ouclxy commited on
Commit
f07f747
·
verified ·
1 Parent(s): be829ea

Create grapp.py

Browse files
Files changed (1) hide show
  1. grapp.py +379 -0
grapp.py ADDED
@@ -0,0 +1,379 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ.setdefault("GRADIO_TEMP_DIR", "/data2/lzliu/tmp/gradio")
3
+ os.environ.setdefault("TMPDIR", "/data2/lzliu/tmp")
4
+ os.makedirs("/data2/lzliu/tmp/gradio", exist_ok=True)
5
+ os.makedirs("/data2/lzliu/tmp", exist_ok=True)
6
+
7
+
8
+ # 其余保持不变
9
+
10
+
11
+ import logging
12
+ import gradio as gr
13
+ import torch
14
+ import os
15
+ import uuid
16
+ from test_stablehairv2 import log_validation
17
+ from test_stablehairv2 import UNet3DConditionModel, ControlNetModel, CCProjection
18
+ from test_stablehairv2 import AutoTokenizer, CLIPVisionModelWithProjection, AutoencoderKL, UNet2DConditionModel
19
+ from omegaconf import OmegaConf
20
+ import numpy as np
21
+ import cv2
22
+ from test_stablehairv2 import _maybe_align_image
23
+ from HairMapper.hair_mapper_run import bald_head
24
+
25
+ import base64
26
+
27
+ with open("imgs/background.jpg", "rb") as f:
28
+ b64_img = base64.b64encode(f.read()).decode()
29
+
30
+
31
+ def inference(id_image, hair_image):
32
+ os.makedirs("gradio_inputs", exist_ok=True)
33
+ os.makedirs("gradio_outputs", exist_ok=True)
34
+
35
+ id_path = "gradio_inputs/id.png"
36
+ hair_path = "gradio_inputs/hair.png"
37
+ id_image.save(id_path)
38
+ hair_image.save(hair_path)
39
+
40
+ # ===== 图像对齐 =====
41
+ aligned_id = _maybe_align_image(id_path, output_size=1024, prefer_cuda=True)
42
+ aligned_hair = _maybe_align_image(hair_path, output_size=1024, prefer_cuda=True)
43
+
44
+ # 保存对齐结果(方便 Gradio 输出)
45
+ aligned_id_path = "gradio_outputs/aligned_id.png"
46
+ aligned_hair_path = "gradio_outputs/aligned_hair.png"
47
+ cv2.imwrite(aligned_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
48
+ cv2.imwrite(aligned_hair_path, cv2.cvtColor(aligned_hair, cv2.COLOR_RGB2BGR))
49
+
50
+ # ===== 调用 HairMapper 秃头化 =====
51
+ bald_id_path = "gradio_outputs/bald_id.png"
52
+ cv2.imwrite(bald_id_path, cv2.cvtColor(aligned_id, cv2.COLOR_RGB2BGR))
53
+ bald_head(bald_id_path, bald_id_path)
54
+
55
+ # ===== 原本的 Args =====
56
+ class Args:
57
+ pretrained_model_name_or_path = "./stable-diffusion-v1-5/stable-diffusion-v1-5"
58
+ model_path = "./trained_model"
59
+ image_encoder = "openai/clip-vit-large-patch14"
60
+ controlnet_model_name_or_path = None
61
+ revision = None
62
+ output_dir = "gradio_outputs"
63
+ seed = 42
64
+ num_validation_images = 1
65
+ validation_ids = [aligned_id_path] # 用对齐后的图像
66
+ validation_hairs = [aligned_hair_path] # 用对齐后的图像
67
+ use_fp16 = False
68
+
69
+ args = Args()
70
+
71
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
72
+
73
+ # 初始化 logger
74
+ logging.basicConfig(
75
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
76
+ datefmt="%m/%d/%Y %H:%M:%S",
77
+ level=logging.INFO,
78
+ )
79
+ logger = logging.getLogger(__name__)
80
+
81
+ # ===== 模型加载(和 main() 对齐) =====
82
+ tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer",
83
+ revision=args.revision)
84
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder, revision=args.revision).to(device)
85
+ vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision).to(
86
+ device, dtype=torch.float32)
87
+
88
+ infer_config = OmegaConf.load('./configs/inference/inference_v2.yaml')
89
+
90
+ unet2 = UNet2DConditionModel.from_pretrained(
91
+ args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, torch_dtype=torch.float32
92
+ ).to(device)
93
+ conv_in_8 = torch.nn.Conv2d(8, unet2.conv_in.out_channels, kernel_size=unet2.conv_in.kernel_size,
94
+ padding=unet2.conv_in.padding)
95
+ conv_in_8.requires_grad_(False)
96
+ unet2.conv_in.requires_grad_(False)
97
+ torch.nn.init.zeros_(conv_in_8.weight)
98
+ conv_in_8.weight[:, :4, :, :].copy_(unet2.conv_in.weight)
99
+ conv_in_8.bias.copy_(unet2.conv_in.bias)
100
+ unet2.conv_in = conv_in_8
101
+
102
+ controlnet = ControlNetModel.from_unet(unet2).to(device)
103
+ state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model.bin"), map_location="cpu")
104
+ controlnet.load_state_dict(state_dict2, strict=False)
105
+
106
+ prefix = "motion_module"
107
+ ckpt_num = "4140000"
108
+ save_path = os.path.join(args.model_path, f"{prefix}-{ckpt_num}.pth")
109
+ denoising_unet = UNet3DConditionModel.from_pretrained_2d(
110
+ args.pretrained_model_name_or_path,
111
+ save_path,
112
+ subfolder="unet",
113
+ unet_additional_kwargs=infer_config.unet_additional_kwargs,
114
+ ).to(device)
115
+
116
+ cc_projection = CCProjection().to(device)
117
+ state_dict3 = torch.load(os.path.join(args.model_path, "pytorch_model_1.bin"), map_location="cpu")
118
+ cc_projection.load_state_dict(state_dict3, strict=False)
119
+
120
+ from ref_encoder.reference_unet import ref_unet
121
+ Hair_Encoder = ref_unet.from_pretrained(
122
+ args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False,
123
+ device_map=None, ignore_mismatched_sizes=True
124
+ ).to(device)
125
+ state_dict2 = torch.load(os.path.join(args.model_path, "pytorch_model_2.bin"), map_location="cpu")
126
+ Hair_Encoder.load_state_dict(state_dict2, strict=False)
127
+
128
+ # 推理
129
+ log_validation(
130
+ vae, tokenizer, image_encoder, denoising_unet,
131
+ args, device, logger,
132
+ cc_projection, controlnet, Hair_Encoder
133
+ )
134
+
135
+ output_video = os.path.join(args.output_dir, "validation", "generated_video_0.mp4")
136
+
137
+ # 提取视频帧用于可拖动预览
138
+ frames_dir = os.path.join(args.output_dir, "frames", uuid.uuid4().hex)
139
+ os.makedirs(frames_dir, exist_ok=True)
140
+ cap = cv2.VideoCapture(output_video)
141
+ frames_list = []
142
+ idx = 0
143
+ while True:
144
+ ret, frame = cap.read()
145
+ if not ret:
146
+ break
147
+ fp = os.path.join(frames_dir, f"{idx:03d}.png")
148
+ cv2.imwrite(fp, frame)
149
+ frames_list.append(fp)
150
+ idx += 1
151
+ cap.release()
152
+
153
+ max_frames = len(frames_list) if frames_list else 1
154
+ first_frame = frames_list[0] if frames_list else None
155
+
156
+ return aligned_id_path, aligned_hair_path, bald_id_path, output_video, frames_list, gr.update(minimum=1,
157
+ maximum=max_frames,
158
+ value=1,
159
+ step=1), first_frame
160
+
161
+
162
+ # Gradio 前端
163
+ # 原 Interface 版本(保留以便回退)
164
+ # demo = gr.Interface(
165
+ # fn=inference,
166
+ # inputs=[
167
+ # gr.Image(type="pil", label="上传身份图(ID Image)"),
168
+ # gr.Image(type="pil", label="上传发型图(Hair Reference Image)")
169
+ # ],
170
+ # outputs=[
171
+ # gr.Image(type="filepath", label="对齐后的身份图"),
172
+ # gr.Image(type="filepath", label="对齐后的发型图"),
173
+ # gr.Image(type="filepath", label="秃头化后的身份图"),
174
+ # gr.Video(label="生成的视频")
175
+ # ],
176
+ # title="StableHairV2 多视角发型迁移",
177
+ # description="上传身份图和发型参考图,查看对齐结果并生成多视角视频"
178
+ # )
179
+ # if __name__ == "__main__":
180
+ # demo.launch(server_name="0.0.0.0", server_port=7860)
181
+
182
+ # Blocks 美化版
183
+ css = f"""
184
+ html, body {{
185
+ height: 100%;
186
+ margin: 0;
187
+ padding: 0;
188
+ }}
189
+ .gradio-container {{
190
+ width: 100% !important;
191
+ height: 100% !important;
192
+ margin: 0 !important;
193
+ padding: 0 !important;
194
+ background-image: url("data:image/jpeg;base64,{b64_img}");
195
+ background-size: cover;
196
+ background-position: center;
197
+ background-attachment: fixed; /* 背景固定 */
198
+ }}
199
+ #title-card {{
200
+ background: rgba(255, 255, 255, 0.8);
201
+ border-radius: 12px;
202
+ padding: 16px 24px;
203
+ box-shadow: 0 2px 8px rgba(0,0,0,0.15);
204
+ margin-bottom: 20px;
205
+ }}
206
+ #title-card h2 {{
207
+ text-align: center;
208
+ margin: 4px 0 12px 0;
209
+ font-size: 28px;
210
+ }}
211
+ #title-card p {{
212
+ text-align: center;
213
+ font-size: 16px;
214
+ color: #374151;
215
+ }}
216
+ .out-card {{
217
+ border:1px solid #e5e7eb; border-radius:10px; padding:10px;
218
+ background: rgba(255,255,255,0.85);
219
+ }}
220
+ .two-col {{
221
+ display:grid !important; grid-template-columns: 360px minmax(680px, 1fr); gap:16px
222
+ }}
223
+ .left-pane {{min-width: 360px}}
224
+ .right-pane {{min-width: 680px}}
225
+ /* Tabs 美化 */
226
+ .tabs {{
227
+ background: rgba(255,255,255,0.88);
228
+ border-radius: 12px;
229
+ box-shadow: 0 8px 24px rgba(0,0,0,0.08);
230
+ padding: 8px;
231
+ border: 1px solid #e5e7eb;
232
+ }}
233
+ .tab-nav {{
234
+ display: flex; gap: 8px; margin-bottom: 8px;
235
+ background: transparent;
236
+ border-bottom: 1px solid #e5e7eb;
237
+ padding-bottom: 6px;
238
+ }}
239
+ .tab-nav button {{
240
+ background: rgba(255,255,255,0.7);
241
+ border: 1px solid #e5e7eb;
242
+ backdrop-filter: blur(6px);
243
+ border-radius: 8px;
244
+ padding: 6px 12px;
245
+ color: #111827;
246
+ transition: all .2s ease;
247
+ }}
248
+ .tab-nav button:hover {{
249
+ transform: translateY(-1px);
250
+ box-shadow: 0 4px 10px rgba(0,0,0,0.06);
251
+ }}
252
+ .tab-nav button[aria-selected="true"] {{
253
+ background: #4f46e5;
254
+ color: #fff;
255
+ border-color: #4f46e5;
256
+ box-shadow: 0 6px 14px rgba(79,70,229,0.25);
257
+ }}
258
+ .tabitem {{
259
+ background: rgba(255,255,255,0.88);
260
+ border-radius: 10px;
261
+ padding: 8px;
262
+ }}
263
+ /* 发型库滚动限制容器:固定260px高度,内部可滚动 */
264
+ #hair_gallery_wrap {{
265
+ height: 260px !important;
266
+ overflow-y: scroll !important;
267
+ overflow-x: auto !important;
268
+ }}
269
+ #hair_gallery_wrap .grid, #hair_gallery_wrap .wrap {{
270
+ height: 100% !important;
271
+ overflow-y: scroll !important;
272
+ }}
273
+ /* 确保画廊本体占满容���高度,避免滚动条落到页面底部 */
274
+ #hair_gallery {{
275
+ height: 100% !important;
276
+ }}
277
+ """
278
+
279
+ with gr.Blocks(
280
+ theme=gr.themes.Soft(primary_hue="indigo", neutral_hue="slate"),
281
+ css=css
282
+ ) as demo:
283
+ # ==== 顶部 Panel ====
284
+ with gr.Group(elem_id="title-card"):
285
+ gr.Markdown("""
286
+ <h2 id='title'>StableHairV2 多视角发型迁移</h2>
287
+ <p>上传身份图与发型参考图,系统将自动完成 <b>对齐 → 秃头化 → 视频生成</b>。</p>
288
+ """)
289
+
290
+ with gr.Row(elem_classes=["two-col"]):
291
+ with gr.Column(scale=5, min_width=260, elem_classes=["left-pane"]):
292
+ id_input = gr.Image(type="pil", label="身份图", height=200)
293
+ hair_input = gr.Image(type="pil", label="发型参考图", height=200)
294
+
295
+ with gr.Row():
296
+ run_btn = gr.Button("开始生成", variant="primary")
297
+ clear_btn = gr.Button("清空")
298
+
299
+ # ========= 发型库(点击即填充到“发型参考图”) =========
300
+ def _list_imgs(dir_path: str):
301
+ exts = (".png", ".jpg", ".jpeg", ".webp")
302
+ # exts = (".jpg")
303
+ try:
304
+ files = [os.path.join(dir_path, f) for f in sorted(os.listdir(dir_path))
305
+ if f.lower().endswith(exts)]
306
+ return files
307
+ except Exception:
308
+ return []
309
+
310
+ hair_list = _list_imgs("hair_resposity")
311
+
312
+ with gr.Accordion("发型库(点击选择后自动填充)", open=True):
313
+ with gr.Group(elem_id="hair_gallery_wrap"):
314
+ gallery = gr.Gallery(
315
+ value=hair_list,
316
+ columns=4, rows=2, allow_preview=True, label="发型库",
317
+ elem_id="hair_gallery"
318
+ )
319
+
320
+ def _pick_hair(evt: gr.SelectData): # type: ignore[name-defined]
321
+ i = evt.index if hasattr(evt, 'index') else 0
322
+ i = 0 if i is None else int(i)
323
+ if 0 <= i < len(hair_list):
324
+ return gr.update(value=hair_list[i])
325
+ return gr.update()
326
+
327
+ gallery.select(_pick_hair, inputs=None, outputs=hair_input)
328
+
329
+ with gr.Column(scale=7, min_width=520, elem_classes=["right-pane"]):
330
+ with gr.Tabs():
331
+ with gr.TabItem("生成视频"):
332
+ with gr.Group(elem_classes=["out-card"]):
333
+ video_out = gr.Video(label="生成的视频", height=340)
334
+ with gr.Row():
335
+ frame_slider = gr.Slider(1, 21, value=1, step=1, label="多视角预览(拖动查看帧)")
336
+ frame_preview = gr.Image(type="filepath", label="预览帧", height=260)
337
+ frames_state = gr.State([])
338
+
339
+ with gr.TabItem("归一化对齐结果"):
340
+ with gr.Group(elem_classes=["out-card"]):
341
+ with gr.Row():
342
+ aligned_id_out = gr.Image(type="filepath", label="对齐后的身份图", height=240)
343
+ aligned_hair_out = gr.Image(type="filepath", label="对齐后的发型图", height=240)
344
+
345
+ with gr.TabItem("秃头化结果"):
346
+ with gr.Group(elem_classes=["out-card"]):
347
+ bald_id_out = gr.Image(type="filepath", label="秃头化后的身份图", height=260)
348
+
349
+ # 逻辑保持不变
350
+ run_btn.click(fn=inference,
351
+ inputs=[id_input, hair_input],
352
+ outputs=[aligned_id_out, aligned_hair_out, bald_id_out,
353
+ video_out, frames_state, frame_slider, frame_preview])
354
+
355
+
356
+ def _on_slide(frames, idx):
357
+ if not frames:
358
+ return gr.update()
359
+ i = int(idx) - 1
360
+ i = max(0, min(i, len(frames) - 1))
361
+ return gr.update(value=frames[i])
362
+
363
+
364
+ frame_slider.change(_on_slide, inputs=[frames_state, frame_slider], outputs=frame_preview)
365
+
366
+
367
+ def _clear():
368
+ return None, None, None, None, None
369
+
370
+
371
+ clear_btn.click(_clear, None,
372
+ [id_input, hair_input, aligned_id_out, aligned_hair_out, bald_id_out])
373
+
374
+ if __name__ == "__main__":
375
+ demo.queue().launch(server_name="0.0.0.0", server_port=7860)
376
+
377
+
378
+
379
+