ouclxy commited on
Commit
82628dc
·
verified ·
1 Parent(s): 73d6251

Update grapp.py

Browse files
Files changed (1) hide show
  1. grapp.py +4 -376
grapp.py CHANGED
@@ -1,379 +1,7 @@
1
- import os
2
- os.environ.setdefault("GRADIO_TEMP_DIR", "/data2/lzliu/tmp/gradio")
3
- os.environ.setdefault("TMPDIR", "/data2/lzliu/tmp")
4
- os.makedirs("/data2/lzliu/tmp/gradio", exist_ok=True)
5
- os.makedirs("/data2/lzliu/tmp", exist_ok=True)
6
-
7
-
8
- # 其余保持不变
9
-
10
-
11
- import logging
12
  import gradio as gr
13
- import torch
14
- import os
15
- import uuid
16
- from test_stablehairv2 import log_validation
17
- from test_stablehairv2 import UNet3DConditionModel, ControlNetModel, CCProjection
18
- from test_stablehairv2 import AutoTokenizer, CLIPVisionModelWithProjection, AutoencoderKL, UNet2DConditionModel
19
- from omegaconf import OmegaConf
20
- import numpy as np
21
- import cv2
22
- from test_stablehairv2 import _maybe_align_image
23
- from HairMapper.hair_mapper_run import bald_head
24
-
25
- import base64
26
-
27
- with open("imgs/background.jpg", "rb") as f:
28
- b64_img = base64.b64encode(f.read()).decode()
29
-
30
-
31
- def inference(id_image, hair_image):
32
- os.makedirs("gradio_inputs", exist_ok=True)
33
- os.makedirs("gradio_outputs", exist_ok=True)
34
-
35
- id_path = "gradio_inputs/id.png"
36
- hair_path = "gradio_inputs/hair.png"
37
- id_image.save(id_path)
38
- hair_image.save(hair_path)
39
-
40
- # ===== 图像对齐 =====
41
- aligned_id = _maybe_align_image(id_path, output_size=1024, prefer_cuda=True)
42
- aligned_hair = _maybe_align_image(hair_path, output_size=1024, prefer_cuda=True)
43
-
44
- # 保存对齐结果(方便 Gradio 输出)
45
- aligned_id_path = "gradio_outputs/aligned_id.png"
46
- aligned_hair_path = "gradio_outputs/aligned_hair.png"
47
- cv2.imwrite(aligned_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
48
- cv2.imwrite(aligned_hair_path, cv2.cvtColor(aligned_hair, cv2.COLOR_RGB2BGR))
49
-
50
- # ===== 调用 HairMapper 秃头化 =====
51
- bald_id_path = "gradio_outputs/bald_id.png"
52
- cv2.imwrite(bald_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
53
- bald_head(bald_id_path, bald_id_path)
54
-
55
- # ===== 原本的 Args =====
56
- class Args:
57
- pretrained_model_name_or_path = "./stable-diffusion-v1-5/stable-diffusion-v1-5"
58
- model_path = "./trained_model"
59
- image_encoder = "openai/clip-vit-large-patch14"
60
- controlnet_model_name_or_path = None
61
- revision = None
62
- output_dir = "gradio_outputs"
63
- seed = 42
64
- num_validation_images = 1
65
- validation_ids = [aligned_id_path] # 用对齐后的图像
66
- validation_hairs = [aligned_hair_path] # 用对齐后的图像
67
- use_fp16 = False
68
-
69
- args = Args()
70
-
71
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
72
-
73
- # 初始化 logger
74
- logging.basicConfig(
75
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
76
- datefmt="%m/%d/%Y %H:%M:%S",
77
- level=logging.INFO,
78
- )
79
- logger = logging.getLogger(__name__)
80
-
81
- # ===== 模型加载(和 main() 对齐) =====
82
- tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer",
83
- revision=args.revision)
84
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder, revision=args.revision).to(device)
85
- vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision).to(
86
- device, dtype=torch.float32)
87
-
88
- infer_config = OmegaConf.load('./configs/inference/inference_v2.yaml')
89
-
90
- unet2 = UNet2DConditionModel.from_pretrained(
91
- args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, torch_dtype=torch.float32
92
- ).to(device)
93
- conv_in_8 = torch.nn.Conv2d(8, unet2.conv_in.out_channels, kernel_size=unet2.conv_in.kernel_size,
94
- padding=unet2.conv_in.padding)
95
- conv_in_8.requires_grad_(False)
96
- unet2.conv_in.requires_grad_(False)
97
- torch.nn.init.zeros_(conv_in_8.weight)
98
- conv_in_8.weight[:, :4, :, :].copy_(unet2.conv_in.weight)
99
- conv_in_8.bias.copy_(unet2.conv_in.bias)
100
- unet2.conv_in = conv_in_8
101
-
102
- controlnet = ControlNetModel.from_unet(unet2).to(device)
103
- state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model.bin"), map_location="cpu")
104
- controlnet.load_state_dict(state_dict2, strict=False)
105
-
106
- prefix = "motion_module"
107
- ckpt_num = "4140000"
108
- save_path = os.path.join(args.model_path, f"{prefix}-{ckpt_num}.pth")
109
- denoising_unet = UNet3DConditionModel.from_pretrained_2d(
110
- args.pretrained_model_name_or_path,
111
- save_path,
112
- subfolder="unet",
113
- unet_additional_kwargs=infer_config.unet_additional_kwargs,
114
- ).to(device)
115
-
116
- cc_projection = CCProjection().to(device)
117
- state_dict3 = torch.load(os.path.join(args.model_path, "pytorch_model_1.bin"), map_location="cpu")
118
- cc_projection.load_state_dict(state_dict3, strict=False)
119
-
120
- from ref_encoder.reference_unet import ref_unet
121
- Hair_Encoder = ref_unet.from_pretrained(
122
- args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False,
123
- device_map=None, ignore_mismatched_sizes=True
124
- ).to(device)
125
- state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model_2.bin"), map_location="cpu")
126
- Hair_Encoder.load_state_dict(state_dict2, strict=False)
127
-
128
- # 推理
129
- log_validation(
130
- vae, tokenizer, image_encoder, denoising_unet,
131
- args, device, logger,
132
- cc_projection, controlnet, Hair_Encoder
133
- )
134
-
135
- output_video = os.path.join(args.output_dir, "validation", "generated_video_0.mp4")
136
-
137
- # 提取视频帧用于可拖动预览
138
- frames_dir = os.path.join(args.output_dir, "frames", uuid.uuid4().hex)
139
- os.makedirs(frames_dir, exist_ok=True)
140
- cap = cv2.VideoCapture(output_video)
141
- frames_list = []
142
- idx = 0
143
- while True:
144
- ret, frame = cap.read()
145
- if not ret:
146
- break
147
- fp = os.path.join(frames_dir, f"{idx:03d}.png")
148
- cv2.imwrite(fp, frame)
149
- frames_list.append(fp)
150
- idx += 1
151
- cap.release()
152
-
153
- max_frames = len(frames_list) if frames_list else 1
154
- first_frame = frames_list[0] if frames_list else None
155
-
156
- return aligned_id_path, aligned_hair_path, bald_id_path, output_video, frames_list, gr.update(minimum=1,
157
- maximum=max_frames,
158
- value=1,
159
- step=1), first_frame
160
-
161
-
162
- # Gradio 前端
163
- # 原 Interface 版本(保留以便回退)
164
- # demo = gr.Interface(
165
- # fn=inference,
166
- # inputs=[
167
- # gr.Image(type="pil", label="上传身份图(ID Image)"),
168
- # gr.Image(type="pil", label="上传发型图(Hair Reference Image)")
169
- # ],
170
- # outputs=[
171
- # gr.Image(type="filepath", label="对齐后的身份图"),
172
- # gr.Image(type="filepath", label="对齐后的发型图"),
173
- # gr.Image(type="filepath", label="秃头化后的身份图"),
174
- # gr.Video(label="生成的视频")
175
- # ],
176
- # title="StableHairV2 多视角发型迁移",
177
- # description="上传身份图和发型参考图,查看对齐结果并生成多视角视频"
178
- # )
179
- # if __name__ == "__main__":
180
- # demo.launch(server_name="0.0.0.0", server_port=7860)
181
-
182
- # Blocks 美化版
183
- css = f"""
184
- html, body {{
185
- height: 100%;
186
- margin: 0;
187
- padding: 0;
188
- }}
189
- .gradio-container {{
190
- width: 100% !important;
191
- height: 100% !important;
192
- margin: 0 !important;
193
- padding: 0 !important;
194
- background-image: url("data:image/jpeg;base64,{b64_img}");
195
- background-size: cover;
196
- background-position: center;
197
- background-attachment: fixed; /* 背景固定 */
198
- }}
199
- #title-card {{
200
- background: rgba(255, 255, 255, 0.8);
201
- border-radius: 12px;
202
- padding: 16px 24px;
203
- box-shadow: 0 2px 8px rgba(0,0,0,0.15);
204
- margin-bottom: 20px;
205
- }}
206
- #title-card h2 {{
207
- text-align: center;
208
- margin: 4px 0 12px 0;
209
- font-size: 28px;
210
- }}
211
- #title-card p {{
212
- text-align: center;
213
- font-size: 16px;
214
- color: #374151;
215
- }}
216
- .out-card {{
217
- border:1px solid #e5e7eb; border-radius:10px; padding:10px;
218
- background: rgba(255,255,255,0.85);
219
- }}
220
- .two-col {{
221
- display:grid !important; grid-template-columns: 360px minmax(680px, 1fr); gap:16px
222
- }}
223
- .left-pane {{min-width: 360px}}
224
- .right-pane {{min-width: 680px}}
225
- /* Tabs 美化 */
226
- .tabs {{
227
- background: rgba(255,255,255,0.88);
228
- border-radius: 12px;
229
- box-shadow: 0 8px 24px rgba(0,0,0,0.08);
230
- padding: 8px;
231
- border: 1px solid #e5e7eb;
232
- }}
233
- .tab-nav {{
234
- display: flex; gap: 8px; margin-bottom: 8px;
235
- background: transparent;
236
- border-bottom: 1px solid #e5e7eb;
237
- padding-bottom: 6px;
238
- }}
239
- .tab-nav button {{
240
- background: rgba(255,255,255,0.7);
241
- border: 1px solid #e5e7eb;
242
- backdrop-filter: blur(6px);
243
- border-radius: 8px;
244
- padding: 6px 12px;
245
- color: #111827;
246
- transition: all .2s ease;
247
- }}
248
- .tab-nav button:hover {{
249
- transform: translateY(-1px);
250
- box-shadow: 0 4px 10px rgba(0,0,0,0.06);
251
- }}
252
- .tab-nav button[aria-selected="true"] {{
253
- background: #4f46e5;
254
- color: #fff;
255
- border-color: #4f46e5;
256
- box-shadow: 0 6px 14px rgba(79,70,229,0.25);
257
- }}
258
- .tabitem {{
259
- background: rgba(255,255,255,0.88);
260
- border-radius: 10px;
261
- padding: 8px;
262
- }}
263
- /* 发型库滚动限制容器:固定260px高度,内部可滚动 */
264
- #hair_gallery_wrap {{
265
- height: 260px !important;
266
- overflow-y: scroll !important;
267
- overflow-x: auto !important;
268
- }}
269
- #hair_gallery_wrap .grid, #hair_gallery_wrap .wrap {{
270
- height: 100% !important;
271
- overflow-y: scroll !important;
272
- }}
273
- /* 确保画廊本体占满容���高度,避免滚动条落到页面底部 */
274
- #hair_gallery {{
275
- height: 100% !important;
276
- }}
277
- """
278
-
279
- with gr.Blocks(
280
- theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate"),
281
- css=css
282
- ) as demo:
283
- # ==== 顶部 Panel ====
284
- with gr.Group(elem_id="title-card"):
285
- gr.Markdown("""
286
- <h2 id='title'>StableHairV2 多视角发型迁移</h2>
287
- <p>上传身份图与发型参考图,系统将自动完成 <b>对齐 → 秃头化 → 视频生成</b>。</p>
288
- """)
289
-
290
- with gr.Row(elem_classes=["two-col"]):
291
- with gr.Column(scale=5, min_width=260, elem_classes=["left-pane"]):
292
- id_input = gr.Image(type="pil", label="身份图", height=200)
293
- hair_input = gr.Image(type="pil", label="发型参考图", height=200)
294
-
295
- with gr.Row():
296
- run_btn = gr.Button("开始生成", variant="primary")
297
- clear_btn = gr.Button("清空")
298
-
299
- # ========= 发型库(点击即填充到“发型参考图”) =========
300
- def _list_imgs(dir_path: str):
301
- exts = (".png", ".jpg", ".jpeg", ".webp")
302
- # exts = (".jpg")
303
- try:
304
- files = [os.path.join(dir_path, f) for f in sorted(os.listdir(dir_path))
305
- if f.lower().endswith(exts)]
306
- return files
307
- except Exception:
308
- return []
309
-
310
- hair_list = _list_imgs("hair_resposity")
311
-
312
- with gr.Accordion("发型库(点击选择后自动填充)", open=True):
313
- with gr.Group(elem_id="hair_gallery_wrap"):
314
- gallery = gr.Gallery(
315
- value=hair_list,
316
- columns=4, rows=2, allow_preview=True, label="发型库",
317
- elem_id="hair_gallery"
318
- )
319
-
320
- def _pick_hair(evt: gr.SelectData): # type: ignore[name-defined]
321
- i = evt.index if hasattr(evt, 'index') else 0
322
- i = 0 if i is None else int(i)
323
- if 0 <= i < len(hair_list):
324
- return gr.update(value=hair_list[i])
325
- return gr.update()
326
-
327
- gallery.select(_pick_hair, inputs=None, outputs=hair_input)
328
-
329
- with gr.Column(scale=7, min_width=520, elem_classes=["right-pane"]):
330
- with gr.Tabs():
331
- with gr.TabItem("生成视频"):
332
- with gr.Group(elem_classes=["out-card"]):
333
- video_out = gr.Video(label="生成的视频", height=340)
334
- with gr.Row():
335
- frame_slider = gr.Slider(1, 21, value=1, step=1, label="多视角预览(拖动查看帧)")
336
- frame_preview = gr.Image(type="filepath", label="预览帧", height=260)
337
- frames_state = gr.State([])
338
-
339
- with gr.TabItem("归一化对齐结果"):
340
- with gr.Group(elem_classes=["out-card"]):
341
- with gr.Row():
342
- aligned_id_out = gr.Image(type="filepath", label="对齐后的身份图", height=240)
343
- aligned_hair_out = gr.Image(type="filepath", label="对齐后的发型图", height=240)
344
-
345
- with gr.TabItem("秃头化结果"):
346
- with gr.Group(elem_classes=["out-card"]):
347
- bald_id_out = gr.Image(type="filepath", label="秃头化后的身份图", height=260)
348
-
349
- # 逻辑保持不变
350
- run_btn.click(fn=inference,
351
- inputs=[id_input, hair_input],
352
- outputs=[aligned_id_out, aligned_hair_out, bald_id_out,
353
- video_out, frames_state, frame_slider, frame_preview])
354
-
355
-
356
- def _on_slide(frames, idx):
357
- if not frames:
358
- return gr.update()
359
- i = int(idx) - 1
360
- i = max(0, min(i, len(frames) - 1))
361
- return gr.update(value=frames[i])
362
-
363
-
364
- frame_slider.change(_on_slide, inputs=[frames_state, frame_slider], outputs=frame_preview)
365
-
366
-
367
- def _clear():
368
- return None, None, None, None, None
369
-
370
-
371
- clear_btn.click(_clear, None,
372
- [id_input, hair_input, aligned_id_out, aligned_hair_out, bald_id_out])
373
-
374
- if __name__ == "__main__":
375
- demo.queue().launch(server_name="0.0.0.0", server_port=7860)
376
-
377
-
378
 
 
 
379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ def greet(name):
4
+ return "Hello " + name + "!!"
5
 
6
+ demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
+ demo.launch()