Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import DDPMWuerstchenScheduler, WuerstchenDecoderPipeline | |
| from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt | |
| from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class WuerstchenDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = WuerstchenDecoderPipeline | |
| params = ["prompt"] | |
| batch_params = ["image_embeddings", "prompt", "negative_prompt"] | |
| required_optional_params = [ | |
| "num_images_per_prompt", | |
| "num_inference_steps", | |
| "latents", | |
| "negative_prompt", | |
| "guidance_scale", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| def text_embedder_hidden_size(self): | |
| return 32 | |
| def time_input_dim(self): | |
| return 32 | |
| def block_out_channels_0(self): | |
| return self.time_input_dim | |
| def time_embed_dim(self): | |
| return self.time_input_dim * 4 | |
| def dummy_tokenizer(self): | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| return tokenizer | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| projection_dim=self.text_embedder_hidden_size, | |
| hidden_size=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| return CLIPTextModel(config).eval() | |
| def dummy_vqgan(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "bottleneck_blocks": 1, | |
| "num_vq_embeddings": 2, | |
| } | |
| model = PaellaVQModel(**model_kwargs) | |
| return model.eval() | |
| def dummy_decoder(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "c_cond": self.text_embedder_hidden_size, | |
| "c_hidden": [320], | |
| "nhead": [-1], | |
| "blocks": [4], | |
| "level_config": ["CT"], | |
| "clip_embd": self.text_embedder_hidden_size, | |
| "inject_effnet": [False], | |
| } | |
| model = WuerstchenDiffNeXt(**model_kwargs) | |
| return model.eval() | |
| def get_dummy_components(self): | |
| decoder = self.dummy_decoder | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| vqgan = self.dummy_vqgan | |
| scheduler = DDPMWuerstchenScheduler() | |
| components = { | |
| "decoder": decoder, | |
| "vqgan": vqgan, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "scheduler": scheduler, | |
| "latent_dim_scale": 4.0, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "image_embeddings": torch.ones((1, 4, 4, 4), device=device), | |
| "prompt": "horse", | |
| "generator": generator, | |
| "guidance_scale": 1.0, | |
| "num_inference_steps": 2, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_wuerstchen_decoder(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False) | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.0000, 0.0000, 0.0089, 1.0000, 1.0000, 0.3927, 1.0000, 1.0000, 1.0000]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=1e-5) | |
| def test_attention_slicing_forward_pass(self): | |
| test_max_difference = torch_device == "cpu" | |
| test_mean_pixel_difference = False | |
| self._test_attention_slicing_forward_pass( | |
| test_max_difference=test_max_difference, | |
| test_mean_pixel_difference=test_mean_pixel_difference, | |
| ) | |
| def test_float16_inference(self): | |
| super().test_float16_inference() | |