,
|
| 559 |
+
out_channels=out_channels,
|
| 560 |
+
padding=downsample_padding,
|
| 561 |
+
name="op",
|
| 562 |
+
)
|
| 563 |
+
]
|
| 564 |
+
)
|
| 565 |
+
else:
|
| 566 |
+
self.downsamplers = None
|
| 567 |
+
|
| 568 |
+
self.gradient_checkpointing = False
|
| 569 |
+
|
| 570 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
| 571 |
+
output_states = ()
|
| 572 |
+
|
| 573 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
| 574 |
+
# print(f"DownBlock3D {self.gradient_checkpointing = }")
|
| 575 |
+
if self.training and self.gradient_checkpointing:
|
| 576 |
+
|
| 577 |
+
def create_custom_forward(module):
|
| 578 |
+
def custom_forward(*inputs):
|
| 579 |
+
return module(*inputs)
|
| 580 |
+
|
| 581 |
+
return custom_forward
|
| 582 |
+
|
| 583 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 584 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 585 |
+
)
|
| 586 |
+
if motion_module is not None:
|
| 587 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 588 |
+
create_custom_forward(motion_module),
|
| 589 |
+
hidden_states.requires_grad_(),
|
| 590 |
+
temb,
|
| 591 |
+
encoder_hidden_states,
|
| 592 |
+
)
|
| 593 |
+
else:
|
| 594 |
+
hidden_states = resnet(hidden_states, temb)
|
| 595 |
+
|
| 596 |
+
# add motion module
|
| 597 |
+
hidden_states = (
|
| 598 |
+
motion_module(
|
| 599 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 600 |
+
)
|
| 601 |
+
if motion_module is not None
|
| 602 |
+
else hidden_states
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
output_states += (hidden_states,)
|
| 606 |
+
|
| 607 |
+
if self.downsamplers is not None:
|
| 608 |
+
for downsampler in self.downsamplers:
|
| 609 |
+
hidden_states = downsampler(hidden_states)
|
| 610 |
+
|
| 611 |
+
output_states += (hidden_states,)
|
| 612 |
+
|
| 613 |
+
return hidden_states, output_states
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
class CrossAttnUpBlock3D(nn.Module):
|
| 617 |
+
def __init__(
|
| 618 |
+
self,
|
| 619 |
+
in_channels: int,
|
| 620 |
+
out_channels: int,
|
| 621 |
+
prev_output_channel: int,
|
| 622 |
+
temb_channels: int,
|
| 623 |
+
dropout: float = 0.0,
|
| 624 |
+
num_layers: int = 1,
|
| 625 |
+
resnet_eps: float = 1e-6,
|
| 626 |
+
resnet_time_scale_shift: str = "default",
|
| 627 |
+
resnet_act_fn: str = "swish",
|
| 628 |
+
resnet_groups: int = 32,
|
| 629 |
+
resnet_pre_norm: bool = True,
|
| 630 |
+
attn_num_head_channels=1,
|
| 631 |
+
cross_attention_dim=1280,
|
| 632 |
+
output_scale_factor=1.0,
|
| 633 |
+
add_upsample=True,
|
| 634 |
+
dual_cross_attention=False,
|
| 635 |
+
use_linear_projection=False,
|
| 636 |
+
only_cross_attention=False,
|
| 637 |
+
upcast_attention=False,
|
| 638 |
+
unet_use_cross_frame_attention=None,
|
| 639 |
+
unet_use_temporal_attention=None,
|
| 640 |
+
use_motion_module=None,
|
| 641 |
+
use_inflated_groupnorm=None,
|
| 642 |
+
motion_module_type=None,
|
| 643 |
+
motion_module_kwargs=None,
|
| 644 |
+
name=None
|
| 645 |
+
):
|
| 646 |
+
super().__init__()
|
| 647 |
+
resnets = []
|
| 648 |
+
attentions = []
|
| 649 |
+
motion_modules = []
|
| 650 |
+
|
| 651 |
+
self.has_cross_attention = True
|
| 652 |
+
self.attn_num_head_channels = attn_num_head_channels
|
| 653 |
+
self.name = name
|
| 654 |
+
|
| 655 |
+
for i in range(num_layers):
|
| 656 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 657 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 658 |
+
|
| 659 |
+
resnets.append(
|
| 660 |
+
ResnetBlock3D(
|
| 661 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 662 |
+
out_channels=out_channels,
|
| 663 |
+
temb_channels=temb_channels,
|
| 664 |
+
eps=resnet_eps,
|
| 665 |
+
groups=resnet_groups,
|
| 666 |
+
dropout=dropout,
|
| 667 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 668 |
+
non_linearity=resnet_act_fn,
|
| 669 |
+
output_scale_factor=output_scale_factor,
|
| 670 |
+
pre_norm=resnet_pre_norm,
|
| 671 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 672 |
+
)
|
| 673 |
+
)
|
| 674 |
+
if dual_cross_attention:
|
| 675 |
+
raise NotImplementedError
|
| 676 |
+
if self.name is not None:
|
| 677 |
+
attn_name = f"{self.name}_{i}_TransformerModel"
|
| 678 |
+
else:
|
| 679 |
+
attn_name = None
|
| 680 |
+
attentions.append(
|
| 681 |
+
Transformer3DModel(
|
| 682 |
+
attn_num_head_channels,
|
| 683 |
+
out_channels // attn_num_head_channels,
|
| 684 |
+
in_channels=out_channels,
|
| 685 |
+
num_layers=1,
|
| 686 |
+
cross_attention_dim=cross_attention_dim,
|
| 687 |
+
norm_num_groups=resnet_groups,
|
| 688 |
+
use_linear_projection=use_linear_projection,
|
| 689 |
+
only_cross_attention=only_cross_attention,
|
| 690 |
+
upcast_attention=upcast_attention,
|
| 691 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
| 692 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
| 693 |
+
name=attn_name,
|
| 694 |
+
)
|
| 695 |
+
)
|
| 696 |
+
motion_modules.append(
|
| 697 |
+
get_motion_module(
|
| 698 |
+
in_channels=out_channels,
|
| 699 |
+
motion_module_type=motion_module_type,
|
| 700 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 701 |
+
)
|
| 702 |
+
if use_motion_module
|
| 703 |
+
else None
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
self.attentions = nn.ModuleList(attentions)
|
| 707 |
+
self.resnets = nn.ModuleList(resnets)
|
| 708 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 709 |
+
|
| 710 |
+
if add_upsample:
|
| 711 |
+
self.upsamplers = nn.ModuleList(
|
| 712 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 713 |
+
)
|
| 714 |
+
else:
|
| 715 |
+
self.upsamplers = None
|
| 716 |
+
|
| 717 |
+
self.gradient_checkpointing = False
|
| 718 |
+
|
| 719 |
+
def forward(
|
| 720 |
+
self,
|
| 721 |
+
hidden_states,
|
| 722 |
+
res_hidden_states_tuple,
|
| 723 |
+
temb=None,
|
| 724 |
+
encoder_hidden_states=None,
|
| 725 |
+
upsample_size=None,
|
| 726 |
+
attention_mask=None,
|
| 727 |
+
self_attention_additional_feats=None,
|
| 728 |
+
mode=None,
|
| 729 |
+
):
|
| 730 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
| 731 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
| 732 |
+
):
|
| 733 |
+
# pop res hidden states
|
| 734 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 735 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 736 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 737 |
+
|
| 738 |
+
if self.training and self.gradient_checkpointing:
|
| 739 |
+
|
| 740 |
+
def create_custom_forward(module, return_dict=None):
|
| 741 |
+
def custom_forward(*inputs):
|
| 742 |
+
if return_dict is not None:
|
| 743 |
+
return module(*inputs, return_dict=return_dict)
|
| 744 |
+
else:
|
| 745 |
+
return module(*inputs)
|
| 746 |
+
|
| 747 |
+
return custom_forward
|
| 748 |
+
|
| 749 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 750 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 751 |
+
)
|
| 752 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 753 |
+
create_custom_forward(attn, return_dict=False),
|
| 754 |
+
hidden_states,
|
| 755 |
+
encoder_hidden_states,
|
| 756 |
+
self_attention_additional_feats,
|
| 757 |
+
mode,
|
| 758 |
+
)[0]
|
| 759 |
+
if motion_module is not None:
|
| 760 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 761 |
+
create_custom_forward(motion_module),
|
| 762 |
+
hidden_states.requires_grad_(),
|
| 763 |
+
temb,
|
| 764 |
+
encoder_hidden_states,
|
| 765 |
+
)
|
| 766 |
+
|
| 767 |
+
else:
|
| 768 |
+
hidden_states = resnet(hidden_states, temb)
|
| 769 |
+
hidden_states = attn(
|
| 770 |
+
hidden_states,
|
| 771 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 772 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 773 |
+
mode=mode,
|
| 774 |
+
).sample
|
| 775 |
+
|
| 776 |
+
# add motion module
|
| 777 |
+
hidden_states = (
|
| 778 |
+
motion_module(
|
| 779 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 780 |
+
)
|
| 781 |
+
if motion_module is not None
|
| 782 |
+
else hidden_states
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
if self.upsamplers is not None:
|
| 786 |
+
for upsampler in self.upsamplers:
|
| 787 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 788 |
+
|
| 789 |
+
return hidden_states
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
class UpBlock3D(nn.Module):
|
| 793 |
+
def __init__(
|
| 794 |
+
self,
|
| 795 |
+
in_channels: int,
|
| 796 |
+
prev_output_channel: int,
|
| 797 |
+
out_channels: int,
|
| 798 |
+
temb_channels: int,
|
| 799 |
+
dropout: float = 0.0,
|
| 800 |
+
num_layers: int = 1,
|
| 801 |
+
resnet_eps: float = 1e-6,
|
| 802 |
+
resnet_time_scale_shift: str = "default",
|
| 803 |
+
resnet_act_fn: str = "swish",
|
| 804 |
+
resnet_groups: int = 32,
|
| 805 |
+
resnet_pre_norm: bool = True,
|
| 806 |
+
output_scale_factor=1.0,
|
| 807 |
+
add_upsample=True,
|
| 808 |
+
use_inflated_groupnorm=None,
|
| 809 |
+
use_motion_module=None,
|
| 810 |
+
motion_module_type=None,
|
| 811 |
+
motion_module_kwargs=None,
|
| 812 |
+
):
|
| 813 |
+
super().__init__()
|
| 814 |
+
resnets = []
|
| 815 |
+
motion_modules = []
|
| 816 |
+
|
| 817 |
+
# use_motion_module = False
|
| 818 |
+
for i in range(num_layers):
|
| 819 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 820 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 821 |
+
|
| 822 |
+
resnets.append(
|
| 823 |
+
ResnetBlock3D(
|
| 824 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 825 |
+
out_channels=out_channels,
|
| 826 |
+
temb_channels=temb_channels,
|
| 827 |
+
eps=resnet_eps,
|
| 828 |
+
groups=resnet_groups,
|
| 829 |
+
dropout=dropout,
|
| 830 |
+
time_embedding_norm=resnet_time_scale_shift,
|
| 831 |
+
non_linearity=resnet_act_fn,
|
| 832 |
+
output_scale_factor=output_scale_factor,
|
| 833 |
+
pre_norm=resnet_pre_norm,
|
| 834 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
| 835 |
+
)
|
| 836 |
+
)
|
| 837 |
+
motion_modules.append(
|
| 838 |
+
get_motion_module(
|
| 839 |
+
in_channels=out_channels,
|
| 840 |
+
motion_module_type=motion_module_type,
|
| 841 |
+
motion_module_kwargs=motion_module_kwargs,
|
| 842 |
+
)
|
| 843 |
+
if use_motion_module
|
| 844 |
+
else None
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
self.resnets = nn.ModuleList(resnets)
|
| 848 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
| 849 |
+
|
| 850 |
+
if add_upsample:
|
| 851 |
+
self.upsamplers = nn.ModuleList(
|
| 852 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
| 853 |
+
)
|
| 854 |
+
else:
|
| 855 |
+
self.upsamplers = None
|
| 856 |
+
|
| 857 |
+
self.gradient_checkpointing = False
|
| 858 |
+
|
| 859 |
+
def forward(
|
| 860 |
+
self,
|
| 861 |
+
hidden_states,
|
| 862 |
+
res_hidden_states_tuple,
|
| 863 |
+
temb=None,
|
| 864 |
+
upsample_size=None,
|
| 865 |
+
encoder_hidden_states=None,
|
| 866 |
+
):
|
| 867 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
| 868 |
+
# pop res hidden states
|
| 869 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
| 870 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
| 871 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
| 872 |
+
|
| 873 |
+
# print(f"UpBlock3D {self.gradient_checkpointing = }")
|
| 874 |
+
if self.training and self.gradient_checkpointing:
|
| 875 |
+
|
| 876 |
+
def create_custom_forward(module):
|
| 877 |
+
def custom_forward(*inputs):
|
| 878 |
+
return module(*inputs)
|
| 879 |
+
|
| 880 |
+
return custom_forward
|
| 881 |
+
|
| 882 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 883 |
+
create_custom_forward(resnet), hidden_states, temb
|
| 884 |
+
)
|
| 885 |
+
if motion_module is not None:
|
| 886 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 887 |
+
create_custom_forward(motion_module),
|
| 888 |
+
hidden_states.requires_grad_(),
|
| 889 |
+
temb,
|
| 890 |
+
encoder_hidden_states,
|
| 891 |
+
)
|
| 892 |
+
else:
|
| 893 |
+
hidden_states = resnet(hidden_states, temb)
|
| 894 |
+
hidden_states = (
|
| 895 |
+
motion_module(
|
| 896 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
| 897 |
+
)
|
| 898 |
+
if motion_module is not None
|
| 899 |
+
else hidden_states
|
| 900 |
+
)
|
| 901 |
+
|
| 902 |
+
if self.upsamplers is not None:
|
| 903 |
+
for upsampler in self.upsamplers:
|
| 904 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
| 905 |
+
|
| 906 |
+
return hidden_states
|
src/pipelines/__init__.py
ADDED
|
File without changes
|
src/pipelines/context.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TODO: Adapted from cli
|
| 2 |
+
from typing import Callable, List, Optional
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def ordered_halving(val):
|
| 8 |
+
bin_str = f"{val:064b}"
|
| 9 |
+
bin_flip = bin_str[::-1]
|
| 10 |
+
as_int = int(bin_flip, 2)
|
| 11 |
+
|
| 12 |
+
return as_int / (1 << 64)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def uniform(
|
| 16 |
+
step: int = ...,
|
| 17 |
+
num_steps: Optional[int] = None,
|
| 18 |
+
num_frames: int = ...,
|
| 19 |
+
context_size: Optional[int] = None,
|
| 20 |
+
context_stride: int = 3,
|
| 21 |
+
context_overlap: int = 4,
|
| 22 |
+
closed_loop: bool = True,
|
| 23 |
+
):
|
| 24 |
+
if num_frames <= context_size:
|
| 25 |
+
yield list(range(num_frames))
|
| 26 |
+
return
|
| 27 |
+
|
| 28 |
+
context_stride = min(
|
| 29 |
+
context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
for context_step in 1 << np.arange(context_stride):
|
| 33 |
+
pad = int(round(num_frames * ordered_halving(step)))
|
| 34 |
+
for j in range(
|
| 35 |
+
int(ordered_halving(step) * context_step) + pad,
|
| 36 |
+
num_frames + pad + (0 if closed_loop else -context_overlap),
|
| 37 |
+
(context_size * context_step - context_overlap),
|
| 38 |
+
):
|
| 39 |
+
yield [
|
| 40 |
+
e % num_frames
|
| 41 |
+
for e in range(j, j + context_size * context_step, context_step)
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_context_scheduler(name: str) -> Callable:
|
| 46 |
+
if name == "uniform":
|
| 47 |
+
return uniform
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError(f"Unknown context_overlap policy {name}")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_total_steps(
|
| 53 |
+
scheduler,
|
| 54 |
+
timesteps: List[int],
|
| 55 |
+
num_steps: Optional[int] = None,
|
| 56 |
+
num_frames: int = ...,
|
| 57 |
+
context_size: Optional[int] = None,
|
| 58 |
+
context_stride: int = 3,
|
| 59 |
+
context_overlap: int = 4,
|
| 60 |
+
closed_loop: bool = True,
|
| 61 |
+
):
|
| 62 |
+
return sum(
|
| 63 |
+
len(
|
| 64 |
+
list(
|
| 65 |
+
scheduler(
|
| 66 |
+
i,
|
| 67 |
+
num_steps,
|
| 68 |
+
num_frames,
|
| 69 |
+
context_size,
|
| 70 |
+
context_stride,
|
| 71 |
+
context_overlap,
|
| 72 |
+
)
|
| 73 |
+
)
|
| 74 |
+
)
|
| 75 |
+
for i in range(len(timesteps))
|
| 76 |
+
)
|
src/pipelines/pipeline_lmks2vid_long.py
ADDED
|
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
import math
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Callable, List, Optional, Union
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers import DiffusionPipeline
|
| 9 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 10 |
+
from diffusers.schedulers import (
|
| 11 |
+
DDIMScheduler,
|
| 12 |
+
DPMSolverMultistepScheduler,
|
| 13 |
+
EulerAncestralDiscreteScheduler,
|
| 14 |
+
EulerDiscreteScheduler,
|
| 15 |
+
LMSDiscreteScheduler,
|
| 16 |
+
PNDMScheduler,
|
| 17 |
+
)
|
| 18 |
+
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
|
| 19 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 20 |
+
from einops import rearrange
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
from transformers import CLIPImageProcessor
|
| 23 |
+
|
| 24 |
+
from src.models.mutual_self_attention import ReferenceAttentionControl
|
| 25 |
+
from src.pipelines.context import get_context_scheduler
|
| 26 |
+
from src.pipelines.utils import get_tensor_interpolation_method
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 30 |
+
"""
|
| 31 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
| 32 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 33 |
+
"""
|
| 34 |
+
std_text = noise_pred_text.std(
|
| 35 |
+
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
|
| 36 |
+
)
|
| 37 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 38 |
+
# rescale the results from guidance (fixes overexposure)
|
| 39 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 40 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 41 |
+
noise_cfg = (
|
| 42 |
+
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 43 |
+
)
|
| 44 |
+
print(f"{(std_text / std_cfg) = }")
|
| 45 |
+
return noise_cfg
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@dataclass
|
| 49 |
+
class Pose2VideoPipelineOutput(BaseOutput):
|
| 50 |
+
videos: Union[torch.Tensor, np.ndarray]
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Pose2VideoPipeline(DiffusionPipeline):
|
| 54 |
+
_optional_components = []
|
| 55 |
+
|
| 56 |
+
def __init__(
|
| 57 |
+
self,
|
| 58 |
+
vae,
|
| 59 |
+
image_encoder,
|
| 60 |
+
reference_unet,
|
| 61 |
+
denoising_unet,
|
| 62 |
+
pose_guider1,
|
| 63 |
+
pose_guider2,
|
| 64 |
+
scheduler: Union[
|
| 65 |
+
DDIMScheduler,
|
| 66 |
+
PNDMScheduler,
|
| 67 |
+
LMSDiscreteScheduler,
|
| 68 |
+
EulerDiscreteScheduler,
|
| 69 |
+
EulerAncestralDiscreteScheduler,
|
| 70 |
+
DPMSolverMultistepScheduler,
|
| 71 |
+
],
|
| 72 |
+
audio_guider=None,
|
| 73 |
+
image_proj_model=None,
|
| 74 |
+
tokenizer=None,
|
| 75 |
+
text_encoder=None,
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
|
| 79 |
+
self.register_modules(
|
| 80 |
+
vae=vae,
|
| 81 |
+
image_encoder=image_encoder,
|
| 82 |
+
reference_unet=reference_unet,
|
| 83 |
+
denoising_unet=denoising_unet,
|
| 84 |
+
pose_guider1=pose_guider1,
|
| 85 |
+
pose_guider2=pose_guider2,
|
| 86 |
+
scheduler=scheduler,
|
| 87 |
+
audio_guider=audio_guider,
|
| 88 |
+
image_proj_model=image_proj_model,
|
| 89 |
+
tokenizer=tokenizer,
|
| 90 |
+
text_encoder=text_encoder,
|
| 91 |
+
)
|
| 92 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 93 |
+
self.clip_image_processor = CLIPImageProcessor()
|
| 94 |
+
self.ref_image_processor = VaeImageProcessor(
|
| 95 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
| 96 |
+
)
|
| 97 |
+
self.cond_image_processor = VaeImageProcessor(
|
| 98 |
+
vae_scale_factor=self.vae_scale_factor,
|
| 99 |
+
do_convert_rgb=True,
|
| 100 |
+
do_normalize=False,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def enable_vae_slicing(self):
|
| 104 |
+
self.vae.enable_slicing()
|
| 105 |
+
|
| 106 |
+
def disable_vae_slicing(self):
|
| 107 |
+
self.vae.disable_slicing()
|
| 108 |
+
|
| 109 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 110 |
+
if is_accelerate_available():
|
| 111 |
+
from accelerate import cpu_offload
|
| 112 |
+
else:
|
| 113 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 114 |
+
|
| 115 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 116 |
+
|
| 117 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
| 118 |
+
if cpu_offloaded_model is not None:
|
| 119 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 120 |
+
|
| 121 |
+
@property
|
| 122 |
+
def _execution_device(self):
|
| 123 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
| 124 |
+
return self.device
|
| 125 |
+
for module in self.unet.modules():
|
| 126 |
+
if (
|
| 127 |
+
hasattr(module, "_hf_hook")
|
| 128 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 129 |
+
and module._hf_hook.execution_device is not None
|
| 130 |
+
):
|
| 131 |
+
return torch.device(module._hf_hook.execution_device)
|
| 132 |
+
return self.device
|
| 133 |
+
|
| 134 |
+
def decode_latents(self, latents):
|
| 135 |
+
video_length = latents.shape[2]
|
| 136 |
+
latents = 1 / 0.18215 * latents
|
| 137 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
| 138 |
+
# video = self.vae.decode(latents).sample
|
| 139 |
+
video = []
|
| 140 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
| 141 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
| 142 |
+
video = torch.cat(video)
|
| 143 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
| 144 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
| 145 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
| 146 |
+
video = video.cpu().float().numpy()
|
| 147 |
+
return video
|
| 148 |
+
|
| 149 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 150 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 151 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 152 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 153 |
+
# and should be between [0, 1]
|
| 154 |
+
|
| 155 |
+
accepts_eta = "eta" in set(
|
| 156 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 157 |
+
)
|
| 158 |
+
extra_step_kwargs = {}
|
| 159 |
+
if accepts_eta:
|
| 160 |
+
extra_step_kwargs["eta"] = eta
|
| 161 |
+
|
| 162 |
+
# check if the scheduler accepts generator
|
| 163 |
+
accepts_generator = "generator" in set(
|
| 164 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 165 |
+
)
|
| 166 |
+
if accepts_generator:
|
| 167 |
+
extra_step_kwargs["generator"] = generator
|
| 168 |
+
return extra_step_kwargs
|
| 169 |
+
|
| 170 |
+
def prepare_latents(
|
| 171 |
+
self,
|
| 172 |
+
batch_size,
|
| 173 |
+
num_channels_latents,
|
| 174 |
+
width,
|
| 175 |
+
height,
|
| 176 |
+
video_length,
|
| 177 |
+
dtype,
|
| 178 |
+
device,
|
| 179 |
+
generator,
|
| 180 |
+
latents=None,
|
| 181 |
+
):
|
| 182 |
+
shape = (
|
| 183 |
+
batch_size,
|
| 184 |
+
num_channels_latents,
|
| 185 |
+
video_length,
|
| 186 |
+
height // self.vae_scale_factor,
|
| 187 |
+
width // self.vae_scale_factor,
|
| 188 |
+
)
|
| 189 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 190 |
+
raise ValueError(
|
| 191 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 192 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
if latents is None:
|
| 196 |
+
latents = randn_tensor(
|
| 197 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 198 |
+
)
|
| 199 |
+
else:
|
| 200 |
+
latents = latents.to(device)
|
| 201 |
+
|
| 202 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 203 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 204 |
+
return latents
|
| 205 |
+
|
| 206 |
+
def _encode_prompt(
|
| 207 |
+
self,
|
| 208 |
+
prompt,
|
| 209 |
+
device,
|
| 210 |
+
num_videos_per_prompt,
|
| 211 |
+
do_classifier_free_guidance,
|
| 212 |
+
negative_prompt,
|
| 213 |
+
):
|
| 214 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 215 |
+
|
| 216 |
+
text_inputs = self.tokenizer(
|
| 217 |
+
prompt,
|
| 218 |
+
padding="max_length",
|
| 219 |
+
max_length=self.tokenizer.model_max_length,
|
| 220 |
+
truncation=True,
|
| 221 |
+
return_tensors="pt",
|
| 222 |
+
)
|
| 223 |
+
text_input_ids = text_inputs.input_ids
|
| 224 |
+
untruncated_ids = self.tokenizer(
|
| 225 |
+
prompt, padding="longest", return_tensors="pt"
|
| 226 |
+
).input_ids
|
| 227 |
+
|
| 228 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 229 |
+
text_input_ids, untruncated_ids
|
| 230 |
+
):
|
| 231 |
+
removed_text = self.tokenizer.batch_decode(
|
| 232 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
if (
|
| 236 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 237 |
+
and self.text_encoder.config.use_attention_mask
|
| 238 |
+
):
|
| 239 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 240 |
+
else:
|
| 241 |
+
attention_mask = None
|
| 242 |
+
|
| 243 |
+
text_embeddings = self.text_encoder(
|
| 244 |
+
text_input_ids.to(device),
|
| 245 |
+
attention_mask=attention_mask,
|
| 246 |
+
)
|
| 247 |
+
text_embeddings = text_embeddings[0]
|
| 248 |
+
|
| 249 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 250 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
| 251 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 252 |
+
text_embeddings = text_embeddings.view(
|
| 253 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# get unconditional embeddings for classifier free guidance
|
| 257 |
+
if do_classifier_free_guidance:
|
| 258 |
+
uncond_tokens: List[str]
|
| 259 |
+
if negative_prompt is None:
|
| 260 |
+
uncond_tokens = [""] * batch_size
|
| 261 |
+
elif type(prompt) is not type(negative_prompt):
|
| 262 |
+
raise TypeError(
|
| 263 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 264 |
+
f" {type(prompt)}."
|
| 265 |
+
)
|
| 266 |
+
elif isinstance(negative_prompt, str):
|
| 267 |
+
uncond_tokens = [negative_prompt]
|
| 268 |
+
elif batch_size != len(negative_prompt):
|
| 269 |
+
raise ValueError(
|
| 270 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 271 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 272 |
+
" the batch size of `prompt`."
|
| 273 |
+
)
|
| 274 |
+
else:
|
| 275 |
+
uncond_tokens = negative_prompt
|
| 276 |
+
|
| 277 |
+
max_length = text_input_ids.shape[-1]
|
| 278 |
+
uncond_input = self.tokenizer(
|
| 279 |
+
uncond_tokens,
|
| 280 |
+
padding="max_length",
|
| 281 |
+
max_length=max_length,
|
| 282 |
+
truncation=True,
|
| 283 |
+
return_tensors="pt",
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
if (
|
| 287 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 288 |
+
and self.text_encoder.config.use_attention_mask
|
| 289 |
+
):
|
| 290 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 291 |
+
else:
|
| 292 |
+
attention_mask = None
|
| 293 |
+
|
| 294 |
+
uncond_embeddings = self.text_encoder(
|
| 295 |
+
uncond_input.input_ids.to(device),
|
| 296 |
+
attention_mask=attention_mask,
|
| 297 |
+
)
|
| 298 |
+
uncond_embeddings = uncond_embeddings[0]
|
| 299 |
+
|
| 300 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 301 |
+
seq_len = uncond_embeddings.shape[1]
|
| 302 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 303 |
+
uncond_embeddings = uncond_embeddings.view(
|
| 304 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 308 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 309 |
+
# to avoid doing two forward passes
|
| 310 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 311 |
+
|
| 312 |
+
return text_embeddings
|
| 313 |
+
|
| 314 |
+
def interpolate_latents(
|
| 315 |
+
self, latents: torch.Tensor, interpolation_factor: int, device
|
| 316 |
+
):
|
| 317 |
+
if interpolation_factor < 2:
|
| 318 |
+
return latents
|
| 319 |
+
|
| 320 |
+
new_latents = torch.zeros(
|
| 321 |
+
(
|
| 322 |
+
latents.shape[0],
|
| 323 |
+
latents.shape[1],
|
| 324 |
+
((latents.shape[2] - 1) * interpolation_factor) + 1,
|
| 325 |
+
latents.shape[3],
|
| 326 |
+
latents.shape[4],
|
| 327 |
+
),
|
| 328 |
+
device=latents.device,
|
| 329 |
+
dtype=latents.dtype,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
org_video_length = latents.shape[2]
|
| 333 |
+
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
|
| 334 |
+
|
| 335 |
+
new_index = 0
|
| 336 |
+
|
| 337 |
+
v0 = None
|
| 338 |
+
v1 = None
|
| 339 |
+
|
| 340 |
+
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
|
| 341 |
+
v0 = latents[:, :, i0, :, :]
|
| 342 |
+
v1 = latents[:, :, i1, :, :]
|
| 343 |
+
|
| 344 |
+
new_latents[:, :, new_index, :, :] = v0
|
| 345 |
+
new_index += 1
|
| 346 |
+
|
| 347 |
+
for f in rate:
|
| 348 |
+
v = get_tensor_interpolation_method()(
|
| 349 |
+
v0.to(device=device), v1.to(device=device), f
|
| 350 |
+
)
|
| 351 |
+
new_latents[:, :, new_index, :, :] = v.to(latents.device)
|
| 352 |
+
new_index += 1
|
| 353 |
+
|
| 354 |
+
new_latents[:, :, new_index, :, :] = v1
|
| 355 |
+
new_index += 1
|
| 356 |
+
|
| 357 |
+
return new_latents
|
| 358 |
+
|
| 359 |
+
@torch.no_grad()
|
| 360 |
+
def __call__(
|
| 361 |
+
self,
|
| 362 |
+
ref_image,
|
| 363 |
+
pose_up_images,
|
| 364 |
+
pose_down_images,
|
| 365 |
+
width,
|
| 366 |
+
height,
|
| 367 |
+
video_length,
|
| 368 |
+
num_inference_steps,
|
| 369 |
+
guidance_scale,
|
| 370 |
+
audio_features=None,
|
| 371 |
+
num_images_per_prompt=1,
|
| 372 |
+
eta: float = 0.0,
|
| 373 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 374 |
+
output_type: Optional[str] = "tensor",
|
| 375 |
+
return_dict: bool = True,
|
| 376 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 377 |
+
callback_steps: Optional[int] = 1,
|
| 378 |
+
guidance_rescale=0., # 0.7
|
| 379 |
+
**kwargs,
|
| 380 |
+
):
|
| 381 |
+
# Default height and width to unet
|
| 382 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 383 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 384 |
+
|
| 385 |
+
device = self._execution_device
|
| 386 |
+
|
| 387 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 388 |
+
|
| 389 |
+
# Prepare timesteps
|
| 390 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 391 |
+
timesteps = self.scheduler.timesteps
|
| 392 |
+
|
| 393 |
+
batch_size = 1
|
| 394 |
+
|
| 395 |
+
# Prepare clip image embeds
|
| 396 |
+
# NOTE: 这里是否需要 resize 到 (224, 224) 需要观察
|
| 397 |
+
clip_image = self.clip_image_processor.preprocess(
|
| 398 |
+
ref_image.resize((224, 224)), return_tensors="pt"
|
| 399 |
+
).pixel_values
|
| 400 |
+
# If image_proj_model is not None, means enable ip-adapter
|
| 401 |
+
if self.image_proj_model is not None:
|
| 402 |
+
clip_image_embeds = self.image_encoder(
|
| 403 |
+
clip_image.to(device, dtype=self.image_encoder.dtype),
|
| 404 |
+
output_hidden_states=True,
|
| 405 |
+
).hidden_states[-2]
|
| 406 |
+
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
|
| 407 |
+
uncond_image_prompt_embeds = self.image_proj_model(
|
| 408 |
+
torch.zeros_like(clip_image_embeds)
|
| 409 |
+
)
|
| 410 |
+
text_prompt_embeds = self._encode_prompt(
|
| 411 |
+
"best quality, high quality",
|
| 412 |
+
device,
|
| 413 |
+
num_images_per_prompt,
|
| 414 |
+
do_classifier_free_guidance,
|
| 415 |
+
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
| 416 |
+
)
|
| 417 |
+
# Concat image and text embeddings
|
| 418 |
+
if do_classifier_free_guidance:
|
| 419 |
+
(
|
| 420 |
+
uncond_text_prompt_embeds,
|
| 421 |
+
text_prompt_embeds,
|
| 422 |
+
) = text_prompt_embeds.chunk(2)
|
| 423 |
+
uncond_encoder_hidden_states = torch.cat(
|
| 424 |
+
[uncond_text_prompt_embeds, uncond_image_prompt_embeds], dim=1
|
| 425 |
+
)
|
| 426 |
+
encoder_hidden_states = torch.cat(
|
| 427 |
+
[text_prompt_embeds, image_prompt_embeds], dim=1
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
else:
|
| 431 |
+
clip_image_embeds = self.image_encoder(
|
| 432 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
| 433 |
+
).image_embeds
|
| 434 |
+
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
|
| 435 |
+
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
|
| 436 |
+
|
| 437 |
+
if do_classifier_free_guidance:
|
| 438 |
+
encoder_hidden_states = torch.cat(
|
| 439 |
+
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
num_channels_latents = self.denoising_unet.in_channels
|
| 443 |
+
|
| 444 |
+
latents = self.prepare_latents(
|
| 445 |
+
batch_size * num_images_per_prompt,
|
| 446 |
+
num_channels_latents,
|
| 447 |
+
width,
|
| 448 |
+
height,
|
| 449 |
+
video_length,
|
| 450 |
+
clip_image_embeds.dtype,
|
| 451 |
+
device,
|
| 452 |
+
generator,
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
# Prepare extra step kwargs.
|
| 456 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 457 |
+
|
| 458 |
+
# Prepare ref image latents
|
| 459 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
| 460 |
+
ref_image, height=height, width=width
|
| 461 |
+
) # (bs, c, width, height)
|
| 462 |
+
ref_image_tensor = ref_image_tensor.to(
|
| 463 |
+
dtype=self.vae.dtype, device=self.vae.device
|
| 464 |
+
)
|
| 465 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
| 466 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
| 467 |
+
ref_image_latents = ref_image_latents.unsqueeze(2)
|
| 468 |
+
|
| 469 |
+
# Prepare a list of pose condition images
|
| 470 |
+
pose_up_cond_tensor_list, pose_down_cond_tensor_list = [], []
|
| 471 |
+
for i, pose_up_image in enumerate(pose_up_images):
|
| 472 |
+
pose_up_cond_tensor = self.cond_image_processor.preprocess(
|
| 473 |
+
pose_up_image, height=height, width=width
|
| 474 |
+
)
|
| 475 |
+
pose_up_cond_tensor = pose_up_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
| 476 |
+
pose_up_cond_tensor_list.append(pose_up_cond_tensor)
|
| 477 |
+
pose_down_cond_tensor = self.cond_image_processor.preprocess(
|
| 478 |
+
pose_down_images[i], height=height, width=width
|
| 479 |
+
)
|
| 480 |
+
pose_down_cond_tensor = pose_down_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
| 481 |
+
pose_down_cond_tensor_list.append(pose_down_cond_tensor)
|
| 482 |
+
pose_up_cond_tensor = torch.cat(pose_up_cond_tensor_list, dim=2) # (bs, c, t, h, w)
|
| 483 |
+
pose_up_cond_tensor = pose_up_cond_tensor.to(
|
| 484 |
+
device=device, dtype=self.pose_guider1.dtype
|
| 485 |
+
)
|
| 486 |
+
pose_down_cond_tensor = torch.cat(pose_down_cond_tensor_list, dim=2) # (bs, c, t, h, w)
|
| 487 |
+
pose_up_fea = self.pose_guider1(pose_up_cond_tensor)
|
| 488 |
+
pose_down_cond_tensor = pose_down_cond_tensor.to(device=device, dtype=self.pose_guider2.dtype)
|
| 489 |
+
pose_down_fea = self.pose_guider2(pose_down_cond_tensor)
|
| 490 |
+
pose_fea = pose_up_fea + pose_down_fea
|
| 491 |
+
|
| 492 |
+
context_schedule = "uniform"
|
| 493 |
+
context_frames = 24
|
| 494 |
+
context_stride = 1
|
| 495 |
+
context_overlap = 4 # 4
|
| 496 |
+
context_batch_size = 1
|
| 497 |
+
context_scheduler = get_context_scheduler(context_schedule)
|
| 498 |
+
|
| 499 |
+
# denoising loop
|
| 500 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 501 |
+
middle_results = []
|
| 502 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 503 |
+
self_attention_additional_feats = {}
|
| 504 |
+
for i, t in enumerate(timesteps):
|
| 505 |
+
noise_pred = torch.zeros(
|
| 506 |
+
(
|
| 507 |
+
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
|
| 508 |
+
*latents.shape[1:],
|
| 509 |
+
),
|
| 510 |
+
device=latents.device,
|
| 511 |
+
dtype=latents.dtype,
|
| 512 |
+
)
|
| 513 |
+
counter = torch.zeros(
|
| 514 |
+
(1, 1, latents.shape[2], 1, 1),
|
| 515 |
+
device=latents.device,
|
| 516 |
+
dtype=latents.dtype,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
# 1. Forward reference image
|
| 520 |
+
if i == 0:
|
| 521 |
+
self.reference_unet(
|
| 522 |
+
# ref_image_latents.repeat(
|
| 523 |
+
# (2 if do_classifier_free_guidance else 1), 1, 1, 1
|
| 524 |
+
# ),
|
| 525 |
+
torch.cat([torch.zeros_like(ref_image_latents), ref_image_latents]) \
|
| 526 |
+
if do_classifier_free_guidance else \
|
| 527 |
+
ref_image_latents,
|
| 528 |
+
torch.zeros_like(t),
|
| 529 |
+
# t,
|
| 530 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 531 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 532 |
+
return_dict=False,
|
| 533 |
+
)
|
| 534 |
+
context_queue = list(
|
| 535 |
+
context_scheduler(
|
| 536 |
+
0,
|
| 537 |
+
num_inference_steps,
|
| 538 |
+
latents.shape[2],
|
| 539 |
+
context_frames,
|
| 540 |
+
context_stride,
|
| 541 |
+
context_overlap,
|
| 542 |
+
)
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
|
| 546 |
+
global_context = []
|
| 547 |
+
for i in range(num_context_batches):
|
| 548 |
+
global_context.append(
|
| 549 |
+
context_queue[
|
| 550 |
+
i * context_batch_size : (i + 1) * context_batch_size
|
| 551 |
+
]
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
for context in global_context:
|
| 555 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
| 556 |
+
latent_model_input = (
|
| 557 |
+
torch.cat([latents[:, :, c] for c in context])
|
| 558 |
+
.to(device)
|
| 559 |
+
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
| 560 |
+
)
|
| 561 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 562 |
+
latent_model_input, t
|
| 563 |
+
)
|
| 564 |
+
b, c, f, h, w = latent_model_input.shape
|
| 565 |
+
latent_pose_input = torch.cat(
|
| 566 |
+
[pose_fea[:, :, c] for c in context]
|
| 567 |
+
).repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
| 568 |
+
|
| 569 |
+
pred = self.denoising_unet(
|
| 570 |
+
latent_model_input,
|
| 571 |
+
t,
|
| 572 |
+
encoder_hidden_states=encoder_hidden_states[:b],
|
| 573 |
+
pose_cond_fea=latent_pose_input,
|
| 574 |
+
self_attention_additional_feats=self_attention_additional_feats,
|
| 575 |
+
return_dict=False,
|
| 576 |
+
)[0]
|
| 577 |
+
|
| 578 |
+
for j, c in enumerate(context):
|
| 579 |
+
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
|
| 580 |
+
counter[:, :, c] = counter[:, :, c] + 1
|
| 581 |
+
|
| 582 |
+
# perform guidance
|
| 583 |
+
if do_classifier_free_guidance:
|
| 584 |
+
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
|
| 585 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 586 |
+
noise_pred_text - noise_pred_uncond
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
| 590 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 591 |
+
noise_pred = rescale_noise_cfg(
|
| 592 |
+
noise_pred,
|
| 593 |
+
noise_pred_text,
|
| 594 |
+
guidance_rescale=guidance_rescale,
|
| 595 |
+
)
|
| 596 |
+
|
| 597 |
+
latents = self.scheduler.step(
|
| 598 |
+
noise_pred, t, latents, **extra_step_kwargs
|
| 599 |
+
).prev_sample
|
| 600 |
+
|
| 601 |
+
if i == len(timesteps) - 1 or (
|
| 602 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 603 |
+
):
|
| 604 |
+
progress_bar.update()
|
| 605 |
+
if callback is not None and i % callback_steps == 0:
|
| 606 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 607 |
+
callback(step_idx, t, latents)
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
interpolation_factor = 1
|
| 611 |
+
latents = self.interpolate_latents(latents, interpolation_factor, device)
|
| 612 |
+
# Post-processing
|
| 613 |
+
images = self.decode_latents(latents) # (b, c, f, h, w)
|
| 614 |
+
|
| 615 |
+
# Convert to tensor
|
| 616 |
+
if output_type == "tensor":
|
| 617 |
+
images = torch.from_numpy(images)
|
| 618 |
+
|
| 619 |
+
if not return_dict:
|
| 620 |
+
return images
|
| 621 |
+
|
| 622 |
+
return Pose2VideoPipelineOutput(videos=images)
|
src/pipelines/pipeline_pose2img.py
ADDED
|
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Callable, List, Optional, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 9 |
+
from diffusers.schedulers import (
|
| 10 |
+
DDIMScheduler,
|
| 11 |
+
DPMSolverMultistepScheduler,
|
| 12 |
+
EulerAncestralDiscreteScheduler,
|
| 13 |
+
EulerDiscreteScheduler,
|
| 14 |
+
LMSDiscreteScheduler,
|
| 15 |
+
PNDMScheduler,
|
| 16 |
+
)
|
| 17 |
+
from diffusers.utils import BaseOutput, is_accelerate_available
|
| 18 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 19 |
+
from einops import rearrange
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
from transformers import CLIPImageProcessor
|
| 22 |
+
|
| 23 |
+
from src.models.mutual_self_attention import ReferenceAttentionControl
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@dataclass
|
| 27 |
+
class Pose2ImagePipelineOutput(BaseOutput):
|
| 28 |
+
images: Union[torch.Tensor, np.ndarray]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class Pose2ImagePipeline(DiffusionPipeline):
|
| 32 |
+
_optional_components = []
|
| 33 |
+
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
vae,
|
| 37 |
+
image_encoder,
|
| 38 |
+
reference_unet,
|
| 39 |
+
denoising_unet,
|
| 40 |
+
pose_guider,
|
| 41 |
+
scheduler: Union[
|
| 42 |
+
DDIMScheduler,
|
| 43 |
+
PNDMScheduler,
|
| 44 |
+
LMSDiscreteScheduler,
|
| 45 |
+
EulerDiscreteScheduler,
|
| 46 |
+
EulerAncestralDiscreteScheduler,
|
| 47 |
+
DPMSolverMultistepScheduler,
|
| 48 |
+
],
|
| 49 |
+
):
|
| 50 |
+
super().__init__()
|
| 51 |
+
|
| 52 |
+
self.register_modules(
|
| 53 |
+
vae=vae,
|
| 54 |
+
image_encoder=image_encoder,
|
| 55 |
+
reference_unet=reference_unet,
|
| 56 |
+
denoising_unet=denoising_unet,
|
| 57 |
+
pose_guider=pose_guider,
|
| 58 |
+
scheduler=scheduler,
|
| 59 |
+
)
|
| 60 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 61 |
+
self.clip_image_processor = CLIPImageProcessor()
|
| 62 |
+
self.ref_image_processor = VaeImageProcessor(
|
| 63 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
| 64 |
+
)
|
| 65 |
+
self.cond_image_processor = VaeImageProcessor(
|
| 66 |
+
vae_scale_factor=self.vae_scale_factor,
|
| 67 |
+
do_convert_rgb=True,
|
| 68 |
+
do_normalize=False,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def enable_vae_slicing(self):
|
| 72 |
+
self.vae.enable_slicing()
|
| 73 |
+
|
| 74 |
+
def disable_vae_slicing(self):
|
| 75 |
+
self.vae.disable_slicing()
|
| 76 |
+
|
| 77 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 78 |
+
if is_accelerate_available():
|
| 79 |
+
from accelerate import cpu_offload
|
| 80 |
+
else:
|
| 81 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 82 |
+
|
| 83 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 84 |
+
|
| 85 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
| 86 |
+
if cpu_offloaded_model is not None:
|
| 87 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 88 |
+
|
| 89 |
+
@property
|
| 90 |
+
def _execution_device(self):
|
| 91 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
| 92 |
+
return self.device
|
| 93 |
+
for module in self.unet.modules():
|
| 94 |
+
if (
|
| 95 |
+
hasattr(module, "_hf_hook")
|
| 96 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 97 |
+
and module._hf_hook.execution_device is not None
|
| 98 |
+
):
|
| 99 |
+
return torch.device(module._hf_hook.execution_device)
|
| 100 |
+
return self.device
|
| 101 |
+
|
| 102 |
+
def decode_latents(self, latents):
|
| 103 |
+
video_length = latents.shape[2]
|
| 104 |
+
latents = 1 / 0.18215 * latents
|
| 105 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
| 106 |
+
# video = self.vae.decode(latents).sample
|
| 107 |
+
video = []
|
| 108 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
| 109 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
| 110 |
+
video = torch.cat(video)
|
| 111 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
| 112 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
| 113 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
| 114 |
+
video = video.cpu().float().numpy()
|
| 115 |
+
return video
|
| 116 |
+
|
| 117 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 118 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 119 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 120 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 121 |
+
# and should be between [0, 1]
|
| 122 |
+
|
| 123 |
+
accepts_eta = "eta" in set(
|
| 124 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 125 |
+
)
|
| 126 |
+
extra_step_kwargs = {}
|
| 127 |
+
if accepts_eta:
|
| 128 |
+
extra_step_kwargs["eta"] = eta
|
| 129 |
+
|
| 130 |
+
# check if the scheduler accepts generator
|
| 131 |
+
accepts_generator = "generator" in set(
|
| 132 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 133 |
+
)
|
| 134 |
+
if accepts_generator:
|
| 135 |
+
extra_step_kwargs["generator"] = generator
|
| 136 |
+
return extra_step_kwargs
|
| 137 |
+
|
| 138 |
+
def prepare_latents(
|
| 139 |
+
self,
|
| 140 |
+
batch_size,
|
| 141 |
+
num_channels_latents,
|
| 142 |
+
width,
|
| 143 |
+
height,
|
| 144 |
+
dtype,
|
| 145 |
+
device,
|
| 146 |
+
generator,
|
| 147 |
+
latents=None,
|
| 148 |
+
):
|
| 149 |
+
shape = (
|
| 150 |
+
batch_size,
|
| 151 |
+
num_channels_latents,
|
| 152 |
+
height // self.vae_scale_factor,
|
| 153 |
+
width // self.vae_scale_factor,
|
| 154 |
+
)
|
| 155 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 156 |
+
raise ValueError(
|
| 157 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 158 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if latents is None:
|
| 162 |
+
latents = randn_tensor(
|
| 163 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
latents = latents.to(device)
|
| 167 |
+
|
| 168 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 169 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 170 |
+
return latents
|
| 171 |
+
|
| 172 |
+
def prepare_condition(
|
| 173 |
+
self,
|
| 174 |
+
cond_image,
|
| 175 |
+
width,
|
| 176 |
+
height,
|
| 177 |
+
device,
|
| 178 |
+
dtype,
|
| 179 |
+
do_classififer_free_guidance=False,
|
| 180 |
+
):
|
| 181 |
+
image = self.cond_image_processor.preprocess(
|
| 182 |
+
cond_image, height=height, width=width
|
| 183 |
+
).to(dtype=torch.float32)
|
| 184 |
+
|
| 185 |
+
image = image.to(device=device, dtype=dtype)
|
| 186 |
+
|
| 187 |
+
if do_classififer_free_guidance:
|
| 188 |
+
image = torch.cat([image] * 2)
|
| 189 |
+
|
| 190 |
+
return image
|
| 191 |
+
|
| 192 |
+
@torch.no_grad()
|
| 193 |
+
def __call__(
|
| 194 |
+
self,
|
| 195 |
+
ref_image,
|
| 196 |
+
pose_image,
|
| 197 |
+
width,
|
| 198 |
+
height,
|
| 199 |
+
num_inference_steps,
|
| 200 |
+
guidance_scale,
|
| 201 |
+
num_images_per_prompt=1,
|
| 202 |
+
eta: float = 0.0,
|
| 203 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 204 |
+
output_type: Optional[str] = "tensor",
|
| 205 |
+
return_dict: bool = True,
|
| 206 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 207 |
+
callback_steps: Optional[int] = 1,
|
| 208 |
+
**kwargs,
|
| 209 |
+
):
|
| 210 |
+
# Default height and width to unet
|
| 211 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 212 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 213 |
+
|
| 214 |
+
device = self._execution_device
|
| 215 |
+
|
| 216 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 217 |
+
|
| 218 |
+
# Prepare timesteps
|
| 219 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 220 |
+
timesteps = self.scheduler.timesteps
|
| 221 |
+
|
| 222 |
+
batch_size = 1
|
| 223 |
+
|
| 224 |
+
# Prepare clip image embeds
|
| 225 |
+
clip_image = self.clip_image_processor.preprocess(
|
| 226 |
+
ref_image.resize((224, 224)), return_tensors="pt"
|
| 227 |
+
).pixel_values
|
| 228 |
+
clip_image_embeds = self.image_encoder(
|
| 229 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
| 230 |
+
).image_embeds
|
| 231 |
+
image_prompt_embeds = clip_image_embeds.unsqueeze(1)
|
| 232 |
+
uncond_image_prompt_embeds = torch.zeros_like(image_prompt_embeds)
|
| 233 |
+
|
| 234 |
+
if do_classifier_free_guidance:
|
| 235 |
+
image_prompt_embeds = torch.cat(
|
| 236 |
+
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
reference_control_writer = ReferenceAttentionControl(
|
| 240 |
+
self.reference_unet,
|
| 241 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 242 |
+
mode="write",
|
| 243 |
+
batch_size=batch_size,
|
| 244 |
+
fusion_blocks="full",
|
| 245 |
+
)
|
| 246 |
+
reference_control_reader = ReferenceAttentionControl(
|
| 247 |
+
self.denoising_unet,
|
| 248 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 249 |
+
mode="read",
|
| 250 |
+
batch_size=batch_size,
|
| 251 |
+
fusion_blocks="full",
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
num_channels_latents = self.denoising_unet.in_channels
|
| 255 |
+
latents = self.prepare_latents(
|
| 256 |
+
batch_size * num_images_per_prompt,
|
| 257 |
+
num_channels_latents,
|
| 258 |
+
width,
|
| 259 |
+
height,
|
| 260 |
+
clip_image_embeds.dtype,
|
| 261 |
+
device,
|
| 262 |
+
generator,
|
| 263 |
+
)
|
| 264 |
+
latents = latents.unsqueeze(2) # (bs, c, 1, h', w')
|
| 265 |
+
latents_dtype = latents.dtype
|
| 266 |
+
|
| 267 |
+
# Prepare extra step kwargs.
|
| 268 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 269 |
+
|
| 270 |
+
# Prepare ref image latents
|
| 271 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
| 272 |
+
ref_image, height=height, width=width
|
| 273 |
+
) # (bs, c, width, height)
|
| 274 |
+
ref_image_tensor = ref_image_tensor.to(
|
| 275 |
+
dtype=self.vae.dtype, device=self.vae.device
|
| 276 |
+
)
|
| 277 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
| 278 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
| 279 |
+
|
| 280 |
+
# Prepare pose condition image
|
| 281 |
+
pose_cond_tensor = self.cond_image_processor.preprocess(
|
| 282 |
+
pose_image, height=height, width=width
|
| 283 |
+
)
|
| 284 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
| 285 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
| 286 |
+
device=device, dtype=self.pose_guider.dtype
|
| 287 |
+
)
|
| 288 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
| 289 |
+
pose_fea = (
|
| 290 |
+
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# denoising loop
|
| 294 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 295 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 296 |
+
for i, t in enumerate(timesteps):
|
| 297 |
+
# 1. Forward reference image
|
| 298 |
+
if i == 0:
|
| 299 |
+
self.reference_unet(
|
| 300 |
+
ref_image_latents.repeat(
|
| 301 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
| 302 |
+
),
|
| 303 |
+
torch.zeros_like(t),
|
| 304 |
+
encoder_hidden_states=image_prompt_embeds,
|
| 305 |
+
return_dict=False,
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# 2. Update reference unet feature into denosing net
|
| 309 |
+
reference_control_reader.update(reference_control_writer)
|
| 310 |
+
|
| 311 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
| 312 |
+
latent_model_input = (
|
| 313 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 314 |
+
)
|
| 315 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 316 |
+
latent_model_input, t
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
noise_pred = self.denoising_unet(
|
| 320 |
+
latent_model_input,
|
| 321 |
+
t,
|
| 322 |
+
encoder_hidden_states=image_prompt_embeds,
|
| 323 |
+
pose_cond_fea=pose_fea,
|
| 324 |
+
return_dict=False,
|
| 325 |
+
)[0]
|
| 326 |
+
|
| 327 |
+
# perform guidance
|
| 328 |
+
if do_classifier_free_guidance:
|
| 329 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 330 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 331 |
+
noise_pred_text - noise_pred_uncond
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 335 |
+
latents = self.scheduler.step(
|
| 336 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
| 337 |
+
)[0]
|
| 338 |
+
|
| 339 |
+
# call the callback, if provided
|
| 340 |
+
if i == len(timesteps) - 1 or (
|
| 341 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 342 |
+
):
|
| 343 |
+
progress_bar.update()
|
| 344 |
+
if callback is not None and i % callback_steps == 0:
|
| 345 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 346 |
+
callback(step_idx, t, latents)
|
| 347 |
+
reference_control_reader.clear()
|
| 348 |
+
reference_control_writer.clear()
|
| 349 |
+
|
| 350 |
+
# Post-processing
|
| 351 |
+
image = self.decode_latents(latents) # (b, c, 1, h, w)
|
| 352 |
+
|
| 353 |
+
# Convert to tensor
|
| 354 |
+
if output_type == "tensor":
|
| 355 |
+
image = torch.from_numpy(image)
|
| 356 |
+
|
| 357 |
+
if not return_dict:
|
| 358 |
+
return image
|
| 359 |
+
|
| 360 |
+
return Pose2ImagePipelineOutput(images=image)
|
src/pipelines/pipeline_pose2vid.py
ADDED
|
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Callable, List, Optional, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 9 |
+
from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler,
|
| 10 |
+
EulerAncestralDiscreteScheduler,
|
| 11 |
+
EulerDiscreteScheduler, LMSDiscreteScheduler,
|
| 12 |
+
PNDMScheduler)
|
| 13 |
+
from diffusers.utils import BaseOutput, is_accelerate_available
|
| 14 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 15 |
+
from einops import rearrange
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
from transformers import CLIPImageProcessor
|
| 18 |
+
|
| 19 |
+
from src.models.mutual_self_attention import ReferenceAttentionControl
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@dataclass
|
| 23 |
+
class Pose2VideoPipelineOutput(BaseOutput):
|
| 24 |
+
videos: Union[torch.Tensor, np.ndarray]
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Pose2VideoPipeline(DiffusionPipeline):
|
| 28 |
+
_optional_components = []
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
vae,
|
| 33 |
+
image_encoder,
|
| 34 |
+
reference_unet,
|
| 35 |
+
denoising_unet,
|
| 36 |
+
pose_guider,
|
| 37 |
+
scheduler: Union[
|
| 38 |
+
DDIMScheduler,
|
| 39 |
+
PNDMScheduler,
|
| 40 |
+
LMSDiscreteScheduler,
|
| 41 |
+
EulerDiscreteScheduler,
|
| 42 |
+
EulerAncestralDiscreteScheduler,
|
| 43 |
+
DPMSolverMultistepScheduler,
|
| 44 |
+
],
|
| 45 |
+
image_proj_model=None,
|
| 46 |
+
tokenizer=None,
|
| 47 |
+
text_encoder=None,
|
| 48 |
+
):
|
| 49 |
+
super().__init__()
|
| 50 |
+
|
| 51 |
+
self.register_modules(
|
| 52 |
+
vae=vae,
|
| 53 |
+
image_encoder=image_encoder,
|
| 54 |
+
reference_unet=reference_unet,
|
| 55 |
+
denoising_unet=denoising_unet,
|
| 56 |
+
pose_guider=pose_guider,
|
| 57 |
+
scheduler=scheduler,
|
| 58 |
+
image_proj_model=image_proj_model,
|
| 59 |
+
tokenizer=tokenizer,
|
| 60 |
+
text_encoder=text_encoder,
|
| 61 |
+
)
|
| 62 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 63 |
+
self.clip_image_processor = CLIPImageProcessor()
|
| 64 |
+
self.ref_image_processor = VaeImageProcessor(
|
| 65 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
| 66 |
+
)
|
| 67 |
+
self.cond_image_processor = VaeImageProcessor(
|
| 68 |
+
vae_scale_factor=self.vae_scale_factor,
|
| 69 |
+
do_convert_rgb=True,
|
| 70 |
+
do_normalize=False,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
def enable_vae_slicing(self):
|
| 74 |
+
self.vae.enable_slicing()
|
| 75 |
+
|
| 76 |
+
def disable_vae_slicing(self):
|
| 77 |
+
self.vae.disable_slicing()
|
| 78 |
+
|
| 79 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
| 80 |
+
if is_accelerate_available():
|
| 81 |
+
from accelerate import cpu_offload
|
| 82 |
+
else:
|
| 83 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
| 84 |
+
|
| 85 |
+
device = torch.device(f"cuda:{gpu_id}")
|
| 86 |
+
|
| 87 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
| 88 |
+
if cpu_offloaded_model is not None:
|
| 89 |
+
cpu_offload(cpu_offloaded_model, device)
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def _execution_device(self):
|
| 93 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
| 94 |
+
return self.device
|
| 95 |
+
for module in self.unet.modules():
|
| 96 |
+
if (
|
| 97 |
+
hasattr(module, "_hf_hook")
|
| 98 |
+
and hasattr(module._hf_hook, "execution_device")
|
| 99 |
+
and module._hf_hook.execution_device is not None
|
| 100 |
+
):
|
| 101 |
+
return torch.device(module._hf_hook.execution_device)
|
| 102 |
+
return self.device
|
| 103 |
+
|
| 104 |
+
def decode_latents(self, latents):
|
| 105 |
+
video_length = latents.shape[2]
|
| 106 |
+
latents = 1 / 0.18215 * latents
|
| 107 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
| 108 |
+
# video = self.vae.decode(latents).sample
|
| 109 |
+
video = []
|
| 110 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
| 111 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
| 112 |
+
video = torch.cat(video)
|
| 113 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
| 114 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
| 115 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
| 116 |
+
video = video.cpu().float().numpy()
|
| 117 |
+
return video
|
| 118 |
+
|
| 119 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 120 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 121 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 122 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 123 |
+
# and should be between [0, 1]
|
| 124 |
+
|
| 125 |
+
accepts_eta = "eta" in set(
|
| 126 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 127 |
+
)
|
| 128 |
+
extra_step_kwargs = {}
|
| 129 |
+
if accepts_eta:
|
| 130 |
+
extra_step_kwargs["eta"] = eta
|
| 131 |
+
|
| 132 |
+
# check if the scheduler accepts generator
|
| 133 |
+
accepts_generator = "generator" in set(
|
| 134 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
| 135 |
+
)
|
| 136 |
+
if accepts_generator:
|
| 137 |
+
extra_step_kwargs["generator"] = generator
|
| 138 |
+
return extra_step_kwargs
|
| 139 |
+
|
| 140 |
+
def prepare_latents(
|
| 141 |
+
self,
|
| 142 |
+
batch_size,
|
| 143 |
+
num_channels_latents,
|
| 144 |
+
width,
|
| 145 |
+
height,
|
| 146 |
+
video_length,
|
| 147 |
+
dtype,
|
| 148 |
+
device,
|
| 149 |
+
generator,
|
| 150 |
+
latents=None,
|
| 151 |
+
):
|
| 152 |
+
shape = (
|
| 153 |
+
batch_size,
|
| 154 |
+
num_channels_latents,
|
| 155 |
+
video_length,
|
| 156 |
+
height // self.vae_scale_factor,
|
| 157 |
+
width // self.vae_scale_factor,
|
| 158 |
+
)
|
| 159 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 160 |
+
raise ValueError(
|
| 161 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 162 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
if latents is None:
|
| 166 |
+
latents = randn_tensor(
|
| 167 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
latents = latents.to(device)
|
| 171 |
+
|
| 172 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 173 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 174 |
+
return latents
|
| 175 |
+
|
| 176 |
+
def _encode_prompt(
|
| 177 |
+
self,
|
| 178 |
+
prompt,
|
| 179 |
+
device,
|
| 180 |
+
num_videos_per_prompt,
|
| 181 |
+
do_classifier_free_guidance,
|
| 182 |
+
negative_prompt,
|
| 183 |
+
):
|
| 184 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
| 185 |
+
|
| 186 |
+
text_inputs = self.tokenizer(
|
| 187 |
+
prompt,
|
| 188 |
+
padding="max_length",
|
| 189 |
+
max_length=self.tokenizer.model_max_length,
|
| 190 |
+
truncation=True,
|
| 191 |
+
return_tensors="pt",
|
| 192 |
+
)
|
| 193 |
+
text_input_ids = text_inputs.input_ids
|
| 194 |
+
untruncated_ids = self.tokenizer(
|
| 195 |
+
prompt, padding="longest", return_tensors="pt"
|
| 196 |
+
).input_ids
|
| 197 |
+
|
| 198 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 199 |
+
text_input_ids, untruncated_ids
|
| 200 |
+
):
|
| 201 |
+
removed_text = self.tokenizer.batch_decode(
|
| 202 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
if (
|
| 206 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 207 |
+
and self.text_encoder.config.use_attention_mask
|
| 208 |
+
):
|
| 209 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 210 |
+
else:
|
| 211 |
+
attention_mask = None
|
| 212 |
+
|
| 213 |
+
text_embeddings = self.text_encoder(
|
| 214 |
+
text_input_ids.to(device),
|
| 215 |
+
attention_mask=attention_mask,
|
| 216 |
+
)
|
| 217 |
+
text_embeddings = text_embeddings[0]
|
| 218 |
+
|
| 219 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 220 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
| 221 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 222 |
+
text_embeddings = text_embeddings.view(
|
| 223 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# get unconditional embeddings for classifier free guidance
|
| 227 |
+
if do_classifier_free_guidance:
|
| 228 |
+
uncond_tokens: List[str]
|
| 229 |
+
if negative_prompt is None:
|
| 230 |
+
uncond_tokens = [""] * batch_size
|
| 231 |
+
elif type(prompt) is not type(negative_prompt):
|
| 232 |
+
raise TypeError(
|
| 233 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 234 |
+
f" {type(prompt)}."
|
| 235 |
+
)
|
| 236 |
+
elif isinstance(negative_prompt, str):
|
| 237 |
+
uncond_tokens = [negative_prompt]
|
| 238 |
+
elif batch_size != len(negative_prompt):
|
| 239 |
+
raise ValueError(
|
| 240 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 241 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 242 |
+
" the batch size of `prompt`."
|
| 243 |
+
)
|
| 244 |
+
else:
|
| 245 |
+
uncond_tokens = negative_prompt
|
| 246 |
+
|
| 247 |
+
max_length = text_input_ids.shape[-1]
|
| 248 |
+
uncond_input = self.tokenizer(
|
| 249 |
+
uncond_tokens,
|
| 250 |
+
padding="max_length",
|
| 251 |
+
max_length=max_length,
|
| 252 |
+
truncation=True,
|
| 253 |
+
return_tensors="pt",
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
if (
|
| 257 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 258 |
+
and self.text_encoder.config.use_attention_mask
|
| 259 |
+
):
|
| 260 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 261 |
+
else:
|
| 262 |
+
attention_mask = None
|
| 263 |
+
|
| 264 |
+
uncond_embeddings = self.text_encoder(
|
| 265 |
+
uncond_input.input_ids.to(device),
|
| 266 |
+
attention_mask=attention_mask,
|
| 267 |
+
)
|
| 268 |
+
uncond_embeddings = uncond_embeddings[0]
|
| 269 |
+
|
| 270 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 271 |
+
seq_len = uncond_embeddings.shape[1]
|
| 272 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
| 273 |
+
uncond_embeddings = uncond_embeddings.view(
|
| 274 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 278 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 279 |
+
# to avoid doing two forward passes
|
| 280 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 281 |
+
|
| 282 |
+
return text_embeddings
|
| 283 |
+
|
| 284 |
+
@torch.no_grad()
|
| 285 |
+
def __call__(
|
| 286 |
+
self,
|
| 287 |
+
ref_image,
|
| 288 |
+
pose_images,
|
| 289 |
+
width,
|
| 290 |
+
height,
|
| 291 |
+
video_length,
|
| 292 |
+
num_inference_steps,
|
| 293 |
+
guidance_scale,
|
| 294 |
+
num_images_per_prompt=1,
|
| 295 |
+
eta: float = 0.0,
|
| 296 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 297 |
+
output_type: Optional[str] = "tensor",
|
| 298 |
+
return_dict: bool = True,
|
| 299 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 300 |
+
callback_steps: Optional[int] = 1,
|
| 301 |
+
**kwargs,
|
| 302 |
+
):
|
| 303 |
+
# Default height and width to unet
|
| 304 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 305 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 306 |
+
|
| 307 |
+
device = self._execution_device
|
| 308 |
+
|
| 309 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 310 |
+
|
| 311 |
+
# Prepare timesteps
|
| 312 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 313 |
+
timesteps = self.scheduler.timesteps
|
| 314 |
+
|
| 315 |
+
batch_size = 1
|
| 316 |
+
|
| 317 |
+
# Prepare clip image embeds
|
| 318 |
+
clip_image = self.clip_image_processor.preprocess(
|
| 319 |
+
ref_image, return_tensors="pt"
|
| 320 |
+
).pixel_values
|
| 321 |
+
clip_image_embeds = self.image_encoder(
|
| 322 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
| 323 |
+
).image_embeds
|
| 324 |
+
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
|
| 325 |
+
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
|
| 326 |
+
|
| 327 |
+
if do_classifier_free_guidance:
|
| 328 |
+
encoder_hidden_states = torch.cat(
|
| 329 |
+
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
|
| 330 |
+
)
|
| 331 |
+
reference_control_writer = ReferenceAttentionControl(
|
| 332 |
+
self.reference_unet,
|
| 333 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 334 |
+
mode="write",
|
| 335 |
+
batch_size=batch_size,
|
| 336 |
+
fusion_blocks="full",
|
| 337 |
+
)
|
| 338 |
+
reference_control_reader = ReferenceAttentionControl(
|
| 339 |
+
self.denoising_unet,
|
| 340 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 341 |
+
mode="read",
|
| 342 |
+
batch_size=batch_size,
|
| 343 |
+
fusion_blocks="full",
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
num_channels_latents = self.denoising_unet.in_channels
|
| 347 |
+
latents = self.prepare_latents(
|
| 348 |
+
batch_size * num_images_per_prompt,
|
| 349 |
+
num_channels_latents,
|
| 350 |
+
width,
|
| 351 |
+
height,
|
| 352 |
+
video_length,
|
| 353 |
+
clip_image_embeds.dtype,
|
| 354 |
+
device,
|
| 355 |
+
generator,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Prepare extra step kwargs.
|
| 359 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 360 |
+
|
| 361 |
+
# Prepare ref image latents
|
| 362 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
| 363 |
+
ref_image, height=height, width=width
|
| 364 |
+
) # (bs, c, width, height)
|
| 365 |
+
ref_image_tensor = ref_image_tensor.to(
|
| 366 |
+
dtype=self.vae.dtype, device=self.vae.device
|
| 367 |
+
)
|
| 368 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
| 369 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
| 370 |
+
|
| 371 |
+
# Prepare a list of pose condition images
|
| 372 |
+
pose_cond_tensor_list = []
|
| 373 |
+
for pose_image in pose_images:
|
| 374 |
+
pose_cond_tensor = (
|
| 375 |
+
torch.from_numpy(np.array(pose_image.resize((width, height)))) / 255.0
|
| 376 |
+
)
|
| 377 |
+
pose_cond_tensor = pose_cond_tensor.permute(2, 0, 1).unsqueeze(
|
| 378 |
+
1
|
| 379 |
+
) # (c, 1, h, w)
|
| 380 |
+
pose_cond_tensor_list.append(pose_cond_tensor)
|
| 381 |
+
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=1) # (c, t, h, w)
|
| 382 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(0)
|
| 383 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
| 384 |
+
device=device, dtype=self.pose_guider.dtype
|
| 385 |
+
)
|
| 386 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
| 387 |
+
pose_fea = (
|
| 388 |
+
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# denoising loop
|
| 392 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 393 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 394 |
+
for i, t in enumerate(timesteps):
|
| 395 |
+
# 1. Forward reference image
|
| 396 |
+
if i == 0:
|
| 397 |
+
self.reference_unet(
|
| 398 |
+
ref_image_latents.repeat(
|
| 399 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
| 400 |
+
),
|
| 401 |
+
torch.zeros_like(t),
|
| 402 |
+
# t,
|
| 403 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 404 |
+
return_dict=False,
|
| 405 |
+
)
|
| 406 |
+
reference_control_reader.update(reference_control_writer)
|
| 407 |
+
|
| 408 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
| 409 |
+
latent_model_input = (
|
| 410 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 411 |
+
)
|
| 412 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 413 |
+
latent_model_input, t
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
noise_pred = self.denoising_unet(
|
| 417 |
+
latent_model_input,
|
| 418 |
+
t,
|
| 419 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 420 |
+
pose_cond_fea=pose_fea,
|
| 421 |
+
return_dict=False,
|
| 422 |
+
)[0]
|
| 423 |
+
|
| 424 |
+
# perform guidance
|
| 425 |
+
if do_classifier_free_guidance:
|
| 426 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 427 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 428 |
+
noise_pred_text - noise_pred_uncond
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 432 |
+
latents = self.scheduler.step(
|
| 433 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
| 434 |
+
)[0]
|
| 435 |
+
|
| 436 |
+
# call the callback, if provided
|
| 437 |
+
if i == len(timesteps) - 1 or (
|
| 438 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 439 |
+
):
|
| 440 |
+
progress_bar.update()
|
| 441 |
+
if callback is not None and i % callback_steps == 0:
|
| 442 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 443 |
+
callback(step_idx, t, latents)
|
| 444 |
+
|
| 445 |
+
reference_control_reader.clear()
|
| 446 |
+
reference_control_writer.clear()
|
| 447 |
+
|
| 448 |
+
# Post-processing
|
| 449 |
+
images = self.decode_latents(latents) # (b, c, f, h, w)
|
| 450 |
+
|
| 451 |
+
# Convert to tensor
|
| 452 |
+
if output_type == "tensor":
|
| 453 |
+
images = torch.from_numpy(images)
|
| 454 |
+
|
| 455 |
+
if not return_dict:
|
| 456 |
+
return images
|
| 457 |
+
|
| 458 |
+
return Pose2VideoPipelineOutput(videos=images)
|