Spaces:
Runtime error
Runtime error
| # Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280 | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.models.attention import BasicTransformerBlock | |
| from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg | |
| from diffusers.utils import PIL_INTERPOLATION, logging | |
| from diffusers.utils.torch_utils import randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import UniPCMultistepScheduler | |
| >>> from diffusers.utils import load_image | |
| >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") | |
| >>> pipe = StableDiffusionReferencePipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", | |
| safety_checker=None, | |
| torch_dtype=torch.float16 | |
| ).to('cuda:0') | |
| >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config) | |
| >>> result_img = pipe(ref_image=input_image, | |
| prompt="1girl", | |
| num_inference_steps=20, | |
| reference_attn=True, | |
| reference_adain=True).images[0] | |
| >>> result_img.show() | |
| ``` | |
| """ | |
| def torch_dfs(model: torch.nn.Module): | |
| result = [model] | |
| for child in model.children(): | |
| result += torch_dfs(child) | |
| return result | |
| class StableDiffusionReferencePipeline(StableDiffusionPipeline): | |
| def _default_height_width(self, height, width, image): | |
| # NOTE: It is possible that a list of images have different | |
| # dimensions for each image, so just checking the first image | |
| # is not _exactly_ correct, but it is simple. | |
| while isinstance(image, list): | |
| image = image[0] | |
| if height is None: | |
| if isinstance(image, PIL.Image.Image): | |
| height = image.height | |
| elif isinstance(image, torch.Tensor): | |
| height = image.shape[2] | |
| height = (height // 8) * 8 # round down to nearest multiple of 8 | |
| if width is None: | |
| if isinstance(image, PIL.Image.Image): | |
| width = image.width | |
| elif isinstance(image, torch.Tensor): | |
| width = image.shape[3] | |
| width = (width // 8) * 8 # round down to nearest multiple of 8 | |
| return height, width | |
| def prepare_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| if not isinstance(image, torch.Tensor): | |
| if isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| images = [] | |
| for image_ in image: | |
| image_ = image_.convert("RGB") | |
| image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
| image_ = np.array(image_) | |
| image_ = image_[None, :] | |
| images.append(image_) | |
| image = images | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = (image - 0.5) / 0.5 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, dim=0) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = torch.cat([image] * 2) | |
| return image | |
| def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): | |
| refimage = refimage.to(device=device, dtype=dtype) | |
| # encode the mask image into latents space so we can concatenate it to the latents | |
| if isinstance(generator, list): | |
| ref_image_latents = [ | |
| self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(batch_size) | |
| ] | |
| ref_image_latents = torch.cat(ref_image_latents, dim=0) | |
| else: | |
| ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) | |
| ref_image_latents = self.vae.config.scaling_factor * ref_image_latents | |
| # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method | |
| if ref_image_latents.shape[0] < batch_size: | |
| if not batch_size % ref_image_latents.shape[0] == 0: | |
| raise ValueError( | |
| "The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
| f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." | |
| " Make sure the number of images that you pass is divisible by the total requested batch size." | |
| ) | |
| ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) | |
| return ref_image_latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| attention_auto_machine_weight: float = 1.0, | |
| gn_auto_machine_weight: float = 1.0, | |
| style_fidelity: float = 0.5, | |
| reference_attn: bool = True, | |
| reference_adain: bool = True, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| ref_image (`torch.FloatTensor`, `PIL.Image.Image`): | |
| The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If | |
| the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can | |
| also be accepted as an image. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| attention_auto_machine_weight (`float`): | |
| Weight of using reference query for self attention's context. | |
| If attention_auto_machine_weight=1.0, use reference query for all self attention's context. | |
| gn_auto_machine_weight (`float`): | |
| Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. | |
| style_fidelity (`float`): | |
| style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, | |
| elif style_fidelity=0.0, prompt more important, else balanced. | |
| reference_attn (`bool`): | |
| Whether to use reference query for self attention's context. | |
| reference_adain (`bool`): | |
| Whether to use reference adain. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." | |
| # 0. Default height and width to unet | |
| height, width = self._default_height_width(height, width, ref_image) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds = self._encode_prompt( | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| ) | |
| # 4. Preprocess reference image | |
| ref_image = self.prepare_image( | |
| image=ref_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=prompt_embeds.dtype, | |
| ) | |
| # 5. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 7. Prepare reference latent variables | |
| ref_image_latents = self.prepare_ref_latents( | |
| ref_image, | |
| batch_size * num_images_per_prompt, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| ) | |
| # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 9. Modify self attention and group norm | |
| MODE = "write" | |
| uc_mask = ( | |
| torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) | |
| .type_as(ref_image_latents) | |
| .bool() | |
| ) | |
| def hacked_basic_transformer_inner_forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| ): | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero: | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| else: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| # 1. Self-Attention | |
| cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
| if self.only_cross_attention: | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| else: | |
| if MODE == "write": | |
| self.bank.append(norm_hidden_states.detach().clone()) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| if MODE == "read": | |
| if attention_auto_machine_weight > self.attn_weight: | |
| attn_output_uc = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), | |
| # attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| attn_output_c = attn_output_uc.clone() | |
| if do_classifier_free_guidance and style_fidelity > 0: | |
| attn_output_c[uc_mask] = self.attn1( | |
| norm_hidden_states[uc_mask], | |
| encoder_hidden_states=norm_hidden_states[uc_mask], | |
| **cross_attention_kwargs, | |
| ) | |
| attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc | |
| self.bank.clear() | |
| else: | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| if self.use_ada_layer_norm_zero: | |
| attn_output = gate_msa.unsqueeze(1) * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if self.attn2 is not None: | |
| norm_hidden_states = ( | |
| self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
| ) | |
| # 2. Cross-Attention | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 3. Feed-forward | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| ff_output = self.ff(norm_hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| hidden_states = ff_output + hidden_states | |
| return hidden_states | |
| def hacked_mid_forward(self, *args, **kwargs): | |
| eps = 1e-6 | |
| x = self.original_forward(*args, **kwargs) | |
| if MODE == "write": | |
| if gn_auto_machine_weight >= self.gn_weight: | |
| var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
| self.mean_bank.append(mean) | |
| self.var_bank.append(var) | |
| if MODE == "read": | |
| if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
| var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
| std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
| mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) | |
| var_acc = sum(self.var_bank) / float(len(self.var_bank)) | |
| std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
| x_uc = (((x - mean) / std) * std_acc) + mean_acc | |
| x_c = x_uc.clone() | |
| if do_classifier_free_guidance and style_fidelity > 0: | |
| x_c[uc_mask] = x[uc_mask] | |
| x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc | |
| self.mean_bank = [] | |
| self.var_bank = [] | |
| return x | |
| def hack_CrossAttnDownBlock2D_forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| ): | |
| eps = 1e-6 | |
| # TODO(Patrick, William) - attention mask is not used | |
| output_states = () | |
| for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| if MODE == "write": | |
| if gn_auto_machine_weight >= self.gn_weight: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| self.mean_bank.append([mean]) | |
| self.var_bank.append([var]) | |
| if MODE == "read": | |
| if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
| mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
| var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
| std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
| hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
| hidden_states_c = hidden_states_uc.clone() | |
| if do_classifier_free_guidance and style_fidelity > 0: | |
| hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
| hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
| output_states = output_states + (hidden_states,) | |
| if MODE == "read": | |
| self.mean_bank = [] | |
| self.var_bank = [] | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| def hacked_DownBlock2D_forward(self, hidden_states, temb=None): | |
| eps = 1e-6 | |
| output_states = () | |
| for i, resnet in enumerate(self.resnets): | |
| hidden_states = resnet(hidden_states, temb) | |
| if MODE == "write": | |
| if gn_auto_machine_weight >= self.gn_weight: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| self.mean_bank.append([mean]) | |
| self.var_bank.append([var]) | |
| if MODE == "read": | |
| if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
| mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
| var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
| std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
| hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
| hidden_states_c = hidden_states_uc.clone() | |
| if do_classifier_free_guidance and style_fidelity > 0: | |
| hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
| hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
| output_states = output_states + (hidden_states,) | |
| if MODE == "read": | |
| self.mean_bank = [] | |
| self.var_bank = [] | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| def hacked_CrossAttnUpBlock2D_forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| upsample_size: Optional[int] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| ): | |
| eps = 1e-6 | |
| # TODO(Patrick, William) - attention mask is not used | |
| for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| )[0] | |
| if MODE == "write": | |
| if gn_auto_machine_weight >= self.gn_weight: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| self.mean_bank.append([mean]) | |
| self.var_bank.append([var]) | |
| if MODE == "read": | |
| if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
| mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
| var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
| std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
| hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
| hidden_states_c = hidden_states_uc.clone() | |
| if do_classifier_free_guidance and style_fidelity > 0: | |
| hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
| hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
| if MODE == "read": | |
| self.mean_bank = [] | |
| self.var_bank = [] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| eps = 1e-6 | |
| for i, resnet in enumerate(self.resnets): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| hidden_states = resnet(hidden_states, temb) | |
| if MODE == "write": | |
| if gn_auto_machine_weight >= self.gn_weight: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| self.mean_bank.append([mean]) | |
| self.var_bank.append([var]) | |
| if MODE == "read": | |
| if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
| var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
| std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
| mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
| var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
| std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
| hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
| hidden_states_c = hidden_states_uc.clone() | |
| if do_classifier_free_guidance and style_fidelity > 0: | |
| hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
| hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
| if MODE == "read": | |
| self.mean_bank = [] | |
| self.var_bank = [] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| if reference_attn: | |
| attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] | |
| attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) | |
| for i, module in enumerate(attn_modules): | |
| module._original_inner_forward = module.forward | |
| module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) | |
| module.bank = [] | |
| module.attn_weight = float(i) / float(len(attn_modules)) | |
| if reference_adain: | |
| gn_modules = [self.unet.mid_block] | |
| self.unet.mid_block.gn_weight = 0 | |
| down_blocks = self.unet.down_blocks | |
| for w, module in enumerate(down_blocks): | |
| module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) | |
| gn_modules.append(module) | |
| up_blocks = self.unet.up_blocks | |
| for w, module in enumerate(up_blocks): | |
| module.gn_weight = float(w) / float(len(up_blocks)) | |
| gn_modules.append(module) | |
| for i, module in enumerate(gn_modules): | |
| if getattr(module, "original_forward", None) is None: | |
| module.original_forward = module.forward | |
| if i == 0: | |
| # mid_block | |
| module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) | |
| elif isinstance(module, CrossAttnDownBlock2D): | |
| module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) | |
| elif isinstance(module, DownBlock2D): | |
| module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) | |
| elif isinstance(module, CrossAttnUpBlock2D): | |
| module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) | |
| elif isinstance(module, UpBlock2D): | |
| module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) | |
| module.mean_bank = [] | |
| module.var_bank = [] | |
| module.gn_weight *= 2 | |
| # 10. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # ref only part | |
| noise = randn_tensor( | |
| ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype | |
| ) | |
| ref_xt = self.scheduler.add_noise( | |
| ref_image_latents, | |
| noise, | |
| t.reshape( | |
| 1, | |
| ), | |
| ) | |
| ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt | |
| ref_xt = self.scheduler.scale_model_input(ref_xt, t) | |
| MODE = "write" | |
| self.unet( | |
| ref_xt, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| ) | |
| # predict the noise residual | |
| MODE = "read" | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |